
EGS: A Trans format iona l Approach
to Au tomat i c Example Generat ion

Myung W. Kim

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712

A B S T R A C T

THIS paper describes a constraint transformation approach to
automatic example generation and its implementation In this
approach examples are generated as the result of successive
transformations of thf constraint formulas Such
transformations are carried out based on various forms of
knowledge Systematic global simplification, largely based on
declarative knowledge, mitigates tht impact of applying problem-
specific and efficient procedural knowledge, with a uniform
problem representation scheme The approach suggests a general
framework for example generation in which a language for
describing examples can be defined ft also combines a general
formal reasoning capacity and problem-specific procedural
knowledge, to achieve both generality and efficiency The
implemented system has proven to be expressively powerful and
efficient for a variety of applications

1 . I n t r o d u c t i o n

Examples are important in Artificial Intelligence They are critical
to machine learning, automated reasoning, knowledge
representation, intelligent human interface, and computer-aided
instruction |25. 13. 7, 18. 21, 4). Examples illustrate abstract
notions and complicated procedures, provide us with a source of
information on which ideas and concepts are developed, and serve a«
a tool with which hypotheses can be validated.

Generating examples is, however, a difficult task in general A
problem for example generation can be specified as a constraint - a
conjunction of conditions each of which must be satisfied
simultaneously. Those conditions usually interact with each other in
complicated ways [24| It is often the case that an example
generation system is used as a component of a larger system In
such cases, it is important that the example generator be efficient
enough that it does not detract from the performance of the larger
system

Example generation differs from database retrieval or problem
solving Database retrieval deals with only the previously sorted
and stored data items, whereas example generation often requires
constructing novel examples where known examples fail Problem
solving usually involves finding a solution or solutions, largely
ignoring the issue of finding good solutions. However, example
generation is constantly concerned with choosing good examples
from among many possibilities. This problem appears difficult to
solve because it involves highly abstract notions like utility,
motivation, and objective.

Automatic example generation raises two fundamental issues.
representation and evaluation The representation problem
addresses the questions what is an example and how should it be
represented, the evaluation issue deals with methods for evaluating
whether and/or how well a proposed example satisfies the initial
constraint In most cases example is not clearly defined Evidence,
samples, models, diagrams, and even arbitrarily defined data
structures are often referred to as examples The vagueness in the
meaning of example causes difficulties in making use of the existing
methodologies and tools for powerful reasoning; such reasoning
appears critical to example generation For an effective and efficient
evaluation capability it is required that the involved concepts be
defined unambiguously or somehow related to their effective
computational procedures It is quite natural that an automatic
example generation system should be based on the rigorous
formalism of its problem domain

Due to such difficulties, the approaches to automatic example
generation in the current literature are problem application specific
or limited in expressive power In the transformational approach
examples are generated as the result of successive transformations of
the constraint formula This approach suggests a general framework
for example generation and also provides a uniform representation
scheme for problems in which problem-specific procedural knowledge
can be applied to achieve efficient as well

The Example Generation System (EGS) presented here has adopted
the Boyer-Moore theory [2| as the underlying domain formalism
Several advantages are immediate

• The Boyer-Moore theory provides a general and
expressively powerful language

• The problems of representation and evaluation can be
easily solved

• EGS can share with the Boyer-Moore theorem prover,
which implements the Boyer-Moore theory, a substantial
portion of its reasoning capability and knowledge base

• The theorem proving environment serves as a rich source
of problems for application of examples
|7, 18. 23. 10, 11)

EGS, written in INTERLUISP, currently running on a DEC-2060
under TOPS-20 has been implemented on top of the Boyer-Moore
theorem prover In EGS, a constraint is specified as a (well-formed)
formula in the Boyer-Moore theory The variables of tbe constraint,
called constraint variables, are interpreted as existentially
quantified. An example is defined as an Assignment of QiXJTEd
constants to the constraint variables, this assignment causes tbe
constraint formula to evaluate to non-F. A counter erampU is

156 M.Kim

similarly defined except that the assignment causes the constraint
formula to evaluate to F. For instance, the assignment '((X .
(QUOTE (A B)))) is an example of (LISTP X), whereas '((X .
(QUOTE 3))) is a counter-example However, ((X (CONS U V)))
is not an example of (LISTP X) since X is assigned a non-QUOTEd
constant

The example generation problem in EGS is specified in terms of
constraints The EGS command.

