COMPUTING CIRCUMSCRIPTION

Vladimir Lifschitz

Department of Computer Science
Stanford University
Stanford, CA 94305

Abstract

Circumscription is a transformation of predicate for-
mulas proposed by John McCarthy for the purpose of
formalizing non-monotonic aspects of commonsense rea-
soning. Circumscription is difficult to implement because
its definition involves a second-order quantifier. This pa-
per presents metamathematical results that allow us in
some cases to replace circumscription by an equivalent
first-order formula.

1. Introduction

Research in the theory of commonsense reasoning
has revealed a fundamental difference between how uni-
versal assertions arc used in mathematics on the one
hand, and in the area of commonsense knowledge on the
other. In mathematics, when a proposition is claimed
to be universally true, the assertion includes a complete
list of conditions on the objects involved under which the
proposition is asserted {*for all z # 0", "for all sufficiently
large natural numbers", etc.) But in everyday life we of-
ten assert that a certain proposition is true "in general”;
we know that there are exceptions, and we can list some
of them, but the list of exceptions is not a part of the
assertion. The "abnormality" of each item on the list is a
separate piece of commonsense knowledge. We know, for
instance, that birds, generally, can fly. We know, futher-
more, that ostriches are exceptions. And penguins are
exceptions. And dead birds arc exceptions. All these
assertions appear to be separate commonsense facts.

The language of predicate logic has been created pri-
marily for the purpose of formalizing mathematics, and
it docs not provide any means for talking about what is
"generally true" and what "exceptions" are. If we want to
use that language for representing commonsense knowl-
edge then methods for formalizing assertions about ex-
ceptions have to be developed.

The study of such methods belongs to the area of
non-inonotonic logic. Extending an axiom set can force
us to retract some of the conclusions we have derived
from the axioms if the new axioms include additional in-
formation about abnormal objects. The set of theorems
depends on the set of axioms in a non-monotonic way.

Consider a simple example which illustrates some of
the difficulties involved. LetBfz, 08z, FLz and ABz
represent the conditions "i is a bird", "2 is an ostrich", "x
can fly" and "i is abnormal". We want to express these
commonsense facts: birds, generally, can fly; ostriches are
birds and cannot fly. Consider the formulas:

Vz(BIzA-ABz D> FLz), (A1)

Y2(0S z > BIz},
(Az) ¥5(0S = > ~FLz).

These formulas represent a part of what has been said
about the ability of birds to fly, but they do not say
one important thing: objects are considered normal if
there is no evidence to the contrary. The three available
facts imply that ostriches are abnormal, and they give no
information about the abnormality of any other objects.
We want to be able to conclude then that ostriches are
the only exceptions:

Vz(AB z = OS z).)

But (1) does not follow from the conjunction A of Ay,

We discuss here one of the approaches to this prob-
lem, the theory of circumscription (McCarthy 1980,
1984). The process of circumscription transforms A into
a stronger formula A’ which says essentially that AD has
a minimal possible extension under the condition A. It
turns out that A’ is equivalent to the conjunction of A
and (1).

A' depends on A non-monotonically. In this
sense, circumscription provides an interpretation of non-
monotonic reasoning in the usual (monotonic) logic.

In more complex cases, wc deal with several kinds
of abnormality, and the extensions of several predicates
AB, AB, . have to be minimized. These minimiza-
tions sometimes conflict with each other, and there may
be a need to establish relative priorities between them

(McCarthy 1984).

122 V. Lifschitz

Currently there are no working systems of knowl-
edge representation based on circumscription. Such a
system would include a database A and a metamathe-
matical statement describing how circumscription should
be performed. (Such a description would specify, for in-
stance, which predicates should be minimised, and what
their priorities are). The system would also include a
theorem prover capable of deriving logical consequences
from the result A" of circumscribing A.

The design of such a system has to deal with a ma-
jor difficulty: the definition of circumscription involves
a second-order quantifier, so that A' is a formula of a
second-order language. The purpose of this paper is to
present mctamathematical theorems which, in some in-
stances, enable us to replace the result of circumscription
by an equivalent first-order formula. These methods can
be successfully applied to some examples of circumscrip-
tion that seem to be typical for applications to the formal-
ization of commonsense knowledge, and, hopefully, they
can be used as a basis for implementing circumscription.
Our main tool is a theorem which establishes the equiva-
lence of a special case of circumscription to a modification
of Clark's predicate completion (Clark 1978). Connec-
tions between these two concepts were first studied in
(Reiter 1982).

