
COMBINING DISCRETE AND CONTINUOUS PROCESS MODELS

Daniel S. Weld

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ABSTRACT

Two notions of process have been used in programs that
reason about change* discrete models, which represent changes as
instantaneous, and continuous models, which represent changes as
processes that act gradually over time. We describe a technique
called aggregation which unifies the two types of models and allows
both to be used when performing qualitative simulation.

Aggregation is a technique for recognizing cycles of
processes and generating a continuous process that is equivalent to
each cycle. A qualitative simulator may start prediction with a simple
discrete model and use aggregation to generate a continuous
process model when discrete simulation bogs down in a cycle.
Aggregation thereby allows a simulator to switch back and forth
between different types of models depending on which type is most
expedient.

To test these ideas, we have written a program, PEPTIDE,
which performs qualitative simulation in the domain of molecular
genetics. The flexibility of PEPTIDE'S aggregator allows the program
to detect cycles within cycles and predict the behavior of complex
situations.

I INTRODUCTION

A number of Al programs perform some type of qualitative
simulation -- they predict the future behavior of a system in
qualitative terms Why is this an interesting problem? Any program
which does planning or problem solving, needs to predict the effects
of proposed actions; qualitative simulation provides a useful
description since it removes often irrelevant numeric detail.
Qualitative simulation is also useful when generating explanations,
especially when describing the mechanism of a complex device
[2,12,6,1,13,15]. Finally, qualitative simulation is the only way to
predict the behavior of the many systems which are incompletely
specified.

To simulate a system, a program needs to represent the
processes that cause change. Two fundamentally different
qualitative models of change have been developed: discrete and
continuous process models. STRIPS [5] illustrates a discrete model,
in which actions are atomic; each action has add and delete lists

Thin report describes research done at the Artificial Intclligence Laboratory of the
Massachusetts Institute of Technology Support for the laboratory's Artificial
Intelligence: research is provided in part by the Advanced Research Projects Agency
ct the Department of Defense under Office of Naval Research contract N00014 75-
C-0643 and the Office of Naval Research under contract number N0014-80-C-0505.

which define the action's effect on the state by an abrupt change
Qualitative Process Theory [7], on the other hand, employs
continuous process models, in which actions take time and
gradually change the value of quantities such as the level of fluid in a
container.

In this paper we discuss the factors that make a domain well
suited to using either a discrete or continuous process model, and
we present a new technique, aggregation, that can be used to unify
the two models of change* The essential motivation behind
aggregation is that processes often repeat--consider the cycles of an
internal combustion engine When reasoning about repeating
cycles of processes, it is frequently useful to eliminate irrelevant
detail by considering the whole cycle as a single, more abstract
process This is what an aggregator does: it recognizes cycles of
discrete and continuous processes, and it generates a continuous
process abstraction of the cycle A program called PEPTIDE has
been written to test this idea in the domain of molecular genetics
Implemented in Zetalisp on a Symbolics 3G00, PEPTIDE has run a
dozen examples including the one in this paper and several thai are
considerably more complex [14].

II REPRESENTATION

The operation of any simulator is crucially dependent on the
representations used to model quantities of interest and the
processes which cause change. We describe our assumptions about
these representations below.

A. Quantities

The system parameters that the simulator models are called
quantities, We distinguish between two types of quantities' linear
and nominal. Linear quantities have an associated total order while
nominal quantities represent categories with no internal structure.
For example, the charge of a battery and the strength of the current
through a circuit could be modeled with a linear quantity, but the
state of a switch in the circuit might be better represented by a
nominal quantity with two possible values: open and closed.

B. Processes

We assume that time is composed of both instants and
intervals. Instants a''e infinitesimal, while intervals are extended.
Between any two non-oveilapping intervals lie one or more instants.
The distinction between instants and intervals allows us to classify
types of change. If a change is best considered as occuring in an
instant, we model it with a discrete process. If the change occurs

It should be emphasized that we do not attempt to extend either model.
Considerable work is already being done on that front. [3,4,8,11. 16].

D. Weld 141

over an interval, we use a continuous process

Discrete processes are appropriate when modeling changes in
nominal quantities (e.g. the flip of a circuit's switch) and abrupt
changes in linear quantities (e.g. the change in the current through a
circuit following the switch's flip) It is often useful to assume that
discrete processes are atomic- they either happen fully or not at all.
Atomicity is useful when modeling situations where mutually
exclusive actions are possible [0] Situation action rules are an
efficient means for representing discrete processes.