may be read as-

Find examples of list-palindromes containing at least two
difftrent members

FINDX is a top-level command for example generation Its first
argument is a constraint and its second argument specifies the
resource limits such as a time limit or the maximum number of
examples to be generated The output might be-*

2. The Boyer-Moore Theory and Their Theorem
Prover

The Hoyer-Moore theory is obtained from the propositiooal calculus
with variables and function symbols Its three principles the
induction principle, the shell principle, and the definition principle
characterize the theory. Variables in a formula are implicitly
universally quantified. Lacking quantifiers and allowing recursion as
an alternative gives rise to the constructive nature of the theory.
The language of the theory can be viewed as a (functional)
programming language since function definitions (admitted) are like
programs. In fact, the language of the theory is akin to that of the
pure LISP.

When a function is defined, the Boyer-Moore theorem prover
generates compiled LISP code corresponding to the definition [3].
This provides a simple and yet efficient interpreter for the language.
The interpreter, if given a term together with a proper environment,
will compute the terms value with respect to the environment. This
feature, in fact, gives a straightforward solution to the evaluation
problem

3 . T h e I m p l e m e n t a t i o n o f E G S

EGS has been implemented as task-driven in that examples are
generated as the result of iterating the task generation and task
performing sequence A task descriptor, which describes a task, is a
list of task srorr, task opt rat or, hard-list, soft-ltst, and reference-
list. The hard-list is a list of condition formulas assumed conjoined.
The soft-list is an association list,, each component of which is of the
form (v t) corresponding to a substitution equality2 (EQUAL v t).
The reference-list contains information needed in performing the
task For example

describes a TEST task In a task descriptor, the hard-list and the
soft-list together can be considered as a subgoal and we call the pair
of the hard-list and the soft-list a context In this paper subgoal and
context are used interchangeably

Each task operation corresponds to a particular transformation of
formulas. Such transformations include partially instantiating
variables with constants, analyzing terms by cases, solving
equations, and unfolding definitions Simplification is a non task-
specific global transformation, which is invoked after a task-specific
transformation is completed. Generally a task transforms formulas
of the hard-list to create subgoals Tasks are maintained in an
agenda in the order of task scores; the task on the top of the agenda
is performed. The result of performing a task, in turn, is further
processed to produce more new tasks EGS repeats this sequence
until any termination condition is met - the agenda becomes empty,
the specified number of examples are generated, or the time limit is
exceeded. An illustration of EGS example generation will be given
later. The task-dn\en structure of EGS with agenda can be viewed
as best-first search Its search space can be represented as a tree,
each node of w hich corresponds to a task

EGS consists of six major functional components. Preprocessor,
Executive, Task (Unirator, Task Performer, Simplifier, and
Evaluator and a global data structure Task Agenda. Also the
Knowledge Bast maintains knowledge of various forms. Figure 1
depicts the general architecture of EGS. The function of each
component is described in the following.

Preprocessor

This component checks the syntax of the input constraint and also
translates the constraint, which may be input in an abbreviated
format, into the corresponding well-formed formula. For example,
(AND p q r) is translated into (AND p (AND q r)).

Executive

The Executive manages the flow of control in EGS. It controls
other components of EGS to maintain the proper sequence of
example generation Control loops through the task generation and
ta,sk performing sequence until any termination condition is met.

EGS is non-deterministic in that the outputs of EGS to the same question
may vary. The non-determinism has been intentionally introduced; however,
this feature can be turned off.

An equality of the form (EQUAL Ihs rhs) where Ihs(rhs) is a variable and
rhs(lhs) is a term not containing the Ihs(rhs) variable.

M.Kim 157

Task Generator

This component generates tasks from contexts resulting from
performing, a previous task A task is generated by assigning an
applicable task operator and attaching the collected task-relevant
information to the context This task is scored with its plausibility.
The scoring algorithm is

< Control Flow
< Information Flow

OP-SCORE the score associated with the task operator,
S-SCORE the score computed based on the syntact ic

complexity of the formulas In the h a r d - l i s t ,
CREDIT the score for extra c red i t ,
and C1, C2 and C3 are the weight coef f i c ien ts .

This scoring mechanism provides EGS with substantial
controllability

Task Performer

Lach task operator is associated with a unique process which
generates a list of subgoals (contexts) Performing a task involves
retrieving the relevant information and applying the process
corresponding to the task operator to the context of the task The
following are the functional descriptions of the task operators

• START marks the initial task for a single session of
example generation

• TEST retrieves known examples corresponding to a clue
and tests each of the examples with the hard-list until
the fixed number of successful tests are obtained A
suhgoal for each of the successful tests is generated.

