
Automating Program Speedup 
by Deciding What to Cache 

Jack Mostow* and Donald Cohen^ 
USC Information Sciences Inst i tute" 

4676 Admiralty Way 
Marina del Rey, California 90292 

Abstract 
A common program optimization strategy is to eliminate 
recomputation by caching and reusing results. We analyze the 
problems involved in automating this strategy: deciding which 
computations are safe to cache, transforming the rest of the 
program to make them safe, choosing the most cost-effective 
ones to cache, and maintaining the optimized code. The analysis 
extends previous work on caching by considering side effects, 
shared data structures, program edits, and the acceptability of 
behavior changes caused by caching. The paper explores 
various techniques for solving these problems and attempts to 
make explicit the assumptions on which they depend. An 
experimental prototype incorporates many of these techniques. 

'1. Introduction 
Optimizing a program by hand is expensive, both directly and 

indirectly. The process itself is time-consuming and error-prone, 
while the optimized program is more complex and therefore 
difficult to maintain. Ideally we would like to write and maintain 
unoptimized programs and let the machine take care of 
optimizing them. This would free programmers to write simpler, 
more understandable, less efficient code, secure in the 
knowledge that unnecessarily expensive computation would be 
optimized away. While this is done to some degree by current 
optimizing compilers, this paper shows how more could be done 
by exploiting knowledge not available to standard compilers. 

We focus on a single general strategy for program speedup, 
namely (software) caching: storing and reusing the results of 
computations. Caching is usually thought of as trading space for 
time. The cost is the space used for storing results. The benefit 
is the time not spent recomputing. However, caching can also 
reduce storage costs by eliminating the extra space that would 
have been allocated during recomputation. Caching can be 
thought of as a simple form of learning, insofar as the program 
tends to speed up over time. 

While caching has received considerable theoretical attention 
[Marsh 70, Lenat 79, Bird 80, Anderson 81, Neches 81 , 
Rosenbloom 83], especially for applicative languages, specialized 
knowledge representations, and production systems, we chose to 
investigate it in the context of general Interlisp 
programs [Teitelman 78]. Toward this end we constructed an 
experimental prototype called Memoize that installs caches in 
Interlisp programs, including itself. 

Current address. Rutgers University Department of Computer Science, Hill 
Center • Busch Campus, New Brunswick, New Jersey 08903. 

This research was performed at USC-ISI and supported by the Defense 
Advanced Research Projects Agency under contract No. MDA903 81 C 0335. 
Views and conclusions contained in this report are the authors' and should not be 
interpreted as representing the official opinion or policy of DARPA. the U.S 
Government, or any person or agency connected with them. 

The actual operation of installing a cache is trivial, a funct ion, 
sav f(x, Y), is transformed to store its results in a table (the cache) 
indexed by the values of the arguments x and y (In Interlisp, this 
can conveniently be done by ADVISEing f.) Before the 
transformed function actually computes a result, it looks in Its 
cache, and if the entry is already there, it returns the result 
computed before. Thus it saves the expense of recomputing at 
the cost of storing and accessing the cache. Whether an entry is 
considered to be "already there" depends on the equivalence 
criterion used to compare arguments against stored keys. Some 
caches use an EO test, while others use EQUAL; one can imagine 
using others, though Memoize does not. 

We will refer to this program transformation as "memoizing the 
function f." We can also talk about memoizing program 
fragments other than functions. For example, the expression 
(f (g x)) can be memoized by rewriting it as (fg x), defining fg(x) as 
(f (g x)), and memoizing the function fg. Similarly, the 
computation of g and h in the expression (f (g (h (i x)))) can be 
cached by folding the expression into (f (gh (i x))), defining gh(y) 
as (g (h y)), and memoizing gh. 

Deciding which parts of a program to memoize, and how, is far 
from trivial. For example, memoizing a function may require 
substantial modifications to the rest of the program. While the 
development of Memoize was greatly facilitated by such tightly 
integrated Interlisp facilities as the Masterscope program 
analyzer, the Pattern Match Compiler, the structure editor, and 
the ADVISE facility, the power of Interlisp forced us to confront 
many problems that do not arise in simpler languages. As we 
shall see, not all of these problems yield to complete, fully 
automatic solutions. The rest of the paper discusses the issues of 
safety, cost-effectiveness, and maintaining the optimized 
program. 