Continuous processes, on the other hand, are appropriate
when modeling gradual, strictly monotonic changes in linear
quantities. It is important to note that continuous processes can't
affect nominal quantities because there is no way to monotonically
change a quantity with no inherent order. Continuous processes are
ideal for describing the change that occurs when a battery is
connected through a resistor to ground. We define continuous
processes by a set of preconditions and a set of influences. The
preconditions are predicates on quantities that tell when the process
is active, i.e. when the influences are enfoiced. The influences say
how various quantities will be modified by the activity of the process.
The electric current process would be active whenever the switch
was closed and the battery's voltage was greater than zero. The
process would have two influences: a decrease in the charge in the
battery and an increase in the temperature of the resistor.

The power of continuous models comes from a technique
called limit analysis [8]. When a simulator performs limit analysis,
it takes influences of a continuous process and predicts when these
influences will cause the preconditions to be violated or the
preconditions of another, inactive process to become satisfied.
Thus, limit analysis predicts that the electric current process will be
active until the battery's voltage drops to zero.

Ill AN EXAMPLE OF AGGREGATION

With two fundamentally different ways of thinking about how a
system behaves, an important problem is how to choose which one
to use at a given time. Since discrete processes are simpler, we
make them the default. We only use continuous processes when the
simulator needs the power of limit analysis, i.e. when there are
repeating cycles.

The system starts by simulating the effects of discrete
processes until it recognizes a cycle. Then the aggregator produces
a continuous process with the same preconditions as the cycle's,
and with influences equivalent to the net result of a single iteration of
the cycle. At this point the continuous simulator can use limit
analysis to predict the eventual result without laboriously simulating
each iteration of the loop.

To make this clear, we present a simple example in the domain
of molecular genetics.

A. Example Definition

Consider a container with two individuals, E and DNA.*" DNA
is a long chain, and E has a large cleft (Figure 1).

For clarity of presentation, the example is described graphically. The appendix
contains the actual PEPTIDE description

We define two discrete processes:

•B IND
If there is an E whose cleft is empty and there is a DNA
with nothing bound to its right end, then the E will bind
the right end of the DNA.

*SNARF
If there is an E bound to the right end of a DNA, then the
E will digest the rightmost segment of the DNA. The
result will have E floating free, and the length of DNA
one shorter than before.

B. Discrete Simulation

Initially the process BIND is active, and SNARF is not.
PEPTIDE creates an instance of BIND that is associated with E and
DNA and simulates it. The resulting situation is shown in Figure 2.

Figure 2: Situation After E Binds DNA

Then the process SNARF is active; an instance is created and
simulated. Figure 3 shows the result.

Next the process BIND is again active, but before the discrete
simulator can predict its effects, the aggregator recognizes a cycle.

DNA E

Figure 3: Situation After E Digests a Section

C. Cycle Recognition,

The notion of a repeating cycle of processes implies that the
process instances in each iteration are "the same" in some sense.
For the aggregator to recognize cycles, it must be able to detect
when two processes are the same. But sameness is not equivalent to
equality, as the example above shows. The two instances of the
BIND process are not equal since they involve DNA chains of
differing length, but the processes are clearly the same in an
important sense.

We define two instances of a process to be the same if each
of the individuals associated with the two instances are the same.
Two individuals are the same if all their nominal quantities are equal;
their linear quantities can be different. Thus the two instances of
BIND are seen to be the same because the only difference is in the

142 D.Weld

length of DMA, and length is a linear quantity. Ignoring differences in
linear quantities makes sense when looking for cycles, because we
wish to consider cycles as continuous processes which cause
changes in linear quantities but not in nominal quantities. For the
domain of molecular genetics, there are two other linear quanties
(besides the length of a chain) which are important: the number of
identical molecules in a group, and the position of a binder on a
chain.

Once two processes instances have been recognized to be the
same, PEPTIDE searchs through a history record [10] of the past
simulation to determine exactly which processes are in the cycle
[14]. In the case of our example, this is quite easy; the cycle is
simply (BIND SNARF).

