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A b s t r a c t : 
Qualitative simulation is a key inference process in qualita­

tive causal reasoning, In this paper, we present the QSIM al­
gorithm, a new algorithm for qualitative simulation that gener­
alizes the best features of rxisting algorithms, and allows direct 
comparisons among alternate approaches. QSIM is an efficient 
constraint-satisfaction algorithm that can follow either its stan­
dard semantics allowing the creation of new landmarks, or the 
{ + , 0, -} semantics where 0 is the only landmark value, by chang­
ing a table of legal state-transitions. We argue that the QSIM 
semantics make more appropriate qualitative distinctions since 
the { + , 0 , - } semantics can collapse the distinction among in­
creasing, stable, or decreasing oscillation. We also show that (a) 
qualitative simulation algorithms can be proved to produce ev­
ery actual behavior of the mechanism being modeled, but (b) 
existing qualitative simulation algorithms, because of their lo­
cal points of view, can predict spurious behaviors not produced 
by any mechanism satisfying the structural description. These 
observations suggest specific types of care that must be taken 
in designing applications of qualitative causal reasoning systems, 
and in constructing and validating a knowledge base of mecha-
nism descriptions. 

1 In t roduc t ion 

An expert system is often a "shallow model" of its application 
domain, in the sense that conclusions are drawn directly from ob­
servable features of the presented situation. Many researchers be­
lieve that genuinely expert performance must also rest on knowl­
edge of "deep models," in which an underlying mechanism, whose 
state variables may be not be directly observable, accounts for 
the observable facts [11]. 

One major line of research toward the representation of deep 
models is the study of qualitative causal models [1-19]. Research 
on qualitative causal models differs from more general work on 
deep models in focusing on qualitative descriptions of the deep 
mechanism, capable of representing incomplete knowledge of the 
structure and behavior of the mechanism. Symbolic manipula­
t ion of qualitative descriptions also corresponds well wi th expla­
nations by human experts [16,17]. 
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Figure 1: Qualitative simulation and differential equations are 
both abstractions of actual behavior. 

A central inference within this approach is qualitative simu­
lation: derivation of a description of the behavior of a mechanism 
from a qualitative description of its structure. Differential equa­
tions provide a useful comparison. A differential equation de-
scribes a physical system in terms of a set of state variables and 
constraints. The solution to the equation may be a function rep­
resenting the behavior of the system over time. The qualitative 
structural description is a further abstraction of the same system, 
and qualitative simulation is intended to yield a corresponding 
abstraction of its behavior (figure 1). 

A l l qualitative simulation systems predict multiple possible 
behaviors given certain structural descriptions and init ial condi­
tions. Researchers in this area (myself included) have hoped to 
prove that the predicted behaviors include all and only the possi­
ble behaviors of real mechanisms satisfying the given description. 
Half of this is correct: we can prove [15] that qualitative simula­
tion cannot miss any actual behavior. However, because of the 
local nature of its decision criteria, qualitative simulation con pre-
dict behaviors that are not possible for any real mechanism satis­
fying the given description, and we construct a counterexample. 
We discuss the implications of these results for the construction 
of a qualitative causal reasoning system. 

The QSIM algorithm has been implemented in Lisp on the 
Symbolics 3G00, and all examples in this paper have been run, as 
well as numerous others in elementary physics, nephrology, and 
cardiology. 



B. Kuipers 129 

1.1 O v e r v i e w 

This section provides an overview of qualitative simulation 
and the QSIM algorithm. Some of these concepts are defined 
more formally below. The complete formal treatment is pre­
sented in [15]. Qualitative simulation of a system starts with a 
description of the known structure of the system and its init ial 
state, and produces a tree consisting of the possible future states 
of the system. The possible behaviors of the system are the paths 
from the root of this tree to its leaves. 

The s t r u c t u r a l desc r ip t i on consists of a set of symbols 
representing the phys ica l parameters of the system (contin­
uously differeiitiahle real-valued functions of time), and a set of 
cons t ra in ts on how those parameters may be related to each 
other. The constraints are two- or three-place relations on phys­
ical parameters. Some specify familiar mathematical relation­
ships: DERIV(vel,acc). ADD(net, out, in). MULT (mass, acc, 
force), MINUS(fwd, rev) Others assert qualitatively that there 
is a functional relationship between two physical parameters, 
but only specify that the relationship is monotonically increas­
ing or decreasing: M ' (price, power) and M (mph.mpg). The 
constraints are designed to permit a large class of differential 
equations to be mapped straight-forwardly into structural de­
scriptions. 