Proofs of some special cases of the results stated in
this paper can be found in (Lifschitz 1984). Complete
proofs will be published elsewhere.

2. Second-Order Formulas

A second order language is defined, just as a first or-
der language, by sets of function constants and predicate
constants, each of some arity n, » 2> Q.. In the second or-
der language we have, besides object variables, also n-ary
function variables and n-ary predicate variables. (Object,
variables and constants arc identified with function vari-
ables and constants of arity 0). Both function and predi-
cate variables can be bound by quantifiers. A sentence is
a formula without free (function or predicate) variables.

A structure M for a second order language L consists
of a non-empty universe |M|, functions f r |[M[® o M
representing the function constants and subsets of |M]"
representing the predicate constants. For any constant
K, we denote the object (function or set) representing K
in M by MJK]. Equality is interpreted as identity, func-
tion variables range over arbitrary functions from |M|"
to M, and predicate variables range over arbitrary sub-
sets oflM]n. A model of a sentence A is any structure
M such that A is true in M. A implies D if every model

of A is a model of B; A is equivalent to B if they have
the same models,

An n-ary predicate is an expression of the form
AzA(z), where z is a tuple of n object variables, A(z)
» formula. As usual, if I/ is Az A(x), and ¢ is a tuple of n
terms, then [7¢ stands for A(t). We identify a predicate
constant P with the predicate AzPz, and similarly for
predicate variables.

If U, V are n-ary predicates, then U/ < V stands for
Vz{(Uz O Vz), Thus U < V exprosses that the extension
of U7 is a subset of the extension of V. We apply this
notation to tuples U = Uy,..., Un and V = V¥,,...,Vq
of predicates, assuning that they are similar (i.e., that
U, and V; have the same arity): U/ < V stands for

Uy sViA.. AU, <V

Furthermore, I/ = V stands for U < V AV < U, and
U<Vatanda for U S VA=V < U).ITm =1 then
U < V means simply that the extension of U/ is a proper
subset of the extension of V.

3. Parallel Circumscription

First we consider parallel circumscription, when ne
prioritics between the minimized predicates arc specified.
Let P be a tuple of predicate constants, Z a tuple of
function and/or predicate constants disjoint with P, and
let A{P, Z) be a sentence. The circumscription of P in
AP, Z) with variabic Z is the sentence

A(P,Z) A ~3pz{A(p,2) Ap < P). (2)

{Here p,z are tuples of variables similar to P,Z). This
formula expresses that P has a minimal possible exten-
sion under the condition A(P, Z) when Z is allowed to
vary in the process of minimization. We denote (2)
by Cirenn(A{P, Z); P; Z). When Z in empty, we write
Circum{A(P); P).

In applications to the formalization of commonsense
reasoning, A(P, Z) is the conjunction of the axioms, P
is the list of abnormality predicates, and Z is the list
of symbols that we intend to characterize by means of
circumscription, as I'L in the example discussed in the
introduction. The circumscription we intend to perform
in that case is

Circnm(A{AB, FL); AB; FL). (3)

The model-theatetic menning of circumacription can
be expressed in termy of the following notalion. Let P,

Z be as in the definition of circumseription. For any two
structures M, Mz, we write M, <%% M, if

(i) [M:] = (M2},

(ii) M [K] = Ma|K] for every constant K not in P, Z,
(iil) M, [P} c Mz|P,] for every P; in P,

Thus M) <FiZ M, if M, and M, differ only in how
they interpret the constants in P and Z, and the exten-
gion of each P; in M, is a subset of its extension in Mj.
Clearly, <2 is a pre-order (i.e., a reflexive and
transitive relation) on the class of all structures. It is
poasible, however, that M; <™Z M; and, at the same
time, Mz <7% M, for two different structures M,, Ma.
Thia happens when A, M; diifer by the interpretations
of eymbols in Z. In other words, <% ja, generally, ot
anti-symmnietric and thus not a partial order. Still, we
can speak of the minimality of structures with respect
to <™2; a structure M is minimal in a class § of struc-
tures if M € S and there is no structure M’ &€ § such that
M' <% M. (We write M, <T% M, if My <Di% M,
but not My <7Z M,). This concept of minimality was
introduced essentially in (McCarthy 1980).