D. Generation of a Cont inuous Process

A continuous process consists of a set of preconditions and a
set of influences. First, the aggregator analyzes one iteration of the
cycle to determine the influences. For the simple (BIND SNARF)
cycle, it is easy to determine that there is only one influence: a
decrease in the length of DNA. Complex cycles, however, can
require more sophisticated analysis (e.g. resolution of contradictory
influences [14]).

To generate the continuous process' preconditions, the
aggregator simply combines from each of the discrete processes in
the cycle the preconditions that refer to linear quantities; nominal
preconditions cancel out. For our example, this results in only two
preconditions:

* There must be at least one free DNA.

• There must be at least one free E.

E. Cont inuous Simulat ion

Finally, the continuous simulator can predict the eventual
result of the repeating cycle by performing limit analysis. Since
PEPTIDE knows that if the length of a chain is ZERO the individual
doesn't exist, it is easy for the continuous simulator to predict that
eventually DNA will be gone and only E will remain. At this point the
simulator summarizes the net effect of the continuous process and
adds it to the history structure with the name CP1. Then PEPTIDE
switches back to discrete mode. Since DNA is gone, no processes
are active; thus simulation is complete.

F. Cycles Within CYCleS

If we had specified that initially there were many DNA
individuals in the container, then there would still be DNAs present
and BIND would be active. But before it could be simulated
discretely, the aggregator detects that this BIND is the same as the
first, since the only difference between the initial situation and the
current one is a change in the linear quantity, the number of identical
DNA molecules. A search of the history structure reveils the
following cycle: (BIND SNARF CP1). The influence of this new cycle
is a decrease in the number of DNAs. Continuous simulation of this
cycle again results in the conclusion that eventually all the DNAs will
be eaten.

The occurrence of nested cycles in this simple example
demonstrates their ubiquity; it is essential that an aggregator be
capable of handling them. The key point is that when aggregating,
PEPTIDE considers each previous continuous processes (i.e. whole
cycles of processes) as a single discrete process. Without this

ability the aggregator could not use the information from previous
aggregations when constructing the continuous process for the
outside cycle.

IV LIMITATIONS AND FUTURE WORK

Although aggregation is a powerful technique, it can't detect
all cycles, and should be tested on more domains.

A. Failure to Recognize all Cycles

As explained above, the aggregator recognizes cycles by
ignoriny the value of linear quantities. Although this method works in
many cases, it fails when new linear quantities are generated
dynamically.

We have not discovered any cases where this happens
naturally in the domain of molecular genetics, but we can create
artificial pathological situations. This is unsurprising because
PEPTIDE'S representation language is powerful enough to specify
an arbitrary type 0 (unrestricted) grammar. Since this implies that we
could use the discrete model to build a Turing machine, it becomes
quite clear why PEPTIDE can't always decide whether simulation
should halt.

B. Qual i tat ive Simulat ion of Other Domains

For aggregation to be useful as a qualitative simulation
technique, two conditions must hold for the domain in question:

* It must be possible to characterize interesting parts of
the domain by continuous processes and linear
quantities.

* Some processes must repeat their actions cyclically.
These repetitious actions can be either discrete,
continuous or both.

We suspect that aggregation could be useful in many other
domains. Digital electronics is a natural domain in which
aggregation could be applied. There are many devices at different
levels of detail whose states are usefully considered as linear
quantities: counters, LIFO queues, and processor pipelines.
Furthermore, many processes repeat cyclicly Detailed paper
simulations suggest that aggregation could be usefully applied to
this domain.

Another potentially fruitful domain is that of complex
machinery. Internal combustion engines have many repetitious
processes: the strokes of the pistons, the movements of valves, the
rotation of gears and differentials. These cycles affect numerous
interesting linear quantities. For example, the friction from each
piston's stroke increases the engine temperature, and the spurt of
fuel-injected gas lowers the level in the tank and increases it in the
combustion chamber.

We feel that it is very important to test the utility of aggregation
for prediction, instruction, and diagnosis in another domain.

Both discrete and continuous process models have their
strengths. Discrete process models are simple, and can model
changes in nominal as well as linear quantities. Continuous process
models facilitate limit analysis of gradual changes in linear
quantities. We described a technique, called aggregation, which

D.Weld 143

allows a qualitative simulator to use either model depending on
which best fits the situation.