Each physical parameter is a continuously differeiitiahle real-
valued function of tnne with only finitely many critical points. 
Its value at any given point in time is specified qualitatively, in 
terms of its relationship wi th a totally ordered set of l a n d m a r k 
values. Every critical value of the function is a landmark value. 
The landmark values may be described cither numerically (e.g. 
zero) or symbolically: their ordinal relationships are their essen­
tial properties. As the qualitative simulation proceeds, it can 
discover new critical points and thus add new landmark values 
to the sequence. The q u a l i t a t i v e state of a parameter consists 
of its ordinal relations wi th the landmark values and its direction 
of change. 

Time, within one possible behavior, is represented as a to­
tally ordered set of symbolic d is t ingu ished t ime-po in t s . The 
current time is either at or between distinguished time-points. 
Al l of the time-points are generated as a result of the qualitative 
simulation process. 

At a distinguished time-point, if several physical parameters 
linked by a single constraint are equal to landmark values, they 
are said to have co r respond ing values which can be repre­
sented and used by the qualitative simulation. Corresponding 
values provide additional qualitative constraints on the behav­
ior of structural relationships otherwise described only as M+ or 
M-. The case of corresponding values (0,0) is sufficiently com­
mon to justify the special notation, M+

0 and M0~. When zero is 
the only landmark, useful corresponding values are seldom dis­
covered. 

A set of constraints on the physical parameters of the system 
is only valid in some ope ra t i ng reg ion , denned by the legal 
ranges of values that some parameters may take on. The le­
ga l range of a parameter is a closed interval whose endpoints 
are landmark values of that parameter. These endpoints may 
be associated wi th transitions to other operating regions where 
a different set of constraints apply. The operating regions are 
designed as an interface to Forbus' [8,10] concept of processes, 
but that topic is beyond the scope of this paper. 

The i n i t i a l s tate of the system is defined by the operating 
region and a set of qualitative values for the physical param­
eters The qualitative simulation proceeds by determining all 
of the possible changes in qualitative value permitted to each 
parameter, then filtering the combinations by applying progres-
sively broader constraints. If more than one qualitative change 
is possible, the current state has multiple successors, and the 
simulation produces a tree. 

Two qualitative states in the same operating region are iden­
t i ca l if all parameters are equal to the same landmark values, and 
all the directions of change are the same. If a state is identical 
to a direct predecessor, a cyclic behavior can be recognized. 

2 Qual i tat ive Behavior 

In this* section, we present a more rigorous definition of quali­
tative description of continuous behavior, leading up to the QSIM 
algorithm and several theorems characterizing its strengths and 
limitations. 

We reluctantly contribute to the proliferation of notations for 
qualitative description of continuous functions. The advantages 
of the notation used here are that it (1) naturally allows for an 
arbitrary and changing set of landmark values, (2) uses a single 
term for the qualitative description of a function's magnitude and 
derivative, and (3) emphasizes that the qualitative description of 
the derivative is of low and fixed resolution, while qualitative 
description of magnitude is of higher and possibly changing res­
olution. 
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D e f i n i t i o n 4 The q u a l i t a t i v e behav io r of f on [a, b] is the 
sequence of qualitative states of f: 

an alternating sequence of qualitative states at distinguished time-
points, and on intervals between distinguished time-points. 

D e f i n i t i o n 5 A sys tem is a set of functions f,: 
each with its own set of landmarks and distinguished 

time-points. The d i s t i ngu ished t i m e - p o i n t s of a sys tem F 
are the union of the distinguished time-points of the individual 
functions The q u a l i t a t i v e s ta te of a system F of m 
functions is the m-tuple of individual qualitative states: 

The q u a l i t a t i v e behav io r of F is the sequence of qualitative 
states of F: 

If t t and/or t t + i are not distinguished time-points of a par­
ticular fv then tx and the interval must be between two 
distinguished time-points of Then 
and are defined to be the same as the containing 

Table 1: The possible transitions 
A continuously differentiable function is restricted 
to the following set of possible transitions from one qualitative 
state to the next. 
P -T rans i t i ons 

In cases 18 and 19, / becomes std at , a new landmark value 
such that In these cases, a previously unknown 
landmark value is discovered because other constraints force f ' ( t ) 
to become zero. 