• SOLVE invokes the built-in Linear Solver to solve the
simultaneous linear equations/inequalities or applies the
solver knowledge to directly solve a condition or a set of
conditions

• ANALYZE applies the rase knowledge to do case analysis.

• DCPAND opens up the definition of a selected function in
the hard-list. For an DCPAND task, each of the resulting
subgoals is temporarily inactivated by making a RECALL
task.

• ASSEMBLE reconstructs an example based on information
from the soft-list

• RECALL activates an inactive suhgoal for being processed
by other task operations

Simpli f ier

The major functions of the simplifier are

1 to transfer sequentially each substitution equality in the
hard-list onto the soft-list, after carrying out the
corresponding substitution on the formulas of the hard-
list ,

2 to rewrite condition formulas on the hard-list to make
them simpler and easier to handle

The simplifier is generally invoked on each of those subgoals
resulting from performing a task Simplification possibly eliminates
a subgoal or splits it into more subgoals The resulting subgoals are
then subject to furl tier processing by the task generator

Some of the important advantages of simplification are as follows

• By earning out a global simplification, the simplifier
relieves the task generator of the need to care about
mundane details

• By normalizing formulas, the simplifier allows the task
generator to be able to relatively easily predict the
patterns of formulas to be encountered

t By eliminating apparently unsatisfiable subgoals, the
simplifier enables EGS to focus more on the promising
ones

• The fact that the simplifier makes use of rewrite lemmas
provides EGS with some degree of extensibility.

Evaluator

This component evaluates how well the proposed examples satisfy
the initial constraint This evaluation function would be important
for the system to be able to learn or self-organize from experience
Currently it only judges whether a proposed example satisfies the
initial constraint

4 . T h e K n o w l e d g e Base o f E G S

EGS's ability to generate examples critically depends on its
knowledge base EGS employs various forms of knowledge, heuristic
information, definitions, theorems, known examples, and equation
solvers in the form of production rules, etc Under each concept
(function) name, knowledge is frame-structured Knowledge is
divided into the knowledge shared with the Boyer-Moore theorem
prover and EGS-specific knowledge (boxed under X-FRAME in Figure
2).
Def ini t ions and LISP Code

When a function is being defined, the Boyer-Moore system generates
LISP code, which implements the defined function in the running
LISP environment [3| This code is invoked when a term is
evaluated Evaluating terms is extensively required when ft TEST
task is performed or a proposed example is verified by the evaluator

158 M.Kim

The symbolic definitions of functions are also important.
Performing an EXPAND task retrieves the definition of a selected
function and expands the corresponding function call in the hard-list
with the definition By appealing to the symbolic definitions, EGS is
able to generate examples for constraints which are very restrictive
or involve novel concepts

CONCEPT-NAME

SDEFN X-FRAME |
INTERLISP-CODE'

INDUCTION-MACHINE
TYPE-PRESCRIPTION-LST■
CONTROLLER-POCKETS-
LEVEL-NO"

LEMMAS

EXAMPLES
TYPICAL:
BOUNDARY:
COUNTER

SOLVERS
QUICK:
GENRL

CASES
ACCOR.

CONTROLS
FOLD
LOCK:

Figure 2: Frame-like EGS Knowledge Structure

Lemmas

In the Boyer-Moore theorem prover lemmas are proved and stored
under their ke\ function names with the user-assigned types The
EGS simplifier makes use of rewrite type lemmas when it rewrites
terms

Known Examples

Known examples are important knowledge to EGS because they
play the role of building blocks for generating examples. Generated
examples are often simply known examples or, at least, constituted
of known examples. Rich and well-sorted known examples
substantially increase the efficiency of EGS and make the system
behave more naturally. Known examples are used when a TEST task
is performed.

In EGS, for a given function a known example is represented as a
list of QUOTEd constants - actually stored unQUOTEd - each of
which corresponds to a formal argument of the function. Known
examples for a function are classified into three types: Typical,
Boundary, and Counter. Known examples for MEMBER can be
represented as.

Currently known examples must be sorted and given by the user.
This, however, has advantages in that generated examples are more
user-tuned.