2. Safety 
Optimization should be "safe," i.e., the optimized program 

should accomplish the same purpose as the unoptimized version. 
In the case of memoizing, one might (and we used to) think that 
ensuring safety is straightforward: before memoizing a program 
fragment, analyze it to make sure that memoizing it will yield a 
program with equivalent behavior. As we shall see, this view is 
naive. First, equivalence lies in the mind of the beholder, and 
cannot be determined solely by looking at the code itself. 
Second, some changes in program behavior caused by 
memoizing are actually desirable; the real Issue is not whether 
memoizing preserves "equivalence," but whether the behavior 
changes are acceptable. Third, safety is not a context-free 
property of the program fragment, but depends on the rest of the 
program and on how the fragment is memoized. 

Therefore we define the safety of memoizing in terms of 
preserving the acceptability of the unmemoized program's 
behavior. (We ignore the issues that arise if this behavior is 



166 J. Mostow and D Cohen 

nondeterministic.) By this definition, it is always safe to 
recompute a result rather than retrieve it. Notice that this 
definition may be inappropriate for programs whose correct 
behavior relies on their being memoized. The ability to write such 
programs is a potentially important benefit of automated 
memoizing, since it permits a simpler programming style. 

Whether a change in program behavior is unacceptable, 
unimportant, or beneficial depends on the user's intent. For 
example, suppose a program is instrumented to measure the time 
spent in some function. If the program is being run to measure 
machine speed, then memoizing it would defeat the purpose. On 
the other hand, if the goal is to find and eliminate performance 
bottlenecks, then memoizing the very same program may be 
desirable even though it changes the result computed (i.e., the 
timing). 

As this rather extreme example illustrates, information about 
which changes are acceptable cannot infallibly be inferred from 
the code. From a specification of what the program is supposed 
to do, and a derivation of the code from that specification, it might 
be possible to determine which changes were acceptable and 
which were not. However, even in the absence of such 
information, fairly reliable guesses can be made based on 
program analysis, default assumptions, and the conservative 
principle that it is always safe (if inefficient) to refrain from 
memoizing. 

Memoizing a program can change its behavior in several ways. 
For example, it affects time and space costs, preferably reducing 
at least one. We assume here that changes in time and space 
costs are acceptable with respect to safety • • although in the case 
of an embedded real-time system, or limited storage, they clearly 
would not be. We now discuss other changes in program 
behavior, and the factors that influence their acceptability. 

2 .1. Side effects eliminated by caching 
By eliminating recomputation, caching eliminates the side 

effects performed during the recomputation. Memoize 
considers such changes important enough to preclude caching 
or require user confirmation. 

A computation specifically executed for side effect should not 
be memoized If It is important for the side effect to occur every 
time the computation is invoked. For example, a function that 
clears the screen should not be memoized, even if it always 
returns the same value. While a program fragment with 
indispensable side effects should not be memoized, it is 
sometimes possible to move the code that performs the side 
effects outside of the fragment. However, such code motion is 
outside the scope of this paper or Memoize's capabilities. 

Sometimes eliminating side effects by caching can actually 
improve the program. 

Eliminated output: The user may not care (or may even 
rejoice) if memoizing the program causes it to print the same 
message once rather than 47 times. 

Eliminated breaks: If a computation generates an error from 
which the user can recover, caching the result saves the trouble 
of fixing it again. And again... 

Eliminated input: If the computation prints out a question and 
inputs an answer, caching it may usefully reduce the question-
answering burden on the user, provided the answer is explicitly 
indexed under the variables on which it depends. Section 5.2 
discusses how this technique was used to prevent Memoize from 
asking the same question repeatedly. 

Identifying all possible side effects of a computation can be 
difficult for people. Memoize uses Masterscope to identify 
potential direct and indirect side effects of executing a given 
program fragment. To assist the user in deciding whether it is 
safe to memoize the fragment, Memoize displays its possible 
side effects and the calling paths by which indirect side effects 
might be invoked. 

These side effects include setting non-local variables, 
evaluating expressions constructed at runtime (EVAL and 
APPLY, whose effects Masterscope does not attempt to predict), 
smashing data structures (RPLACA, PUTPROP, PUTD, etc.), and 
performing I/O. (For purposes of analysis, it is convenient to 
regard functions like TIME as a form of I/O, i.e., reading a clock.) 
If a program is viewed at a low enough level, allocation (e.g., 
OONS) is also a side effect; however, this is considered 
separately in section 2.4. 