These definitions give us a precise semantics for the qualita­
tive description of continuous functions, and clarifies the concept 
of the "next state." Every state has a qualitative description 
QS(FJ), but that description changes only at discrete distin­
guished time-points, and remains constant on the open intervals 
between them. Thus the "next state" of a mechanism is more 
properly called the next distinct qualitative state description of 
the mechanism. 

2.1 Qua l i ta t i ve State Transi t ions 

The Intermediate Value Theorem and the Mean Value The­
orem restrict the way a continuously differentiable function can 
change from one qualitative state to the next. There are two 
types of qualitative state transitions: P-transitions, moving 
from a time-point to a time-interval, and I-transitions, moving 
from an interval to a point. Table 1 specifies the set of possi­
ble transitions that can take place in the qualitative behavior of 
a single function. The table takes into account the possibility 
that not all landmark values are currently known, so that a new 
critical point might be discovered (18 and 19), 

3 Qual i tat ive Simulat ion 

The qualitative simulation algorithm determines the possible 
qualitative behavior descriptions consistent with the init ial state 
and the structural constraints. It is given the following structural 
description of a mechanism. 

1. A set { f 1 . . . f m } of symbols representing the physical pa­
rameters in the system. 

2. A set of constraints applied to the parameter symbols: 

Each constraint may have associ­
ated corresponding values for its parameters. 

3. Each parameter is associated with a totally ordered set of 
symbols representing landmark values. Each parameter 
may have upper and lower range l imits, which are land­
mark values beyond which the current set of constraints no 
longer apply. A range l imit may be associated with a new 
operating region which has its own constraints and range 
limits. 

4. An init ial time-point symbol, to, and qualitative values for 
each of the /, at to-

The result of the qualitative simulation is one or more quali­
tative behavior descriptions for the given parameters. Each qual­
itative behavior description consists of the following: 

1. A sequence { i o . . . t n } of symbols representing the distin­
guished time-points of the system's behavior. 

2. For each parameter / , , a total ly ordered set of landmark 
values, possibly extending the originally given set. 

3. For each parameter, at each distinguished time-point or 
interval between adjacent time-points, a qualitative state 
description expressed in terms of the landmark values of 
that parameter. 
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3.1 The QSIM Algorithm. 

The qualitative simulation algorithm. QSIM, repeatedly takes 
an active state and generates all possible successor states, filter­
ing out states that violate a consistency criterion at one of sev­
eral levels: individual parameter, individual constraint, pairwise 
constraint, or global state. Because the next state may not be 
determined uniquely, QSIM builds a tree of states representing 
the possible behaviors of the mechanism. 

Place the init ial state on the list ACT IVE , of states whose 
successors need to be determined. Repeat the following steps 
unt i l A C T I V E becomes empty or a resource l imit is exceeded. 

1. Select a qualitative state from ACT IVE . 

2. For each parameter in the structural description, determine 
(from Table 1) the set of transitions possible from the cur­
rent qualitative state. 

3. For each constraint, aggregate the transitions associated 
with its arguments into 2-tuples and 3-tuples. The tuples 
can then be checked for consistency according to two crite-
ria local to individual constraints. 

• The tuple of directions of change must be consistent 
wi th the constraint in the state resulting from the 
transition. 

• The result of the transition-tuple can be compared 
with corresponding values of the arguments to that 
constraint. Reference [15] demonstrates an efficient 
and verifiable method for this test, generalizing the 
Transition Ordering rules of Williams [18,19]. 

4. Perform pair-wise consistency (Waltz) filtering on the sets 
of tuples associated with the constraints in the system, ap­
plying the consistency criterion that adjacent constraints 
must agree on the transition assigned to the shared param­
eter. (The fact that we filter on transitions rather than 
states considerably simplifies the algorithm.) 

