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A B S T R A C T 

THIS paper describes a constraint transformation approach to 
automatic example generation and its implementation In this 
approach examples are generated as the result of successive 
transformations of thf constraint formulas Such 
transformations are carried out based on various forms of 
knowledge Systematic global simplification, largely based on 
declarative knowledge, mitigates tht impact of applying problem-
specific and efficient procedural knowledge, with a uniform 
problem representation scheme The approach suggests a general 
framework for example generation in which a language for 
describing examples can be defined ft also combines a general 
formal reasoning capacity and problem-specific procedural 
knowledge, to achieve both generality and efficiency The 
implemented system has proven to be expressively powerful and 
efficient for a variety of applications 

1 . I n t r o d u c t i o n 

Examples are important in Artificial Intelligence They are critical 
to machine learning, automated reasoning, knowledge 
representation, intelligent human interface, and computer-aided 
instruction |25. 13. 7, 18. 21, 4). Examples illustrate abstract 
notions and complicated procedures, provide us with a source of 
information on which ideas and concepts are developed, and serve a« 
a tool with which hypotheses can be validated. 

Generating examples is, however, a difficult task in general A 
problem for example generation can be specified as a constraint - a 
conjunction of conditions each of which must be satisfied 
simultaneously. Those conditions usually interact with each other in 
complicated ways [24| It is often the case that an example 
generation system is used as a component of a larger system In 
such cases, it is important that the example generator be efficient 
enough that it does not detract from the performance of the larger 
system 

Example generation differs from database retrieval or problem 
solving Database retrieval deals with only the previously sorted 
and stored data items, whereas example generation often requires 
constructing novel examples where known examples fail Problem 
solving usually involves finding a solution or solutions, largely 
ignoring the issue of finding good solutions. However, example 
generation is constantly concerned with choosing good examples 
from among many possibilities. This problem appears difficult to 
solve because it involves highly abstract notions like utility, 
motivation, and objective. 

Automatic example generation raises two fundamental issues. 
representation and evaluation The representation problem 
addresses the questions what is an example and how should it be 
represented, the evaluation issue deals with methods for evaluating 
whether and/or how well a proposed example satisfies the initial 
constraint In most cases example is not clearly defined Evidence, 
samples, models, diagrams, and even arbitrarily defined data 
structures are often referred to as examples The vagueness in the 
meaning of example causes difficulties in making use of the existing 
methodologies and tools for powerful reasoning; such reasoning 
appears critical to example generation For an effective and efficient 
evaluation capability it is required that the involved concepts be 
defined unambiguously or somehow related to their effective 
computational procedures It is quite natural that an automatic 
example generation system should be based on the rigorous 
formalism of its problem domain 

Due to such difficulties, the approaches to automatic example 
generation in the current literature are problem application specific 
or limited in expressive power In the transformational approach 
examples are generated as the result of successive transformations of 
the constraint formula This approach suggests a general framework 
for example generation and also provides a uniform representation 
scheme for problems in which problem-specific procedural knowledge 
can be applied to achieve efficient as well 

The Example Generation System (EGS) presented here has adopted 
the Boyer-Moore theory [2| as the underlying domain formalism 
Several advantages are immediate 

• The Boyer-Moore theory provides a general and 
expressively powerful language 

• The problems of representation and evaluation can be 
easily solved 

• EGS can share with the Boyer-Moore theorem prover, 
which implements the Boyer-Moore theory, a substantial 
portion of its reasoning capability and knowledge base 

• The theorem proving environment serves as a rich source 
of problems for application of examples 
|7, 18. 23. 10, 11) 

EGS, written in INTERLUISP, currently running on a DEC-2060 
under TOPS-20 has been implemented on top of the Boyer-Moore 
theorem prover In EGS, a constraint is specified as a (well-formed) 
formula in the Boyer-Moore theory The variables of tbe constraint, 
called constraint variables, are interpreted as existentially 
quantified. An example is defined as an Assignment of QiXJTEd 
constants to the constraint variables, this assignment causes tbe 
constraint formula to evaluate to non-F. A counter erampU is 
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similarly defined except that the assignment causes the constraint 
formula to evaluate to F. For instance, the assignment '((X . 
(QUOTE (A B)))) is an example of (LISTP X), whereas '((X . 
(QUOTE 3))) is a counter-example However, ((X (CONS U V))) 
is not an example of (LISTP X) since X is assigned a non-QUOTEd 
constant 

The example generation problem in EGS is specified in terms of 
constraints The EGS command. 

may be read as-

Find examples of list-palindromes containing at least two 
difftrent members 

FINDX is a top-level command for example generation Its first 
argument is a constraint and its second argument specifies the 
resource limits such as a time limit or the maximum number of 
examples to be generated The output might be-* 

2. The Boyer-Moore Theory and Their Theorem 
Prover 

The Hoyer-Moore theory is obtained from the propositiooal calculus 
with variables and function symbols Its three principles the 
induction principle, the shell principle, and the definition principle 
characterize the theory. Variables in a formula are implicitly 
universally quantified. Lacking quantifiers and allowing recursion as 
an alternative gives rise to the constructive nature of the theory. 
The language of the theory can be viewed as a (functional) 
programming language since function definitions (admitted) are like 
programs. In fact, the language of the theory is akin to that of the 
pure LISP. 