2.2. Eliminating infinite recursion 
A useful behavior change introduced by memoizing concerns 

infinite recursion. Whenever the memoized code starts a cached 
computation for which no result has been stored, it first creates 
an empty cache entry. When it completes the computation, it fills 
in the result. If a cache lookup ever retrieves an empty entry, it 
means that in the absence of caching, the computation would 
have invoked itself with the very same parameters, i.e., would 
have entered an infinite recursion. In this case, the retrieval code 
halts and warns the user about the problem. (Section 3 describes 
mechanisms that handle the case where the function alters its 
own parameters or the global state on which it depends.) 

2.3. Introducing extra computations 
A memoized function should not invoke user code in situations 

where the unmemoized version would not, since doing so can 
have arbitrarily bad effects. Memoize must take care to avoid 
this problem. 

If the function's arguments aren't always evaluated left-to-right 
before entering its body, memoizing it may cause arguments to 
be evaluated unnecessarily, out of order, or in the wrong 
environment. For example, memoizing the function AND so as to 
evaluate all its arguments would cause the call 
(AND (LISTP x) (CAR x)) to break when x was bound to a non-list, 
even though the unmemoized version would not. Memoize 
therefore refrains from memoizing (NLAMBDA) functions that 
evaluate their arguments conditionally. 

The same problem can be introduced by folding a program 
fragment into a function, e.g., folding the expression 
(AND (LISTP x) (CAR x)) into (f (LISTP x) (CAR x)), where f(y, z) is 
defined as (AND y z). Similarly, folding the expression 
(f (g x) (g x)) into (h (g x)), where h(y) is defined as (f y y), will 
cause (g x) to be computed once instead of twice. This could 
introduce errors if g has side effects that need to be executed 
twice. 

2.4. Allocation eliminated by caching 
Reusing a result instead of recomputing it means that different 

calls on a memoized function may return the same (EO) data 
structure where the unmemoized version would have constructed 
separate (but EQUAL) copies. 

This change can be viewed as returning a substitute for the 
result that would have been computed by the unmemoized 
version. Whether the substitute is acceptable depends on 
assumptions made elsewhere in the program, ff, as is typically 
the case, the only allocation information available to the program 



J. Mostow and D. Cohen 167 

is EOness, then changes in allocation affect programs only 
insofar as they affect data structure reuse. (The safety of caching 
becomes more problematic for programs that exploit additional 
allocation information, such as the memory location of an object 
(LOC), or the ability to iterate over all objects in memory.) Implicit 
assumptions may constrain how the function can be memoized, 
e.g., how the cache compares the arguments passed to the 
memoized function against the cache index, and whether it 
returns the cached result or a copy of it. Moreover, these 
assumptions may constrain reuse not only of complete results but 
of their substructures. 

These assumptions cannot be directly determined from the 
code, since they depend on what behavior is considered 
acceptable. The obvious solution is to let the programmer 
identify them. Unfortunately, declaring such assumptions 
explicitly and keeping them consistent with changing code 
imposes the same kind of burden as maintaining documentation. 
To at least assist the user in bearing this burden, the machine can 
try to detect what happens to the results of computations in the 
unmemoized code. 

Masterscope is inadequate for this purpose because it performs 
no data flow analysis. However, useful information can be 
derived by installing experimental caches. An experimentally 
memoized function recomputes results even when they are 
already stored. Comparing the stored and recomputed results 
detects reuse. For example, if the two are EO, the function is 
reusing the same structure. Smashing can be detected by storing 
a copy of the result as well as the original, and comparing them 
later. If they are no longer EQUAL, the original has been 
smashed. Moreover, if the copy is not EQUAL to a later result 
computed for the same arguments, that result may depend on 
global state that has changed in the interim. Similar techniques 
can be used to detect argument-smashing, a problem discussed 
in Section 2.5.1. 

We now discuss the effects of various allocation constraints. 

2 . 4 . 1 . When resul ts must be reused 
Sometimes program correctness requires a function to reuse 

certain of its results (or their substructures). If the unmemoized 
function satisfies this requirement, so will the memoized version, 
provided the cached result itself is returned rather than a copy. 