5. Generate all possible global interpretations from the re­
maining tuples by depth-first traversal of the set of assign­
ments of transition tuples to constraints. If there are none, 
mark the behavior as inconsistent. Create new qualitative 
states from each interpretation, and make them successors 
of the current state. 

6. Apply global filtering rules to the new qualitative states, 
and place any remaining states on ACTIVE. 

3.2 Global F i l ters 

The completed qualitative state descriptions are mathemati­
cally plausible successors to the current state. However, several 
global filters arc applied (step 6 above) before a new state is 
added to ACT IVE . The mathematically valid filters applied at 
this stage are the following. 

• (No Change.) Delete the new state if all transitions are 
in the set {11 ,14, /7 } , because the new state description 
would be identical to its immediate predecessor, which there­
fore already captures its qualitative behavior. In other 
words, something must reach a l imi t point for an I-transition 
to take place. 

• (Cycle.) If the new state is identical to one of its predeces­
sors (all parameters have identical landmark values, and all 
directions of change are the same), then mark the behavior 
as cyclic, install a pointer to the identical predecessor, and 
do not add the new state to ACTIVE. 

• (Divergence.) If any parameter takes on the value oo or 
- oo, the current time-point must be the endpoint of the 
domain, so the new state does not go onto A C T I V E . 

The first filter does not reduce the number of behaviors de­
scribed, but only eliminates a redundant description. The second 
detects when all the consequences of a particular state have al­
ready been determined, and need not be explored anew. The 
third determines when a state must be at the endpoint of the 
domain, and thus can have no successors. 

The pure QSIM algorithm includes only these mathematically 
valid filters. For a particular application, additional heuristic 
filters may be added. Some possible heuristics include: 

• (Quiescence.) If all parameters have derivative zero, con­
clude that the system is quiescent, the new time-point is 
the endpoint of the domain (possibly t = oo), and do not 
place the new state on ACTIVE. 

• (No Divergence.) In physical systems, eliminate transitions 
in which any parameter goes to oo or - o o . A more accurate 
description of the system would include an operating region 
change corresponding to some component breaking. 

3.3 Complex i ty 

Suppose there are n parameters in the system, m constraints, 
and the longest behavior has length t. A l l steps except generating 
the global interpretations are linear in the number of constraints 
and/or parameters, In the worst cast, generating the global in­
terpretations can be exponential, but in practice generating the 
successors of a given state appears to be approximately o(mt). 
On the Symbolics 3G00, the Spring example below (3 param­
eters, 3 constraints) takes about 0.4 seconds, and the Starling 
mechanism (16 parameters, 14 constraints) [10,17] takes about 
1.0 second. Thus, it is computationally feasible to run several 
simulations in the course of solving a single problem. 
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4 Should Simulation Create Landmarks? 

The most important semantic difference between QSIM and 
other approaches to qualitative simulation is that QSIM ran cre­
ate new landmark values during the simulation, while the other 
algorithms require all landmarks to be specified when the struc­
ture is defined. The inabil ity to create new landmark values 
makes it impossible to express certain important qualitative dis­
tinctions, such as that between increasing, decreasing, and sta­
ble oscillation. The fixed landmark assumption is particularly 
deeply embedded in de Kleer's approach, which depends on ari th­
metic operators defined over the fixed set of qualitative values,, 
{ + , 0 , - } , produced by the single landmark 0. A change in land­
marks would change the set of qualitative values, and thus require 
the operators to be redefined. Such a redefinition is not always 
possible. 

Wi th in QSIM, i t is possible to experiment wi th the { + , 0 , - } 
semantics for qualitative simulation simply by replacing Table 1 
wi th an alternate table of legal transitions. 

The Bouncing-Ball system is described by the following con­
straints: 

w i th an instantaneous bounce simulated by an operating region 
transition at which, if Y = 0 wi th negative velocity, the sign 
of the velocity is inverted. If the qualitative description does 
not specify the relation between the magnitudes of the velocity 
before and after the bounce, there are three possible behaviors: 
the second bounce could be higher, lower, or the same as the 
first. 