The aggregator recognizes cycles of processes by ignoring
the values of linear quantities and generates a continuous process
abstraction of the cycle by deducing the nut influences of one
iteration of the cycle. A test program, PEPTIDE, has used
aggregation to solve a dozen problems in the domain of molecular
genetics. The flexibility of PEPTIDE'S aggregator allows the program
to predict the behavior of complex systems by detecting cycles
nested within other cycles.

ACKNOWLEDGMENTS

I owe many thanks to my advisor, Randy Davis; to Ken Forbus,
Dave Chapman, and Brian Williams who contnbuted greatly; to
Bruce Donald for insightful comments on a draft, and to the many
other people who form the stimulating environment of the MIT Al
Lab.

APPENDIX

The actual PEPTIDE code for the example (with only
formatting changes) is displayed in Figure 4. Capitalized words are
keywords defined by PEPTIDE.

(DEF-EXAMPLE exonuclease
(DEF-INDIVIDUAL dna (CHAIN))
(DtF-IMDIVIDUAL exonuclease (BINDER (c l e f t)))

(DEF-PROCESS bind
(IF (AT-END? ?x RIGHT dna)

(BIND o x o n u c l e a s e > c l e f t dna>?x)))
(DEF-PROCESS s n a r f

(I F (AND (BOUND? exonuc lease>c le f t dna>?x)
(AT-END? ?x RIGHT dna))

(REACT e x o n u c l e a s e > c l o f t dna>?x
(•DECR-CHAIN r i g h t))))

(ASSERT (COMPLEMENTARY e x o n u c l e a s e > c l e f t
dna>?a))

(ASSERT (EQ ONE (NUMBER-OF d n a)))
(ASSERT (EQ ONE (NUMBER-OF e x o n u c l e a s e))))

Figu re 4: PEPTIDE Code for the Example

REFERENCES

1. Brown, J., Burton, R., de Kleer, J. Pedagogical, Natural
Language and Knowledge Engineering Techniques in SOPIE I, II,
and III. In Sleeman, D., Brown, J., Ed., Intelligent Tutoring Systems,
Academic Press, 1982.

2. de Kleer, J. Causal and Teleological Reasoning in Circuit
Recognition. MIT Al Lab, September, 1979.

3. de Kleer, J. and Brown, J. A Qualitative Physics Based on
Confluences. Artificial intelligence (December 1984).

4. de Kleer, J. and Brown, J. The Origin, Form and Logic of
Qualitative Physical Laws. Eighth International Joint Conference on
Artificial Intelligence, IJCAI, August, 1983.

5. Fikes, R., Nilsson, N. STRIPS: A new Approach to the Application
of Theorem Proving to Problem Solving. Artificial Intelligence 2,3/4
(1971).

6. Forbus, K., Stevens, A. Using Qualitative Simulation to Generate
Explanations. Tech. Rep. 4490, Bolt Beranek and Newman Inc,
March, 1981.

7. Forbus, K. Qualitative Process Theory. Al Memo 664A (revised),
MIT Al Lab, May, 1983.

8. Forbus, K. Qualitative Process Theory. MIT Al Lab, October,
1984.

9. Habermann, A. Introduction To Operating System Design.
Science Research Associates, Inc., 1976.

10. Hayes, P. The Second Naive Physics Manifesto. URCS 10,
University of Rochester Cognitive Science Department, October,
1983.

11. Kuipers, B. Getting the Envisionment Right. Proceedings of the
AAAI, August, 1982.

12. Stevens, A., et. al. STEAMER: Advanced Computer Aided
Instruction in Propulsion Engineering. Tech. Rep. 4702, Bolt
Beranek and Newman Inc, July, 1981.

13. Weld, D. Explaining Complex Engineered Devices. Technical
Report 5489, Bolt Beranek and Newman Inc, November, 1983.

14. Weld, D. Switching Between Discrete and Continuous Process
Models to Predict Genetic Activity. MIT Al Lab, October, 1984.

15. Williams, B. Qualitative Analysis of MOS Circuits. Artificial
Intelligence (December 1984).

16. Williams, B. The Role of Continuity in a Qualitative Physics.
Proceedings of the AAAI, August, 1984.