Solvers

A solver is user-supplied, procedurally attached, production rule-like
knowledge whose action part transforms a formula, possibly a set of
formulas, into a form which is simpler and easier to handle For
example, a formula: (EQUAL (REVERSE L) (QUOTE (A B C))) can be
directly transformed into: (EQUAL L (REVERSE (QUOTE (A B C)))) .
The built-in linear solver is a special solver for simultaneous linear
equations/inequalities Solvers are specific to the patterns of
formulas and often heuristic; however, they are efficient. The solver
knowledge substantially increases the efficiency of EGS

5. A Simple Illustration of EGS Example
Generation

5 The top task is processed. The task performer retrieves
MEMBER'S typical and boundary stored examples - let's
assume MEMBER'S stored examples are given as (*) - and
tests them with the hard-list i.e. evaluates each of
condition formulas in the hard-list under the
environment established by associating the CLUE
arguments with the corresponding values in an example.
Only the example (4 (7 3 4 . 5)) survives the test; in

M.Kim 159

Figure 3: Some EGS-generated Examples

l() This example is verified by the evaluator More
examples would possibl) he generated by continuing the
similar procedure of performing and generating tasks

6 . R e l a t e d W o r k and F u t u r e Research

Examples have long been used for many A I. tasks, especially for
machine learning |13. 14. 25] However, very few learning system
can generate examples by themselves and often examples are given
by the user interactively or are stored initially in the system.
Lenat's AM |13| lacks reasoning for example generation, therefore,
its example generation capability is limited AM generates examples
for a concept simply by executing the algorithmic specification (a
LISP-like program) of the concept with the known examples
Gelernter |7 8] experimented with the idea that humans almost
always draw diagrams when trying to prove geometry theorems In
his geometry machine, Gelernter used diagrams to prune the
backward chaining during the proof search The use of diagrams in
this way reduced the proof search many orders of magnitude. CEG
(20] is a 3-phasc structured example generation system over the

domain of LISP data and programs. In CEG, a constraint is
specified in the form of a set of desired property-value pairs. CEG's
expressive power and ability in problem handling are limited.
Moreover, its means-ends analysis method for example modification
may not be suitable for cases where moderate expressive power is
required. Ballantyne and Bledsoe's GRAPHER [1] generates

3 Here examples are printed without "QUOTE" For most cases the thown
example have been generated well within 10 seconds of CPU time.

160 M.Kim

counter-examples for non-trivial topological conjectures. Given a
conjecture, GRAPHER constructs a set-theoretic relationship graph
among the set variables occurring in the conjecture The graph
serves as a global constraint specification when the set variables are
assigned values REF-ARF |6] employed the constraint-satisfaction
technique REF-ARF was able to solve admittedly difficult problems
such as cryptoarithmetic problems and the 8-queens problem. The
regression method for plan modification [24), proposed by Waldinger
can also be useful for example generation Green's QA3 [9] and the
PROLOG interpreter |15| are both driven by resolution-based
theorem proving, however, they can hardly be classified as example
generators in their own right

Experiments have been carried out applying EGS to the problems of
controlling backward chaining in the Boyer-Moore theorem prover
and semantically checking conjectures by way of finding counter-
examples These experiments have shown EGS to be powerful and
efficient Howe\er, several improvements are still needed, the
following only describes those projected for the near future.

• incorporating a simple learning capability - updating the
stored examples in favor of better examples through
evaluating and classifying experienced examples;

• devising a high-level control mechanism for dynamically
adjusting the task score computation - for example, the
task tree which represents the derivational relationship
of tasks. can be used to evenly distribute examples,

• extending and elaborating the knowledge base;

• enriching the user interface facility.

Integration of EGS into the Boyer-Moore theorem prover is also
being considered This would result in a user-friendly environment
for theory development where examples can play an invaluable role

7. Conc lus ions

In this paper, a new approach to automatic example generation and
its implementation have been presented. The transformational
approach has several advantages

• It suggests a general paradigm for example generation.
In this approach, example generation is viewed as
transformation from a constraint specification to a
representation which conforms to an example description
scheme - the substitution equality for EGS. This view
provides flexibility in selecting representation schemes
for constraints and examples.

• The problems of representation and evaluation can
relatively easily be solved.

• It enables general formal reasoning and problem-specific
procedural knowledge to cooperate with each other to
achieve both generality and efficiency.

• It provides modifiability and controllability of the
system.

Considering the important role examples play in human intelligence
and in A I as a study of computer simulation of human intelligence,
the author believes that better understanding of the true nature of
examples will lead us to greatly enrich contemporary A.I. research.