Figures 2(a), 2(b). and 2(c) show the way the standard QSIM 
semantics expresses the three possibilities. In these qualitative 
plots, a point is plotted at, or halfway between, two landmark 
values on the vertical axis and two distinguished time-points on 
the horizontal axis. At the peak of the first bounce, Y has a 
critical point, so a landmark value, Y1, is created. After the 
bounce, both Y and V move toward limiting values. The second 
peak is higher, lower, or equal to the first according to whether 
Y reaches Y1 before, after, or at the same time as V reaches 
0. QSIM gives distinct representations to the three possible be­
haviors. If further information is available to exclude one or two 
alternatives, the significance of the remaining ones is clear. 

Figure 2(d) shows the same mechanism simulated using { + , 0 , -} 
semantics. There is only a single behavior since the peak value is 
represented by the qualitative value +, which corresponds to the 
entire interval (0,oo). The description captures the repeated up-
and-down motion of the bouncing ball, but fails to make the im­
portant qualitative distinction between a higher, lower, or equal 
bounce. Thus three qualitatively distinct behaviors are collapsed 
into a single description. 

Similarly, De Klcer and Bobroar [4] present an example of a 
spring wi th frictional damping, wliose actual behavior is a de­
creasing oscillation. Because the maximum amplitude of the 
oscillation is represented by the qualitative interval +, the be­
havioral description derived is cyclic. The cyclic description ac­
curately captures the repetitive scries of increase and decrease in 
the different parameters. However, without being able to assign 
a symbolic name to the critical values, it does not express the 
distinction between increasing, decreasing and steady amplitude, 
and so cannot even ask which qualitative behavior is correct. 



B. Kuipers 133 

A related problem is that de Kleer and Bobrow [4] recognize 
the cycle by matching the qualitative descriptions of states. How­
ever, if some parameters are in the intervals between landmarks, 
then apparently matching states may not be identical, leading 
decreasing oscillation to be taken as a cycle. 

The heart of both problems is the inability to create new land­
marks, or equivalently, to give names to newly discovered critical 
values. Without representing the init ial value (and subsequent 
critical values) of a parameter in a way that permits ordinal com­
parison, it is not possible to ask whether the next repetition of a 
cycle leaves that parameter increased, decreased, or stable. Thus, 
we argue that the { + , 0 , -} semantics, and in fact any semantics 
wi th a fixed set of landmarks, can collapse importantly distinct 
behaviors. The QSIM semantics, by providing for discovery and 
naming of new landmarks, allows more appropriate qualitative 
distinctions to be made. 

Figure 2: Simulation of the bouncing ball under the standard 
QSIM semantics distinguishes three possible behaviors which are 
collapsed into a single description under the { + , 0 , -} semantics. 
This figure includes only the qualitative plots for Y. 

(a) QSIM prediction 1: the second bounce is the same height 

as the first. 

(b) QSIM prediction 2: the second bounce is higher than the 

first. 

(c) QSIM prediction 3: the second bounce is lower than the 

first. 

(d) {+,0, -} prediction: the three behaviors are collapsed into 

a single description. 

5 Does Quali tat ive Simulat ion F ind the 
Real Behaviors? 

Ideally, qualitative simulation will find all and only the actual 
behaviors of a mechanism being simulated. We take as our "gold 
standard1" the solutions to the ordinary differential equation de-
scribing the mechanism. A qualitative structure description is 
less restrictive than a differential equation, so we can expect mul­
tiple behaviors produced by the simulation, varying according to 
factors not captured in the structure description. (For example, 
if I throw a ball upward with a velocity described only as "posi­
tive", it might hit the ceiling, or it might not.) First, we want to 
know that all behaviors that are actually possible arc found by 
the qualitative simulation. Second, we want to know that every 
possibility predicted by the qualitative simulation can actually 
happen. 

In QSIM, care has been taken so that the structural descrip­
tion of a mechanism is an abstraction of its differential equation. 
The algorithm generates the space of all possible next states of 
the system given its current state (Table 1), and each filtering 
step removes only states which are internally inconsistent. Thus, 
we prove in detail in [15], 

T h e o r e m 1. Each actual behavior of the system is necessar­
ily among those produced by the simulation. 