The models of circumscription can be characterized
now a3 [ollows:

Proposition 1. A structure M is a model of Circum{4;
P; Z) iff M is minimal in the class of models of A with
respect to <FiZ,

Thia equivalence [ollows from the [act that specifying
values of p, z for which A{p,z}Ap < P is true in M
is cquivalent to specifying a model M’ of A such that
M <MZ M,

4. Examples

Before describing general methods for determining
the result of circumscription, we discuss a few examples.
In these exaunples Z is emiply, and P is a single predicate
constant.

Example 1. A = Pa, c an object constant, Circum-
scription asmerts that the extension of P is a minimal
set satisfying this condition; in other words, a is its only
slement:

Circum{Pa; P) = V2(Px = z = a).
Example 2. A = -Pa, This docs not give any “pos-

itive” informalion about P and is true even when P is
identically false. Hence

Cireum{—-Pg; P) = Vz-Pz.

We get the snme result whenover A contains no positive
occurances of P.

V. Lifschitz 123

Example 3. A = Pa A Pb. Circumscription asserts that
a and b are the only elements of P:

Circum(Pa A Ph; P) =Vz(Pz=z=aVz=})

Example 4. A = Pa v Pb. In Examples 1-3, circum-
scription provided an explicit definition and thus a unique
possible value for P. In this case, there are two minimal
values:

Circum(PaVv Pb; P) = Vz{Pz = 2 = a)WWa(Px = z = }).

Example 5. A = Pav(PbAPc). The previous examples
suggest that the answer might be

VzZ{Pz =z =e)VVz(Px=z=bvz=¢).

But we should take into consideration that a may be
equal to one of b, ¢, and then the second disjunctive term
does not give a minimal P. The correct answer ia

Circom{PaVv (PbA Pe); P)=Ve(Pzr =z =a)
ViVz(Pr=z=bvz=c)rs# bAa#c]

Example 8. A = Vz(Qz > Pz). Clearly, circumscrip-
tion simply changes implication to equivalence:

Circum(Vz({Qz D Px); P) = ¥z(Qz = Pz).

More gencrally, for any predicate I/ (without parameters)
which does not contain P,

Circum{U < P;P)=U =P.

This can be also viewed as a generalization of Examples
1 and 3, because in those exaples A can be writlen in
the form UV < P;

Pa=lz(z=4a) < P,
PaaPb=Xx(z=avz=5b <P

Example 7. A = 3zPz. Circumscription asserts that
the extension of P ia a “minimal non-cipty” set, ie., a
singleton:

Circum{3zPz; P) = zVy(Py = z = y).

Example 8. In all examples above, we were able to ex-
press the result of circumscription without second-order
quantifiers. Let now P, @ be binary predicate conatants,
and A be

Vzy(Qzy D Pzy) AVzyz(Pzy A Pyz O Pzz).

Then Circum(A; P) asserts that P is the transitive clo-
sure of @ and thus is not equivalent to a first-order sen-
tence.

124 V. Lifschitz

Notice that the formula of this example is "good" by
all logical standards: it is universal and, moreover, Horn,
and it contains no function symbols. What syntactic fea-
tures make it difficult for circumscription? This question
will be answered in the next section.

5. Separable Formulas

In Examples 2 and 6 above we saw that there are two
classes of formulas for which the result of circumscription
can be easily determined: formulas without positive oc-
curences of P, and formulas of the form & € P, where
U does not contain P. What about formulas constructed
from subformulas of these two types using conjunctions
and disjunctions?

First let us look at conjunctions of such formulas.
Let P be again a tuple of predicate constants Pyy..., P
We say that A(P) is solitary with respect to P if it is a
conjunction of
(i) formulas containing no positive occurences of
Py,... Py, and
(ii) formulas of the form &f € P,, where U is a predicate
not containing £, ... Pms

Using predicate calculus, we can write any solitary
formula in the form

N(P}A(U < P),

where N(P) contains no positive occurences of Pi,...,
P, and U is a tuple of predicates not containing
P1- Pm- Then the result of circumscription is given
by the formula

@.’cum(N(P) AU <P, PY=N(UYA(U = P).

