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ABSTRACT 

Two notions of process have been used in programs that 
reason about change* discrete models, which represent changes as 
instantaneous, and continuous models, which represent changes as 
processes that act gradually over time. We describe a technique 
called aggregation which unifies the two types of models and allows 
both to be used when performing qualitative simulation. 

Aggregation is a technique for recognizing cycles of 
processes and generating a continuous process that is equivalent to 
each cycle. A qualitative simulator may start prediction with a simple 
discrete model and use aggregation to generate a continuous 
process model when discrete simulation bogs down in a cycle. 
Aggregation thereby allows a simulator to switch back and forth 
between different types of models depending on which type is most 
expedient. 

To test these ideas, we have written a program, PEPTIDE, 
which performs qualitative simulation in the domain of molecular 
genetics. The flexibility of PEPTIDE'S aggregator allows the program 
to detect cycles within cycles and predict the behavior of complex 
situations. 

I INTRODUCTION 

A number of Al programs perform some type of qualitative 
simulation -- they predict the future behavior of a system in 
qualitative terms Why is this an interesting problem? Any program 
which does planning or problem solving, needs to predict the effects 
of proposed actions; qualitative simulation provides a useful 
description since it removes often irrelevant numeric detail. 
Qualitative simulation is also useful when generating explanations, 
especially when describing the mechanism of a complex device 
[2,12,6,1,13,15]. Finally, qualitative simulation is the only way to 
predict the behavior of the many systems which are incompletely 
specified. 

To simulate a system, a program needs to represent the 
processes that cause change. Two fundamentally different 
qualitative models of change have been developed: discrete and 
continuous process models. STRIPS [5] illustrates a discrete model, 
in which actions are atomic; each action has add and delete lists 
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which define the action's effect on the state by an abrupt change 
Qualitative Process Theory [7], on the other hand, employs 
continuous process models, in which actions take time and 
gradually change the value of quantities such as the level of fluid in a 
container. 

In this paper we discuss the factors that make a domain well 
suited to using either a discrete or continuous process model, and 
we present a new technique, aggregation, that can be used to unify 
the two models of change* The essential motivation behind 
aggregation is that processes often repeat--consider the cycles of an 
internal combustion engine When reasoning about repeating 
cycles of processes, it is frequently useful to eliminate irrelevant 
detail by considering the whole cycle as a single, more abstract 
process This is what an aggregator does: it recognizes cycles of 
discrete and continuous processes, and it generates a continuous 
process abstraction of the cycle A program called PEPTIDE has 
been written to test this idea in the domain of molecular genetics 
Implemented in Zetalisp on a Symbolics 3G00, PEPTIDE has run a 
dozen examples including the one in this paper and several thai are 
considerably more complex [14]. 

II REPRESENTATION 

The operation of any simulator is crucially dependent on the 
representations used to model quantities of interest and the 
processes which cause change. We describe our assumptions about 
these representations below. 

A. Quantities 

The system parameters that the simulator models are called 
quantities, We distinguish between two types of quantities' linear 
and nominal. Linear quantities have an associated total order while 
nominal quantities represent categories with no internal structure. 
For example, the charge of a battery and the strength of the current 
through a circuit could be modeled with a linear quantity, but the 
state of a switch in the circuit might be better represented by a 
nominal quantity with two possible values: open and closed. 

B. Processes 

We assume that time is composed of both instants and 
intervals. Instants a''e infinitesimal, while intervals are extended. 
Between any two non-oveilapping intervals lie one or more instants. 
The distinction between instants and intervals allows us to classify 
types of change. If a change is best considered as occuring in an 
instant, we model it with a discrete process. If the change occurs 

It should be emphasized that we do not attempt to extend either model. 
Considerable work is already being done on that front. [3,4,8,11. 16]. 
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over an interval, we use a continuous process 

Discrete processes are appropriate when modeling changes in 
nominal quantities (e.g. the flip of a circuit's switch) and abrupt 
changes in linear quantities (e.g. the change in the current through a 
circuit following the switch's flip) It is often useful to assume that 
discrete processes are atomic- they either happen fully or not at all. 
Atomicity is useful when modeling situations where mutually 
exclusive actions are possible [0] Situation action rules are an 
efficient means for representing discrete processes. 

Continuous processes, on the other hand, are appropriate 
when modeling gradual, strictly monotonic changes in linear 
quantities. It is important to note that continuous processes can't 
affect nominal quantities because there is no way to monotonically 
change a quantity with no inherent order. Continuous processes are 
ideal for describing the change that occurs when a battery is 
connected through a resistor to ground. We define continuous 
processes by a set of preconditions and a set of influences. The 
preconditions are predicates on quantities that tell when the process 
is active, i.e. when the influences are enfoiced. The influences say 
how various quantities will be modified by the activity of the process. 
The electric current process would be active whenever the switch 
was closed and the battery's voltage was greater than zero. The 
process would have two influences: a decrease in the charge in the 
battery and an increase in the temperature of the resistor. 