A C K N O W L E D G E M E N T S

I would like to thank Dr. Robert Boyer and Dr. J Moore for their
invaluable advice and support. I owe much thanks to Prof. W. W.
Bledsoe for his encouragement. My gratitude also goes to William
Young, who patiently proofread the original draft Dr Donald Good
generously permitted me the use of space and resources for the
preparation of this paper

References

[1] Ballantyne, A M and Bledsoe, W W.
On Gtnerating and Using Examples in Proof Discovery
Technical Report ATP-64, Departments of Mathematics and

Computer Sciences, University of Texas at Austin, 1980

[2] Boyer, R. S and Moore, .J S.
A Computational Logic.
Academic Press, New York, 1979

[3] Boyer, R S and Moore. J S.
Metafunctions: Proving Them Correct and Using Them

Efficiently as New Proof Procedures.
In Boyer, R. S and Moore, J S (editors), The Correctness

Problem in Computer Scienct, Academic Press, London,
1981

[1] Brown, .J. S. and Burton, R R
Diagnostic Models for Procedural Bugs in Basic Mathematical

Skill.
Cognitive Scienct 2.155-192, 1978

|5] Bundy, Alan
Artificial Mathematicians. The Computer Modelling of

Mathematical Reasoning.
Academic Press, London, 1983

[fi] Fikes, R E
REF-ARF A System for Solving Problems Stated as

Procedures,
Artificial Intelligence 1.27-120, 1975

|7] Gelernter, H
Realization of a Geometry-Theorem Proving Machine
In Feigenbaum. E. A. and Feldman, J (editors), Computers

and Thoughts, . McGraw-Hill Book Company, 1963.

[8] Gelernter, H. and Hansen, J. R. and Loveland, D W
Empirical Explorations of the Geometry-Theorem Proving

Machine.
In Feigenbaum, E A and Feldman, J. (editors), Computers

and Thoughts, . McGraw-Hill Book Company, 1963.

[9j Green, Cordell
Application of Theorem Proving to Problem Solving.
Proc of IJCAI-69 .219-239, 1969.

[10] Jouannaud, Jean-Pierre et al.
SISP/1 An Interactive System Able to Synthesize Functions

from Examples.
Proc of IJCAI-77:412-418, 1977.

M.Kim 161

[l l | Kim, Myung W.
Measure Guessing. An Experiment in Automatically

Generating and Using Examples
1984.
Institute for Computing Science and Computer Applications,

University of Texas at Austin, Working Paper.

[12) Lakatos, I.
Proofs and Refutations.
Cambridge University Press, 1976.

[13) Lenat. D H
A M An Artificial Intelligence Approach to Discovery in

Mathematics as Heuristic Starch
PhD thesis, Stanford University, 1976

[11) Mitchell, T. M.
version Spaces An Approach to Concept learning
PhD thesis, Stanford University, 1978

[15] Pereira, I, M. and Pereira, F C. and Warren, D I I .
User's Guide to DECsystem-10 PROLOG.
Sept , 1978

[16] Polya, G
How To Solve ft
Pneeton University Press, 1954
2nd ed

[17] Polya, G
Mathematical Discovery
Wiley, New York, 1962
Vol. 1 and 2

[18] Reiter, R
A Semantically Guided Deductive System for Automatic

Theorem Proving
IEEE Trans on Computers (C-25(4)) 328-334, 1976

[19] Rissland, Edwina.
Understanding Understanding Mathematics
Cognitive Science 2, 1978

[20] Rissland, Edwina and Soloway, Elliot
Generating Examples in LISP. Data and Programs
Technical Report COINS TR-80-07, Department of Computer

and Information Science, University of Massachusetts at
Amherst, 1980.

[21] Rissland, Edwina L. and Valcarce, Eduardo M. and Ashley,
Kevin D
Explaining and Arguing with Examples
Proc. of AAAI-84 288-294, 1984.

[22) Stefik, Mark.
Planning with Constraints
Artificial Intelligence 16 .111-140, 1981.

[23) Summers, P. D.
A Methodology for LISP Program Construction from

Examples.
Technical Report, IBM T.J. Watson Research Center, 1976

[24) Waldinger R. J.
Achieving Several Goals Simutaneously.
Machine Intelligence 8:94-136, 1977.

[25] Winston, P. H.
Learning Structural Descriptions from Examples.
In Winston, P. I I . (editor), The Psychology of Computer

Vision, . McGraw-Hill Book Company, 1975.