Using this formula, we can do, in particular, the circum-
scriptions of Examples 1, 2, 3 and 6.

Next we want to be able to handle formulas with
disjunctions, like Examples 4 and 5. If a formula is con-
structed from subformulas of forms (i) and (ii) using con-
junctions and disjunctions, we call it separable. In a sep-
arable formula, positive occurences of P4,... P, are sep-
arated by conjunctions and disjunctions from negative
occurences and from each other.

Any separable formula is equivalent to a disjunction
of solitary formulas and consequently can be written in

the form .
V[Ni(P) A (U' < P)], (5)
i

where N{[P) contains no positive occurences of Pi,...,
Pn, and each U' is a tuple of predicates not containing

Pll"' Pm-

The following theorem generalises (4) to separable
formulas.

Theorem 1. If A(P) is equivalent to (5) then
Circum(A(P); P) is equivalent to

_/[D- AU = P}, (6)

where D), is

NUY AN -IN U AU < UY).
1%

Thus the result of circumscription in a separable
first-order sentence is a first-order sentence of about the
same logical complexity. Circum(A(P); P) asserts that P
may have one of the finite number of possible values U,
U2 Hence every model of Circum(i4(P); P) belongs
to one of a finite number of classes: there are models in
which P is the same as U" models in which P is the
same as U? etc. If M is a structure in which P = U
then D; is the additional condition which, if true in M,
guarantees that M is a model of Circum(;4(P); P).

The transformation of ili* € P into U' = P is based
on the same idea as predicate completion of (Clark 1978):
transforming sufficient conditions into necessary and suf-
ficient. When applied to non-separable Horn formulas,
like the formula of Example 8, predicate completion of-
ten gives conditions that arc weaker than the result of
circumscription. On the other hand, the transformation
of (5) into (G) is not restricted to Horn formulas and is
in this respect more general.

Using Theorem 1, we can easily do all circumscrip-
tions of Examples 1-6. Examples 7 and 8 arc not separa-
ble.

Example 7 shows that there arc non-separable for-
mulas for which circumscription can be done in the first-
order language. Here is one more example:

Circum(Vz(P,z V Paz); Py, Py) = V2(P 2 = -P;x). (T)

The first argument can be easily written in the form sep-
arable with respect to P; and in the form separable with
respect to P, but it is not equivalent to a formula sepa-
rable with respect to the pair P4, Pa.

Theorem 1 cannot be applied directly to circumscrip-
tions with a non-empty Z, like (3). Two observations
often help in such cases.

First, every circumscription with a non-empty Z can
be reduced to a circumscription with the empty Z:

Proposition 2. Circum(A(P, Z); P; Z) is equivalent to

A(P, Z) A Circum{3zA(P, 2); P). (8)

For example, (3) reduces to
Cir::um(EIﬂ[Al (AB, ﬂ) A Ay A Aa[ﬂ)); AB), (9)
where fl is a binary predicate variable.

The problem with this trick is, of course, that the
first argument of circumscription in (8), generally, con-
tains new second-order quantifiers. In our example, we
have to circumscribe AB in a formula with the quantifier

1.

The second observation sometimes helps eliminate
quantifiers like this. If g is a tuple of predicate variables,
and A(q) is separable with respect to g, then we can write
A(q) in the form

VINi(g) A (UF < g)]. (5')

(Separability with respect to a tuple of predicate variables
is defined in the same way as separability with respect to
a tuple of predicate constants). It can be easily seen that
eqgA[q) is equivalent then to ViN[}U] . In our example,
the only positive occurence of fl is in the first conjunctive
term, so we write the conjunction as

As A As(JO) A Az(BIz A -~ABz) € JL.

Then the first argument of (9) is equivalent to the con-
junction of A, and

Yz{0Sz > ~(BIz A~ABx)).

In the presence of Aj this simplifies to Yz(OS 2 > AB z).
Thus it remaina to circomseribe AR in A3 A OS5 < AB.
By (4), the result is A; A OS = AB. The sccond term
here is equivalent to (1).

Many other examples of circumscription arising in
connection with the formalization of commonsense rea-
soning can be handled in the same manner.