The power of continuous models comes from a technique 
called limit analysis [8]. When a simulator performs limit analysis, 
it takes influences of a continuous process and predicts when these 
influences will cause the preconditions to be violated or the 
preconditions of another, inactive process to become satisfied. 
Thus, limit analysis predicts that the electric current process will be 
active until the battery's voltage drops to zero. 

Ill AN EXAMPLE OF AGGREGATION 

With two fundamentally different ways of thinking about how a 
system behaves, an important problem is how to choose which one 
to use at a given time. Since discrete processes are simpler, we 
make them the default. We only use continuous processes when the 
simulator needs the power of limit analysis, i.e. when there are 
repeating cycles. 

The system starts by simulating the effects of discrete 
processes until it recognizes a cycle. Then the aggregator produces 
a continuous process with the same preconditions as the cycle's, 
and with influences equivalent to the net result of a single iteration of 
the cycle. At this point the continuous simulator can use limit 
analysis to predict the eventual result without laboriously simulating 
each iteration of the loop. 

To make this clear, we present a simple example in the domain 
of molecular genetics. 

A. Example Definition 

Consider a container with two individuals, E and DNA.*" DNA 
is a long chain, and E has a large cleft (Figure 1). 

For clarity of presentation, the example is described graphically. The appendix 
contains the actual PEPTIDE description 

We define two discrete processes: 

•B IND 
If there is an E whose cleft is empty and there is a DNA 
with nothing bound to its right end, then the E will bind 
the right end of the DNA. 

*SNARF 
If there is an E bound to the right end of a DNA, then the 
E will digest the rightmost segment of the DNA. The 
result will have E floating free, and the length of DNA 
one shorter than before. 

B. Discrete Simulation 

Initially the process BIND is active, and SNARF is not. 
PEPTIDE creates an instance of BIND that is associated with E and 
DNA and simulates it. The resulting situation is shown in Figure 2. 

Figure 2: Situation After E Binds DNA 

Then the process SNARF is active; an instance is created and 
simulated. Figure 3 shows the result. 

Next the process BIND is again active, but before the discrete 
simulator can predict its effects, the aggregator recognizes a cycle. 

DNA E 

Figure 3: Situation After E Digests a Section 

C. Cycle Recognition, 

The notion of a repeating cycle of processes implies that the 
process instances in each iteration are "the same" in some sense. 
For the aggregator to recognize cycles, it must be able to detect 
when two processes are the same. But sameness is not equivalent to 
equality, as the example above shows. The two instances of the 
BIND process are not equal since they involve DNA chains of 
differing length, but the processes are clearly the same in an 
important sense. 

We define two instances of a process to be the same if each 
of the individuals associated with the two instances are the same. 
Two individuals are the same if all their nominal quantities are equal; 
their linear quantities can be different. Thus the two instances of 
BIND are seen to be the same because the only difference is in the 
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length of DMA, and length is a linear quantity. Ignoring differences in 
linear quantities makes sense when looking for cycles, because we 
wish to consider cycles as continuous processes which cause 
changes in linear quantities but not in nominal quantities. For the 
domain of molecular genetics, there are two other linear quanties 
(besides the length of a chain) which are important: the number of 
identical molecules in a group, and the position of a binder on a 
chain. 

Once two processes instances have been recognized to be the 
same, PEPTIDE searchs through a history record [10] of the past 
simulation to determine exactly which processes are in the cycle 
[14]. In the case of our example, this is quite easy; the cycle is 
simply (BIND SNARF). 

D. Generation of a Cont inuous Process 

A continuous process consists of a set of preconditions and a 
set of influences. First, the aggregator analyzes one iteration of the 
cycle to determine the influences. For the simple (BIND SNARF) 
cycle, it is easy to determine that there is only one influence: a 
decrease in the length of DNA. Complex cycles, however, can 
require more sophisticated analysis (e.g. resolution of contradictory 
influences [14]). 

To generate the continuous process' preconditions, the 
aggregator simply combines from each of the discrete processes in 
the cycle the preconditions that refer to linear quantities; nominal 
preconditions cancel out. For our example, this results in only two 
preconditions: 

* There must be at least one free DNA. 

• There must be at least one free E. 

E. Cont inuous Simulat ion 

Finally, the continuous simulator can predict the eventual 
result of the repeating cycle by performing limit analysis. Since 
PEPTIDE knows that if the length of a chain is ZERO the individual 
doesn't exist, it is easy for the continuous simulator to predict that 
eventually DNA will be gone and only E will remain. At this point the 
simulator summarizes the net effect of the continuous process and 
adds it to the history structure with the name CP1. Then PEPTIDE 
switches back to discrete mode. Since DNA is gone, no processes 
are active; thus simulation is complete. 