Returning the same data structure is typically important when 
the result will be used as a name rather than as a value. For 
example, If the memoized function returns a node in some 
structure to a caller who wants to modify the structure, it may be 
important to return the original rather than a copy. 
2 .4 .2 . When resul ts can be reused 

If different calls to a function cause it to create different copies 
of the same result, but the program does not rely on this property, 
memoizing it can save space and time by reusing a single copy. 
Besides the time saved by not recomputing results, an additional 
savings occurs when a consumer of the results uses the EQUAL 
predicate to compare them. The EQUAL test succeeds much 
faster on large data structures when they are EQ. 
2 .4 .3 . When resul ts can be canon ica l i zed 

The case above can be generalized. Sometimes there are large 
equivalence classes of inputs to a function, i.e., nothing in the 
program relies on the differences between the results that would 
have been returned by the unmemoized function. In such cases, 
the cached result can be reused even more by relaxing the 
equivalence test between inputs and cache indices. (A closely 
related idea for increasing reuse of cached results is discussed in 
Section 4.2.) 

A particularly common case is where EQUAL but non-EQ inputs 
can safely retrieve the same result. The obvious advantage is that 
less space is needed to store results, and fewer results need to be 
computed. A possible disadvantage is that cache lookup with a 
more general equivalence criterion may be slower, e.g., EQUAL is 
slower than EQ. On the other hand, canonicalizing results in this 
way may permit EQUAL tests elsewhere in the program to be 
reduced to EQ. This is a common optimization tactic, but the 
analysis required to determine where it can be applied is beyond 
the capabilities of Masterscope. Notice also that for a program 
written to rely on the canonicalizing effect of caching, safety 
cannot be defined simply in terms of preserving the behavior of 
the unmemoized code. 

2.4.4. When resul ts must not be reused 
Sometimes a program requires that a function not reuse (part 

of) some result, because the results returned at two different 
times are to be used in incompatible ways. Typically one caller 
smashes the result, and the next one wants the old value. 
Result-copying is typically used to satisfy such requirements. 
Since memoizing a function can cause it to reuse results where 
the original version did not, caching can interfere with such a 
requirement. The memoized function can be made to satisfy the 
requirement by copying the cached result before returning it, but 
this approach has some problems: 

•How much of the structure needs to be copied? 
There's no point in doing a full COPY of a list if 
copying only the top level will suffice. 

•How much of the structure is safe to copy? Other 
parts of the program may require corresponding 
substructures of the copies to be EO. 

•The copying operation might not terminate (the 
structure might be circular). 

•The time and space costs of copy-on-retrieval may 
defeat the advantage of caching. 

2.5. Assumpt ions in t roduced by memoizing 
As we have seen above, safe caching must satisfy assumptions 

made by code that uses the memoized function. However, the 
memoizing transformation defined in Section 1 introduces code 
that makes assumptions of its own. 

For example, this code assumes that no part of the code for 
cache lookup will itself be memoized, since doing so could cause 
infinite recursion. This problem is familiar to implementors of 
facilities like BREAK and ADVISE. 

2 . 5 . 1 . Cache-smash ing 
Memoize assumes that the cache will not be altered in a way 

that corrupts its ability to retrieve the correct result. It is 
reasonable to assume the integrity of cache structure built by the 
caching mechanism itself, since this structure did not exist in the 
unmemoized version. However, the cache also incorporates 
possible "Trojan Horses" - the data structures passed to and 
returned from the memoized function. If user code retains 
pointers into these structures, we have to worry about it smashing 
them. 

Different lines of reasoning can be used to show the absence of 
such danger. In order of increasing generality: 

The cache is never smashed . This is certainly the case if the 
program doesn't smash the arguments it passes to the memoized 
function or the results returned. To prevent argument-smashing, 
we can copy the arguments before incorporating them into the 
cache and pass the originals to the function (in case the function 



168 J. Mostow and D. Cohen 

is tempted to smash them itself ). If the result incorporates 
argument structure that other parts of the program can smash, 
we can cache a copy of the result. To protect against a caller 
smashing the returned result, we can use copy-on-retrieval. Of 
course the allocation changes introduced by any copying must 
be acceptable (see Section 2.4). For example, argument-copying 
requires that canonicalizing be acceptable, since finding the 
copied arguments in the index will require EQUAL as the 
equivalence criterion. 

The function does not access the parts of its input that 
might yet smashed. Therefore, it would have done the same 
thing with the smashed input as it did in the first place. Notice 
that in cases where the result of the function shares structure 
with the input, smashing can change a valid cache entry into 
another valid cache entry that was never explicitly computed. For 
example, if we cache the identity function, (lambda (x) x), 
smashing an input won't invalidate the cache. 

All changes to a cache entry ieave it valid, i.e., the 
(modified) result is an acceptable substitute for the one that 
would have been computed for the (modified) arguments. For 
example, a function that counts the number of NILs in a list will 
not be affected by an operation that reorders the list. 