V. Lifschitz 125

6. General Circamacription

In some applications of circumseription we have sey-
eral abnormality predicates which are assigned differeat
priorities. For example, we may wish to minimise AB,
and ABj, the former at higher priority than the latter.
This means that, instead of minimising (AB), AB;) with
respect to the relation < defined by

(P2 S(am) =P S Apa <,
we use the relation

{p1,92) < (01, ®:) =p1 <@
Alp1 = g1 D p2 < qa).

(10)

To prepare for the general treatment of priorities in
the next section, we define now the generalization of cir-
cumscription needed for that purpose.

Let p, ¢ be disjoint similar tuples of predicate vari-
ables, and let p X ¢ be a fornmnla which has no parameters
besides p, g. We say that p < ¢ defines a regular order in
a structure M if Lthe sentences

Vpglp<¢DOp=q),
Vpar(p < gAg=<rDp=r),
Vea(p <qAgXpDp=g4)
are true in M. Aas the name suggests, such a formula
dofines a (partial) order on vectors of subseta of |M|".
Clearly, p <€ ¢ delines a regular order in every structure,

A more interesting example is given by (10). We write
p<qlorp=qAp#aq.

As before, let P be a tuple of predicate constanta, Z
a tuple of constants disjeint with P, A(P, Z) a sentence.
Let p < g be a formula which does not contain P, Z,
and defines a regular order in every model of A(P, Z).
The circamscription of P in A(P, Z) with variable Z with
respect bo <, symbolically Circni<{A(P, 2); P Z), is

A{P, Z) A ~dpz(A(p,z) Ap < P).

The results of Sections 3 and 5 can be extended to
general circumscription as follows. We write

My TS My
if
(i) |My| =Mz,
(i) M[K] = Mz|K] for every constant K not in P, Z,

{ii) p < g is Lrue in M, {or, cquivalently, in Mj) for
M\[P] as p and M3[P] as ¢.

126 V. Lifschitz

Proposition Y. A structure M i3 a model of
Circum (A; P; Z) iff M is minimal in the class of models
of A with respect to <Fi%:2,

Theorem 1. If A{P) iz equivalent to (5) then
Circum<(A(P); P) is equivalent to

VID,- AU = P)),

where D; is

N(UYA N AN U7) A (U7 < T
i

Notice that this formula for D, differs from the for-
mula of Theorem 1 only when there are at least two dis-
junctive terms. Consequently, the effect of genmeral cir-
cumascription on a solitary formula can be computed us-
ing the same formula (4) that we used [or paralle] cir-
cumscription. Thua we have:

Corollary. If A is solitary then Circum «<(A; P) does not
depend on <.

Proposition 2. Circumx(A(P, Z); P;Z) is equivalent
to
A(P, Z) A Circum <(3zA(P, 2); P).

In the next scction we show how thiz generalisation
of circiumscription works in applications to the formaliza-
tion of commionsense rensoning.

7. Priorities

The database B defined below contains these com-
nionsense facls: things, in general, do not Oy; airplanes
and birds, in general, do; but ostriches asud dend birda,
generally, do not. B & the conjunction of these formulas:

vz(0O8 z > BIz), (B1)
¥z-(Blz A PLz), (Ba)
Vz(-~AB; z D ~FLz), (Ba)
Vz(PLz A-~AByz > FLz), (BJ)
Vz(BIz A-AB;3z D FLz), (Bs)
Va{OSz A -ABsz D ~FLz), (Be)

Vz{BIzs ADEzA-ABsz D> ~FLz). (Dy)

We expect that circumscribing AB;,...,ABs in B
should give the [ollowing result: AB;, AB, and ABy
are identically false {since there is no evidence that they
are not); ostriches and dead birds are the only objects
satisfying AB,; airplanes and the birds that are alive and
not ostriches are the only objects satisfying AB, .

However, the circumscription
Circum(B; AB,,...,AB5; FL)

does not lead to these conclusions. The reason is that
the goals of minimizing our five abnormality predicates
conflict with each other. For instance, minimizing the
extensionas of AB; and AB; conflicts with the goal of
munmismg A.Bl.