F. Cycles Within CYCleS 

If we had specified that initially there were many DNA 
individuals in the container, then there would still be DNAs present 
and BIND would be active. But before it could be simulated 
discretely, the aggregator detects that this BIND is the same as the 
first, since the only difference between the initial situation and the 
current one is a change in the linear quantity, the number of identical 
DNA molecules. A search of the history structure reveils the 
following cycle: (BIND SNARF CP1). The influence of this new cycle 
is a decrease in the number of DNAs. Continuous simulation of this 
cycle again results in the conclusion that eventually all the DNAs will 
be eaten. 

The occurrence of nested cycles in this simple example 
demonstrates their ubiquity; it is essential that an aggregator be 
capable of handling them. The key point is that when aggregating, 
PEPTIDE considers each previous continuous processes (i.e. whole 
cycles of processes) as a single discrete process. Without this 

ability the aggregator could not use the information from previous 
aggregations when constructing the continuous process for the 
outside cycle. 

IV LIMITATIONS AND FUTURE WORK 

Although aggregation is a powerful technique, it can't detect 
all cycles, and should be tested on more domains. 

A. Failure to Recognize all Cycles 

As explained above, the aggregator recognizes cycles by 
ignoriny the value of linear quantities. Although this method works in 
many cases, it fails when new linear quantities are generated 
dynamically. 

We have not discovered any cases where this happens 
naturally in the domain of molecular genetics, but we can create 
artificial pathological situations. This is unsurprising because 
PEPTIDE'S representation language is powerful enough to specify 
an arbitrary type 0 (unrestricted) grammar. Since this implies that we 
could use the discrete model to build a Turing machine, it becomes 
quite clear why PEPTIDE can't always decide whether simulation 
should halt. 

B. Qual i tat ive Simulat ion of Other Domains 

For aggregation to be useful as a qualitative simulation 
technique, two conditions must hold for the domain in question: 

* It must be possible to characterize interesting parts of 
the domain by continuous processes and linear 
quantities. 

* Some processes must repeat their actions cyclically. 
These repetitious actions can be either discrete, 
continuous or both. 

We suspect that aggregation could be useful in many other 
domains. Digital electronics is a natural domain in which 
aggregation could be applied. There are many devices at different 
levels of detail whose states are usefully considered as linear 
quantities: counters, LIFO queues, and processor pipelines. 
Furthermore, many processes repeat cyclicly Detailed paper 
simulations suggest that aggregation could be usefully applied to 
this domain. 

Another potentially fruitful domain is that of complex 
machinery. Internal combustion engines have many repetitious 
processes: the strokes of the pistons, the movements of valves, the 
rotation of gears and differentials. These cycles affect numerous 
interesting linear quantities. For example, the friction from each 
piston's stroke increases the engine temperature, and the spurt of 
fuel-injected gas lowers the level in the tank and increases it in the 
combustion chamber. 

We feel that it is very important to test the utility of aggregation 
for prediction, instruction, and diagnosis in another domain. 

Both discrete and continuous process models have their 
strengths. Discrete process models are simple, and can model 
changes in nominal as well as linear quantities. Continuous process 
models facilitate limit analysis of gradual changes in linear 
quantities. We described a technique, called aggregation, which 
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allows a qualitative simulator to use either model depending on 
which best fits the situation. 

The aggregator recognizes cycles of processes by ignoring 
the values of linear quantities and generates a continuous process 
abstraction of the cycle by deducing the nut influences of one 
iteration of the cycle. A test program, PEPTIDE, has used 
aggregation to solve a dozen problems in the domain of molecular 
genetics. The flexibility of PEPTIDE'S aggregator allows the program 
to predict the behavior of complex systems by detecting cycles 
nested within other cycles. 
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APPENDIX 

The actual PEPTIDE code for the example (with only 
formatting changes) is displayed in Figure 4. Capitalized words are 
keywords defined by PEPTIDE. 

(DEF-EXAMPLE exonuclease 
(DEF-INDIVIDUAL dna (CHAIN)) 
(DtF-IMDIVIDUAL exonuclease (BINDER ( c l e f t ) ) ) 

(DEF-PROCESS bind 
(IF (AT-END? ?x RIGHT dna) 

(BIND o x o n u c l e a s e > c l e f t dna>?x) ) ) 
(DEF-PROCESS s n a r f 

( I F (AND (BOUND? exonuc lease>c le f t dna>?x) 
(AT-END? ?x RIGHT dna) ) 

(REACT e x o n u c l e a s e > c l o f t dna>?x 
(•DECR-CHAIN r i g h t ) ) ) ) 

(ASSERT (COMPLEMENTARY e x o n u c l e a s e > c l e f t 
dna>?a)) 

(ASSERT (EQ ONE (NUMBER-OF d n a ) ) ) 
(ASSERT (EQ ONE (NUMBER-OF e x o n u c l e a s e ) ) ) ) 

Figu re 4: PEPTIDE Code for the Example 
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