Of course, the analysis required to support such arguments is 
far beyond the capabilities of Masterscope, and if it is done 
anyway (e.g., by hand), one must still watch out for smashing 
done by the user at the top level or in breaks. 

3. Transforming programs to make 
memoizing safe 

So far, we have only considered the safety of the memoizing 
transformation defined in Section 1 (and simple variants that 
make copies) Naturally, much more can be done if one is willing 
to change other parts of the program, such as those making 
assumptions /about the code to be memoized. For example, 
suppose the function F is required to return a copy of its result 
because one caller will smash it. If that one caller were changed 
to make a copy of the result and use it instead of the original, then 
F could be memoized safely with no copying. 

The most common obstacle to caching is the problem of side 
effects. The safety of memoizing a function depends on two 
classes of side effects. Section 2.1 discussed the safety of 
eliminating side effects invoked (directly or indirectly) by the 
function itself. We now discuss how to make memoizing safe in 
spite of side effects remaining in the program. In particular, we 
show how the program can be transformed to prevent retrieval of 
results rendered obsolete by changes in global state. 

Side effects that affect the integrity of a cache can be viewed 
generally as smashing the input or output of the memoized 
function. The input is considered to include all data on which the 
function depends, both the explicit arguments passed as 
parameters and the implicit arguments accessed in the function, 
such as free variables, property lists of atoms, and even the 
function's definition. We view all changes to such data as forms 
of smashing (e.g., setting a global variable is smashing its value 
cell). Since implicit and explicit arguments are really the same in 
this view, we see that one reaction to dependence on global state 
is to treat it like an explicit argument and index on it. Conversely, 
the approach to global state described below can be applied to 
explicit arguments as well. 

Input to a memoized function may contain substructure that is 
not actually accessed by the computation. Given some way to 
record which part actually is used, the cache could safely be 

indexed on only that part, for example by building a 
discrimination tree that only tests the relevant parts. This could 
be worthwhile for a computation that ignores most of its input 
data. A related idea is described in Section 4.2. 

The general strategy for dealing with global state dependencies 
requires cooperation from the other parts of the program: 

1. Detect state changes that might cause cache entries 
to become invalid, 

2. Figure out which cache entries might be affected. 

3. Do something about them. 

Since detecting and reacting to state changes is an additional 
cost, and it is always safe to recompute, different schemes may 
be appropriate in different situations: 

Don't cache. 

Discard an entire cache at the end of some computation. 
This method is useful if the memoized function is executed many 
times by the computation and depends on state information 
changed between (but not during) invocations of the 
computation, e.g., arguments passed to some procedure 
containing the computation. In particular, if the computation 
corresponds to a program block, making the cache a local 
variable of the block will cause it to be discarded when the block 
is exited. 

Empty the cache for a memoized function in response to any 
side effect that might smash the cache or change the function's 
implicit arguments. 

Discard individual cache entries in response to any side 
effect that might smash them or change the implicit arguments 
used to compute them. 

Update the affected entries without recomputing them, i.e., 
use finite differencing [Paige&Koenig 82]. This technique 
requires knowledge about the nature of the side effect as well as 
sophisticated program analysis. Section 3.3 describes a weaker 
technique that reduces the amount of recomputation without 
requiring such knowledge or analysis. 

We now discuss methods for detecting state changes, 
identifying the cache entries they might invalidate, and restoring 
cache validity. 

3 . 1 . Detect s ta te changes 
To make a memoized program respond to side effects, we must 

identify operations that change global state and transform them 
to do something about the caches they might affect. This 
triggering can be done with various degrees of selectivity 
depending on the degree of sophistication with which the 
program is understood. 

Modify primitives: At the lowest level, Lisp's structure-
smashing primitives (RPLACD, SETA, SET, etc.) could be altered 
to trigger the desired response directly. This approach requires 
no understanding of the program and would catch all structure-
smashing operations, many of which would not invalidate any 
cached results. It is not actually used by Memoize. 

Modify functions: If one can identify the (higher level) 
functions in the program that modify state on which caches 
depend, those functions can be ADVISEd to take appropriate 
action. 

Modify invocations: Sometimes one can determine not only 
which functions, but which invocations affect a cache. For 
example, if a cache is sensitive to the global variable V, then 
(SETO U ...) will not affect it. In this case, the particular 



J. Mostow and D. Cohen 169 

invocations can be transformed to take appropriate action. 
Memoize uses Masterscope to find these invocations, and uses 
Interlisp's structure editor to insert appropriate trigger code 
around each one. 