The solution proposed in {(McCarthy 1984) is to es-
tablish priorities between different kinds of abnormality.
Let a tuple P of predicate variables be broken into dis-
joint parta P!, PI ... P*. We want to express the
idea that the predicates in P! shouid be minimized at
higher priority than the predicates in P2, P? at higher
priority than P7, etc. Let p', ¢* be tuples of predicate
variables similar to P, and iet p, ¢ stand for pt,...,p*
and ¢!,...,q*%. Define

k i-1 .
p=q /\(/\p"=Q"3p‘Sq‘)- (11)

i=l \§=1

fll

If k = 1 then (11) defines simply p < ¢, If k = 2, P!
consists of only one predicate Py, and P? consists of one
predicate Fy, then (11) becomes (10).

Formula {11) defines a regular order in every struc-
ture. We denote the circumscription Circum(A; P; Z)
with respect to this order by

Circum(A; P* > ... > P*; Z)
and call it prioritised circumacription.

To see how establishing priorities affects the result of
circumacription, compare (7} with the result of prioritised
circumscription:

Cir:um(Vz(Plz v Pzz); Py >P2)
=Yz~P z AVaPzz.

(12)
Minimising P, at higher priority means that we minimise
{P1, Pg) with respect to (10). Without priorities, circum-
scription anly leads te the conclusion that P and P; do

not overlap. In (12) we make the extension of P; as small
as possible, even if it leads to making the extension of P,
larger; that makes P; identically false and P, identically
true.

In applications it is reasonable to assign higher pri-
orities to the abnormality predicates representing excep-
tions to "more specific" commonsense facts. In the ex-
ample above, we use the circumscription

Circum(B; AB,, ABy > AB,, ABy > AB,;FL). (13)

How to compute the result of a prioritized circum-
scription? We can try to use Theorem 1' and Proposition
2'. It turns out, however, that in cases when priorities
are essential, the axiom set is usually not separable with
respect to the collection of all abnormality predicates;
at best, we have separability with respect to individual
ABs or small groups of ABs. Even in simple cases, doing
prioritized circumscription requires an additional tool.

Such a tool is given by the fact that any prioritized
circumscription can be written as a conjunction of paral-
lel circumscriptions, as follows:

Theorem 2. Circum{A; P! >...> P¥;Z)} is equivalent
to

k
A Circum{A; P'; P, ., P, 2).

=1

According to this theorem, we can do circumscrip-
tion (12) by taking the conjunction of

Circum{¥z{ Pz v Pzx}; P1; P2)

and

Circum(Vt{P,z v Pyz); Fy).

Each of the two circumscriptions can be easily evaluated
using the methods of Section 5. The first of them gives
Vz %z, the second ¥z{iyz = ~P,z). The conjunction
of these formulas is equivalent to the right-hand side of
(12).

The result of circumscription (13) can be determined
along the same lines. We come up with the conclusion
that (13) is equivalent to the universal formula

B, A By
AFL = AB, = Az(PLx Vv (BIzA~0S z A ~DEz))
AABy = Xz(0Szv (BlIzADEZ))
AABy = ABy = ABy = Xz.false.

V. Lifschitz 127

Acknowledgements

| am indebted to John McCarthy for introducing me
to problems of non-monotonic reasoning and circumscrip-
tion. | have also benefited from discussing this work with
David Etherington, Michael Gelfond, Benjamin Grosof,
Kurt Konolige, Nils Nilsson, Donald Perlis and Raymond
Reiter.

References

Clark, K. (1978) "Negation as Failure", In: Logic and
Databases (Gallaire, H. and Minker, J., Eds.), Plenum
Press, N. Y., 1978, 293-322.

Lifschitz, V. (1984) "Some Results on Circumscription”,
Technical Report No. STAN-CS-84-1019, Department of
Computer Science, Stanford University, 1984 (= AAAl
Workshop on Non-Monotonic Reasoning, 1984, 151-164).

McCarthy, J. (1980) "Circumscription - A Form of Non-
Monotonic Reasoning", Artificial Intelligence 13, 1980,
295-323.

McCarthy, J. (1984) "Applications of Circumscription
to Formalizing Commonsense Knowledge", AAAl Work-
shop on Non-Monotonic Reasoning, 1984, 295-323, and
to appear in Atrtificial Intelligence,

Reiter, R. (1982) "Circumscription Implies Predicate
Completion (Sometimes)", Proc. AAAI-82, 1982, 418-
420.