When a function is defined, the Boyer-Moore theorem prover 
generates compiled LISP code corresponding to the definition [3]. 
This provides a simple and yet efficient interpreter for the language. 
The interpreter, if given a term together with a proper environment, 
will compute the terms value with respect to the environment. This 
feature, in fact, gives a straightforward solution to the evaluation 
problem 

3 . T h e I m p l e m e n t a t i o n o f E G S 

EGS has been implemented as task-driven in that examples are 
generated as the result of iterating the task generation and task 
performing sequence A task descriptor, which describes a task, is a 
list of task srorr, task opt rat or, hard-list, soft-ltst, and reference-
list. The hard-list is a list of condition formulas assumed conjoined. 
The soft-list is an association list,, each component of which is of the 
form (v t) corresponding to a substitution equality2 (EQUAL v t). 
The reference-list contains information needed in performing the 
task For example 

describes a TEST task In a task descriptor, the hard-list and the 
soft-list together can be considered as a subgoal and we call the pair 
of the hard-list and the soft-list a context In this paper subgoal and 
context are used interchangeably 

Each task operation corresponds to a particular transformation of 
formulas. Such transformations include partially instantiating 
variables with constants, analyzing terms by cases, solving 
equations, and unfolding definitions Simplification is a non task-
specific global transformation, which is invoked after a task-specific 
transformation is completed. Generally a task transforms formulas 
of the hard-list to create subgoals Tasks are maintained in an 
agenda in the order of task scores; the task on the top of the agenda 
is performed. The result of performing a task, in turn, is further 
processed to produce more new tasks EGS repeats this sequence 
until any termination condition is met - the agenda becomes empty, 
the specified number of examples are generated, or the time limit is 
exceeded. An illustration of EGS example generation will be given 
later. The task-dn\en structure of EGS with agenda can be viewed 
as best-first search Its search space can be represented as a tree, 
each node of w hich corresponds to a task 

EGS consists of six major functional components. Preprocessor, 
Executive, Task (Unirator, Task Performer, Simplifier, and 
Evaluator and a global data structure Task Agenda. Also the 
Knowledge Bast maintains knowledge of various forms. Figure 1 
depicts the general architecture of EGS. The function of each 
component is described in the following. 

Preprocessor 

This component checks the syntax of the input constraint and also 
translates the constraint, which may be input in an abbreviated 
format, into the corresponding well-formed formula. For example, 
(AND p q r) is translated into (AND p (AND q r)). 

Executive 

The Executive manages the flow of control in EGS. It controls 
other components of EGS to maintain the proper sequence of 
example generation Control loops through the task generation and 
ta,sk performing sequence until any termination condition is met. 

EGS is non-deterministic in that the outputs of EGS to the same question 
may vary. The non-determinism has been intentionally introduced; however, 
this feature can be turned off. 

An equality of the form (EQUAL Ihs rhs) where Ihs(rhs) is a variable and 
rhs(lhs) is a term not containing the Ihs(rhs) variable. 
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Task Generator 

This component generates tasks from contexts resulting from 
performing, a previous task A task is generated by assigning an 
applicable task operator and attaching the collected task-relevant 
information to the context This task is scored with its plausibility. 
The scoring algorithm is 

< Control Flow 
< Information Flow 

OP-SCORE the score associated with the task operator, 
S-SCORE the score computed based on the syntact ic 

complexity of the formulas In the h a r d - l i s t , 
CREDIT the score for extra c red i t , 
and C1, C2 and C3 are the weight coef f i c ien ts . 

This scoring mechanism provides EGS with substantial 
controllability 

Task Performer 

Lach task operator is associated with a unique process which 
generates a list of subgoals (contexts) Performing a task involves 
retrieving the relevant information and applying the process 
corresponding to the task operator to the context of the task The 
following are the functional descriptions of the task operators 

• START marks the initial task for a single session of 
example generation 

• TEST retrieves known examples corresponding to a clue 
and tests each of the examples with the hard-list until 
the fixed number of successful tests are obtained A 
suhgoal for each of the successful tests is generated. 