It is also necessary to respond to state-changing operators 
invoked interactively by the user. Memoize uses the hooks 
Interlisp provides for this purpose (e.g., MARKASCHANGED and 
SAVESETQ). 

3 .2 . Ident i fy suspect cache entr ies 
After noticing a change, it is necessary to identify the affected 

cache entries. This can be done with various degrees of expense 
and precision, as long as we err on the side of thinking that a 
valid entry is invalid. Again, greater understanding of the 
program can increase precision at constant expense, or reduce 
the expense for constant precision. 

Brute force: Great precision with no knowledge is possible at 
great expense. The very low-level solution would be to record 
every memory cell accessed by the cached computation. A cell 
could then be used to index a table of the cache entries that 
depend on it. This is not done by Memoize. 

Static analysis: Sometimes one can determine which 
modifications can possibly affect which caches, e.g., the 
memoized function depends on the value of the variable V, and 
we can determine which operations affect the value of V. 
Masterscope recognizes dependence on variables, fields of 
records, function definitions, etc., and installs code to react to 
changes in them. However, Masterscope misses some 
dependencies due to the problem of aliassing: smashing U might 
affect V, if U and V share structure. Memoize relies on the 
programmer to identify code that could affect the implicit 
arguments of a function in non-obvious ways. 

Dynamic dependency recording: Code that accesses 
global state can be altered to record (at runtime) what state an 
individual entry depends on. This is more expensive than static 
analysis, but more precise, especially when not all elements of a 
cache depend on the same state. In different cases, the improved 
precision may or may not pay off. Again, Memoize relies on the 
user to point out non-obvious code that might smash state 
accessed by the function. 

A special case of dependency is when the computation of a new 
cache entry retrieves an existing one, which in turn depends on 
other data. If that data is ever changed, it will invalidate the old 
entry, which in turn will invalidate the new one. Thus we need not 
record the dependency of cache entries on data they use only via 
other entries. 

3 . 2 . 1 . Stat ic versus dynamic dependency analysis 
Memoize decides heuristically whether to predict 

dependencies statically or record them dynamically. 

Dependencies on a global variable are determined by static 
Masterscope analysis. This determines with reasonable precision 
which updates might invalidate which caches. E.g., if f uses the 
global variable V, then changing the value of V is liable to affect f. 

Dependencies on properties and fields are recorded 
dynamically, since static analysis would not be sufficiently 
precise. Suppose a memoized function contains the expression 
(GETPROP x 'COLOR). With the dynamic approach, we can tell 
which atom's COLOR a cached result depends on. If we relied on 
Masterscope's static analysis, we'd have to consider every entry 
in the cache suspect whenever any atom changed COLOR. 

To determine dependencies on function definitions, Memoize 
uses a combination of approaches. It uses static analysis to find 
the functions invoked by a cached computation, since 
Masterscope determines these with high precision. To record 
function definitions accessed in other ways, e.g., with GETD, 
Memoize uses the dynamic method, since static analysis lacks 
precision in such cases. 

3 .3 . Update inva l idated resu l t 
When a cached result is identified as potentially invalid, 

something must be done to prevent it from being retrieved •• or 
any other cache entries that depend on It. The obvious thing to 
do is simply delete the entry, since if it is ever needed again, it will 
have to be recomputed anyway. (Notice that if in the course of 
computing the result, the memoized function first accesses some 
data and then smashes it, the entry to be deleted will still be 
empty at the time of smashing. If the function shoots itself in the 
foot in this way, the result eventually computed should be 
considered correct for this invocation but not for the next one. 
But watch out for recursion!) 

Deleting a suspect result can be very wasteful if it is likely still to 
be valid and there are other entries that depend on it. This 
typically occurs when the cached computation is a many-to-one 
function (e.g., NULL, LENGTH) of the changed state information. 
We now present two solutions to this problem; their relative 
effectiveness will be described in Section 4.3. 

3 . 3 . 1 . Eager recomputa t ion of suspect resul ts 
One technique for avoiding the deletion of valid cache entries 

that depend on a suspect result is to recompute it immediately. If 
the new result is equivalent to the old one, nothing else needs to 
be done; the entries that depend on it are still valid. If not, the 
entries that depend directly on the changed result are suspect, 
and the process repeats up the chain of dependencies. Since the 
dependency structure is finite and acyclic (see Section 2.2), this 
process is guaranteed to terminate. 