One of the attractive applications of qualitative simulation 
is to predict possible future states, particularly to warn of sur­
prising or disastrous events. Although we can trust qualitative 
simulation to produce every real behavior, the converse is not 
true: some predictions can be spurious. It is possible for the 
QSIM algorithm, and local qualitative simulation algorithms in 
general, to produce behaviors which are not actual behaviors for 
any physical system satisfying the structural description. 

Consider a mass on a spring, oscillating on a frictionless Bur-
face. The qualitative structural description of this system is 

(1) 

Starting with X, V, and A equal to 0, Vinit and 0, respec­
tively, QSIM proceeds straight-forwardly through most of the 
cycle, predicting a unique successor to each state. Finally, all 
three parameters approach their initial values. X and A must 
reach zero together, but there is not enough information to de­
termine whether V reaches its limit earlier, later, or at the same 
time. 
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Figure 3 shows how QS1M branches to yield three behaviors 
corresponding to increasing, decreasing, and stable oscillation. 
Figure 4 shows how, using a translated variable W to simulate 
the non-zero landmark value Vinit, the same indeterminacy exists 
under the { + , 0 , - } semantics. 

As we have seen, only the stable periodic behavior is an actual 
behavior possible for this structural description. Thus, 

T h e o r e m 2. There are behaviors predicted by qualitative 
simulation which do not correspond to the behavior of any system 
satisfying the qualitative structure description. 

The fundamental problem is that simulation, qualitative or 
quantitative, is inherently local: the successors to the current 
state arc computed given only the information in the current 
state. Given a descriptive framework consisting of the functions 
and constraints describing the mechanism, and the states to be 
linked, there is simply not enough information available to elim­
inate all spurious behaviors. 

An incorrect solution to this problem is to employ a qualita­
tive description so coarse that the alternate behaviors are simply 
collapsed into a single one. Figure 5 shows the single behavior 
predicted for the Spring under the { + , 0 , -} semantics without 
an init ial landmark value. Precisely like the bouncing ball dis­
cussed in the previous section, the three alternative behaviors are 
collapsed into a single description, so the problem is not solved, 
simply inexpressible. 

Figure 5: The stable, increasing, and decreasing oscillatory be­
haviors of the Spring are collapsed into one by the { + , 0 , -} se­
mantics. 
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Changing the problem to be solved [do Kleer, personal com­
munication] can sometimes avoid this difficulty in familiar cases. 
By changing the Spring description to take into account the con­
servation of total energy, an expanded view allows QSIM to de-
termine that there is a single, periodic behavior (Figure 6). A 
physicist can look at equation (2) and recognize or derive the 
fact that it represents an energy conserving system, and there­
fore that the behavior must be periodic. Part of this knowledge is 
the ability to recognize the physical system described by a struc­
ture, and to know that there is a better structural description for 
i t . However, this means that external information is needed to 
set up the correct problem and reach a useful conclusion in such 
a case. 

These observations yield some important warnings about the 
proper use of qualitative descriptions of mechanisms, and the 
result of their simulation. 

• The two theorems above have a corollary that highlights 
their implications for knowledge engineering. 
Coro l l a ry . If a structural description is consistent, and if 
QSIM predicts a single behavior, then that behavior repre-
sents the actual behavior of the mechanism. 

• The structural description must be shown to be consistent, 
perhaps by demonstrating that it is an abstraction of an ac­
curate quantitative description, to guarantee that the qual­
itative simulation wil l include a genuine behavior. 

• If qualitative simulation yields several possible behaviors, 
further analysis is required before concluding that each rep­
resents a possible future. 

In developing a knowledge base of kidney mechanisms, our 
experience suggests that the most useful knowledge base consists 
of a collection of first-order views, focusing on a small portion of 
the overall mechanism. Each simulation yields a single behavior, 
which we therefore know to be correct (modulo the assumptions 
behind the first-order model). 

Thus, much as backward-chaining search provides the math­
ematical underpinnings for search in a rule-based expert system, 
so qualitative simidation may provide the mathematical under­
pinnings for theory evaluation in a causal reasoning system. If 
the underpinnings are solid and well-understood, then the se­
mantics of the knowledge base is clear, a necessary condition for 
the creation of powerful reasoning systems. 
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