• SOLVE invokes the built-in Linear Solver to solve the 
simultaneous linear equations/inequalities or applies the 
solver knowledge to directly solve a condition or a set of 
conditions 

• ANALYZE applies the rase knowledge to do case analysis. 

• DCPAND opens up the definition of a selected function in 
the hard-list. For an DCPAND task, each of the resulting 
subgoals is temporarily inactivated by making a RECALL 
task. 

• ASSEMBLE reconstructs an example based on information 
from the soft-list 

• RECALL activates an inactive suhgoal for being processed 
by other task operations 

Simpli f ier 

The major functions of the simplifier are 

1 to transfer sequentially each substitution equality in the 
hard-list onto the soft-list, after carrying out the 
corresponding substitution on the formulas of the hard-
list , 

2 to rewrite condition formulas on the hard-list to make 
them simpler and easier to handle 

The simplifier is generally invoked on each of those subgoals 
resulting from performing a task Simplification possibly eliminates 
a subgoal or splits it into more subgoals The resulting subgoals are 
then subject to furl tier processing by the task generator 

Some of the important advantages of simplification are as follows 

• By earning out a global simplification, the simplifier 
relieves the task generator of the need to care about 
mundane details 

• By normalizing formulas, the simplifier allows the task 
generator to be able to relatively easily predict the 
patterns of formulas to be encountered 

t By eliminating apparently unsatisfiable subgoals, the 
simplifier enables EGS to focus more on the promising 
ones 

• The fact that the simplifier makes use of rewrite lemmas 
provides EGS with some degree of extensibility. 

Evaluator 

This component evaluates how well the proposed examples satisfy 
the initial constraint This evaluation function would be important 
for the system to be able to learn or self-organize from experience 
Currently it only judges whether a proposed example satisfies the 
initial constraint 

4 . T h e K n o w l e d g e Base o f E G S 

EGS's ability to generate examples critically depends on its 
knowledge base EGS employs various forms of knowledge, heuristic 
information, definitions, theorems, known examples, and equation 
solvers in the form of production rules, etc Under each concept 
(function) name, knowledge is frame-structured Knowledge is 
divided into the knowledge shared with the Boyer-Moore theorem 
prover and EGS-specific knowledge (boxed under X-FRAME in Figure 
2). 
Def ini t ions and LISP Code 

When a function is being defined, the Boyer-Moore system generates 
LISP code, which implements the defined function in the running 
LISP environment [3| This code is invoked when a term is 
evaluated Evaluating terms is extensively required when ft TEST 
task is performed or a proposed example is verified by the evaluator 
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The symbolic definitions of functions are also important. 
Performing an EXPAND task retrieves the definition of a selected 
function and expands the corresponding function call in the hard-list 
with the definition By appealing to the symbolic definitions, EGS is 
able to generate examples for constraints which are very restrictive 
or involve novel concepts 

CONCEPT-NAME 

SDEFN X-FRAME | 
INTERLISP-CODE' 

INDUCTION-MACHINE 
TYPE-PRESCRIPTION-LST■ 
CONTROLLER-POCKETS-
LEVEL-NO" 

LEMMAS 

EXAMPLES 
TYPICAL: 
BOUNDARY: 
COUNTER 

SOLVERS 
QUICK: 
GENRL 

CASES 
ACCOR. 

CONTROLS 
FOLD 
LOCK: 

Figure 2: Frame-like EGS Knowledge Structure 

Lemmas 

In the Boyer-Moore theorem prover lemmas are proved and stored 
under their ke\ function names with the user-assigned types The 
EGS simplifier makes use of rewrite type lemmas when it rewrites 
terms 

Known Examples 

Known examples are important knowledge to EGS because they 
play the role of building blocks for generating examples. Generated 
examples are often simply known examples or, at least, constituted 
of known examples. Rich and well-sorted known examples 
substantially increase the efficiency of EGS and make the system 
behave more naturally. Known examples are used when a TEST task 
is performed. 

In EGS, for a given function a known example is represented as a 
list of QUOTEd constants - actually stored unQUOTEd - each of 
which corresponds to a formal argument of the function. Known 
examples for a function are classified into three types: Typical, 
Boundary, and Counter. Known examples for MEMBER can be 
represented as. 

Currently known examples must be sorted and given by the user. 
This, however, has advantages in that generated examples are more 
user-tuned. 