Eager recomputation is not always safe, since the computation 
might never have occurred in the unmemoized version. (Section 
2.3 describes similar hazards.) For example, suppose the 
memoized expression is 1/X, where X is a global variable. Eager 
recomputation after setting X to zero would generate an error, 
even if the original program never evaluated the expression when 
X-was zero. 

Memoize knows that functions which have no side effects and 
never generate errors, e.g., LISTP, are safe to eagerly recompute. 
When these restrictive conditions are not met, it asks the 
programmer whether eager recomputation is safe. 

3 .3 .2 . Propagat ion and exonera t ion of suspic ion 
An alternative technique that prevents retrieval of invalid results 

and avoids unnecessary recomputation involves marker 
propagation. Results that depend directly on changed data are 
marked "Must Recompute." Results that depend indirectly on 
changed data are marked "Might Need to Recompute" since they 
depend on entries that might or might not change when they are 
recomputed. The cost of marker propagation is limited, as in the 
case of eager recomputation. Also, when an entry already 
marked "Might Need to Recompute" is encountered, no entries 
that depend on it need to be marked. 

When an entry marked "Must Recompute" is subsequently 
retrieved, It is duly recomputed. If the new result is equivalent to 
the old one, the entry is marked "OK." Otherwise, the new result 
is stored and the entries that depended directly on the old result 
are marked "Must Recompute." 



170 J. Mostow and D. Cohen 

When an entry marked "Might Need to Recompute" is retrieved, 
an attempt is made to exonerate it without recomputing it, by 
checking the entries on which it depends. If all these supporting 
entries prove to have been valid, the original entry is marked 
"OK" and returned. If any of these entries was suspect, the 
attempt to retrieve it will (recursively) cause it to be exonerated or 
recomputed. If its value has changed, the exoneration process is 
aborted and the original entry is recomputed. 

The supporting entries must be retrieved in the order in which 
they were used during the original computation, so this order 
must be recorded. Retrieving them in another order may be 
unsafe, as in the case of eager recomputation. 

The propagation technique avoids unnecessary recomputation: 
a result is recomputed only if it depends directly on changed data 
(including other cache entries) and would have been recomputed 
in the uncached computation. 

4. Cost-effectiveness 
Just because a computation is safe to cache doesn't mean that 

doing so is worthwhile. A cache should only be installed if it is 
likely to be cost-effective. Moreover, just as the safety of caching 
depends on how it is implemented, so does its cost-effectiveness. 
Thus the issue is not just to decide whether a given computation 
is cost-effective to cache, but rather which parts of it to cache, 
and how, so as to maximize cost-effectiveness. 

The impact of a cache on memory usage depends on such 
factors as the number of entries, the size of each entry, the 
degree of structure sharing between entries, and how long each 
entry is stored (and hence unavailable for garbage collection). 

The impact on time depends on such factors as the hit rate 
(how often a retrieval replaces recomputation), the cost of cache 
lookup, the frequency of side effects that render cache entries 
suspect, and the cost of responding to them. 

A cache provides a net speedup over its lifetime if doing without 
the cache would take more time, i.e., 

Predicting cost-effectiveness entails predicting the values of 
these variables. This section discusses factors that influence 
those values and heuristics for estimating them. Of course, the 
ultimate test of a cache's cost-effectiveness is to try using it. We 
view the heuristics presented below as techniques for identifying 
promising candidates. While Memoize uses these heuristics to 
decide what to cache, it collects statistics on actual cache 
performance, e.g., hit rate, update frequency, and how much time 
was spent computing each cached result. Such data could be 
used, either by the user or by the machine, to decide which 
caches to keep. 

4.1 . Computation cost 
The time to execute an expression depends on how long each 

operation takes and how many times it's invoked. The latter 
quantity depends on things like how many times loops are 
executed and the relative frequency of the branches in a 
conditional. These depend on runtime data distribution and are 
hard to predict analytically (though see [Kant 79]). 

Memoize uses a simple one-bit heuristic theory of 
computational complexity: functions and expressions are either 
cheap or expensive. 

•Built-in Lisp functions are classified individually. 
•Memoized functions are cheap. 
•User input is expensive. 
•Recursive functions are expensive. 
■Expressions containing loops are expensive. 
•Expressions that call expensive functions are 
expensive. 