Solvers 

A solver is user-supplied, procedurally attached, production rule-like 
knowledge whose action part transforms a formula, possibly a set of 
formulas, into a form which is simpler and easier to handle For 
example, a formula: (EQUAL (REVERSE L) (QUOTE (A B C))) can be 
directly transformed into: (EQUAL L (REVERSE (QUOTE (A B C) ) ) ) . 
The built-in linear solver is a special solver for simultaneous linear 
equations/inequalities Solvers are specific to the patterns of 
formulas and often heuristic; however, they are efficient. The solver 
knowledge substantially increases the efficiency of EGS 

5. A Simple Illustration of EGS Example 
Generation 

5 The top task is processed. The task performer retrieves 
MEMBER'S typical and boundary stored examples - let's 
assume MEMBER'S stored examples are given as (*) - and 
tests them with the hard-list i.e. evaluates each of 
condition formulas in the hard-list under the 
environment established by associating the CLUE 
arguments with the corresponding values in an example. 
Only the example (4 (7 3 4 . 5)) survives the test; in 
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Figure 3: Some EGS-generated Examples 

l() This example is verified by the evaluator More 
examples would possibl) he generated by continuing the 
similar procedure of performing and generating tasks 

6 . R e l a t e d W o r k and F u t u r e Research 

Examples have long been used for many A I. tasks, especially for 
machine learning |13. 14. 25] However, very few learning system 
can generate examples by themselves and often examples are given 
by the user interactively or are stored initially in the system. 
Lenat's AM |13| lacks reasoning for example generation, therefore, 
its example generation capability is limited AM generates examples 
for a concept simply by executing the algorithmic specification ( a 
LISP-like program) of the concept with the known examples 
Gelernter |7 8] experimented with the idea that humans almost 
always draw diagrams when trying to prove geometry theorems In 
his geometry machine, Gelernter used diagrams to prune the 
backward chaining during the proof search The use of diagrams in 
this way reduced the proof search many orders of magnitude. CEG 
(20] is a 3-phasc structured example generation system over the 

domain of LISP data and programs. In CEG, a constraint is 
specified in the form of a set of desired property-value pairs. CEG's 
expressive power and ability in problem handling are limited. 
Moreover, its means-ends analysis method for example modification 
may not be suitable for cases where moderate expressive power is 
required. Ballantyne and Bledsoe's GRAPHER [1] generates 

3 Here examples are printed without "QUOTE" For most cases the thown 
example have been generated well within 10 seconds of CPU time. 
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counter-examples for non-trivial topological conjectures. Given a 
conjecture, GRAPHER constructs a set-theoretic relationship graph 
among the set variables occurring in the conjecture The graph 
serves as a global constraint specification when the set variables are 
assigned values REF-ARF |6] employed the constraint-satisfaction 
technique REF-ARF was able to solve admittedly difficult problems 
such as cryptoarithmetic problems and the 8-queens problem. The 
regression method for plan modification [24), proposed by Waldinger 
can also be useful for example generation Green's QA3 [9] and the 
PROLOG interpreter |15| are both driven by resolution-based 
theorem proving, however, they can hardly be classified as example 
generators in their own right 

Experiments have been carried out applying EGS to the problems of 
controlling backward chaining in the Boyer-Moore theorem prover 
and semantically checking conjectures by way of finding counter-
examples These experiments have shown EGS to be powerful and 
efficient Howe\er, several improvements are still needed, the 
following only describes those projected for the near future. 

• incorporating a simple learning capability - updating the 
stored examples in favor of better examples through 
evaluating and classifying experienced examples; 

• devising a high-level control mechanism for dynamically 
adjusting the task score computation - for example, the 
task tree which represents the derivational relationship 
of tasks. can be used to evenly distribute examples, 

• extending and elaborating the knowledge base; 

• enriching the user interface facility. 

Integration of EGS into the Boyer-Moore theorem prover is also 
being considered This would result in a user-friendly environment 
for theory development where examples can play an invaluable role 

7. Conc lus ions 

In this paper, a new approach to automatic example generation and 
its implementation have been presented. The transformational 
approach has several advantages 

• It suggests a general paradigm for example generation. 
In this approach, example generation is viewed as 
transformation from a constraint specification to a 
representation which conforms to an example description 
scheme - the substitution equality for EGS. This view 
provides flexibility in selecting representation schemes 
for constraints and examples. 

• The problems of representation and evaluation can 
relatively easily be solved. 

• It enables general formal reasoning and problem-specific 
procedural knowledge to cooperate with each other to 
achieve both generality and efficiency. 

• It provides modifiability and controllability of the 
system. 

Considering the important role examples play in human intelligence 
and in A I as a study of computer simulation of human intelligence, 
the author believes that better understanding of the true nature of 
examples will lead us to greatly enrich contemporary A.I. research. 
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