•Other functions and expressions are cheap. 
To classify a compiled function whose definition is unavailable 

for analysis, Memoize can either ask the user, or instrument the 
function (with Interlisp's BREAKDOWN) and postpone classifying 
it until data is available. 

4.2. Hit rate 
While the exact hit rate of a cache cannot be predicted a prion, 

certain useful characterizations can be made based on static 
program analysis. In deciding which parts of a computation to 
cache, Memoize uses the intuitive notion that the hit rate of a 
computation decreases as the variability of its input increases. In 
particular: 

Hit rate is a decreasing function of the amount of changing 
global state information used in the computation. 

Hit rate is a decreasing function of the frequency of global 
state changes that invalidate cached results. 

Hit rate is a decreasing function of the number of possible 
values of a cache parameter. This number is bounded by the 
domain of the parameter type; for example, a boolean parameter 
takes on at most two values. 

Hit rate is a decreasing function of the number of 
parameters. If it's worth caching an expression, and that 
expression contains subexpressions with fewer parameters, they 
may be worth caching as well, since their hit rates will be higher. 

More generally, many-to-one mappings reduce variability 
and therefore can be used to increase hit rate. If (f (g x)) is the 
computation to be cached, and g is a many-to-one mapping, it's 
better (in terms of hit rate) to index a cache for f by the values of 
(g x) than to index a cache for the composite function fg on the 
values of x. However, if the computation has the form 
(f (g x) (h x)}, where g is a many-to-one mapping and h is not, then 
using (g x) instead of x as an input parameter will not increase the 
hit rate. That is, increasing the hit rate requires masking the 
variability in x along every input path. Moreover, this argument 
must be applied to the total set of inputs - for example, a cache 
for (f (CAR x) (CDR x)) might as well be indexed on x. 

4 .2 .1 . Choosing cache indices to maximize hit rate 
A variable used in a cached computation can be treated either 

as an explicit cache parameter or as an implicit state variable. 
This decision should be made so as to maximize the hit rate. A 
variable whose values tend to recur should be used to index the 
cache. Conversely, if an explicit parameter will be stable over 



J. Mostow and D. Cohen 171 

many successive calls, and then change without returning to its 
former value, it might as well be treated as a global variable. Of 
course, if every call to a function is going to have different 
parameter values, there is no advantage to memoizing it. 

Memoize uses a simple heuristic for classifying variables: treat 
function arguments and local variables bound outside the 
memoized expression as parameters, and everything else as 
global state variables. This heuristic works well for the examples 
encountered so far, where the global state variables have been 
longish lists, but may be worth refining, for example to treat 
global flags as parameters. 

4 . 3 . Update c o s t : eagerness versus suspic ion 
The relative costs of the two schemes described in Section 3.3 

for responding to cache-invalidating side effects depend on a 
tradeoff between unnecessary recomputation and unnecessary 
propagation. 

The marker propagation scheme performs a subset of the 
computation the unmemoized version would have performed. In 
good cases, only a small subset is performed; in the worst case, 
the same amount of computation occurs, plus the additional 
overhead of marker propagation. A cache entry can never be 
marked "Might Need to Recompute" or "Must Recompute" more 
often than it would have been computed in the absence of 
caching. Therefore this overhead is at worst proportional to the 
amount of original computation. This estimate must be adjusted 
slightly since entries that depend directly on a changing piece of 
global state will be marked "Must Recompute" every time that 
piece changes, even though propagation only occurs the first 
time. The adjustment for each such piece of state is proportional 
to its update frequency times the number of entries that depend 
on it directly. 

The eager recomputation scheme (when safe) runs the risk of 
recomputing a result unnecessarily, i.e., either the entry will never 
be retrieved again, or it will need to be updated again before it is. 
However, when the result turns out to be unchanged, this scheme 
avoids the overhead of propagating markers to other entries. 

The two strategies can be mixed together, even on the same 
cache. At update time. Memoize decides which one to use by 
predicting their relative costs based on the history of the suspect 
cache entry. Of course this computation may itself take longer 
than the time saved by choosing the better scheme. This 
decision mechanism illustrates a recurring issue in caching: the 
cost of information. An alternative scheme could use heuristic 
approximations. The degraded accuracy might well be offset by 
eliminating the costs of recording and using a detailed history of 
the entry. 

5. Maintaining memoized code 
Optimizing a program, whether automatically or manually, tends 

to make it more complex and harder to maintain. The 
optimizations introduce assumptions that may be violated by 
subsequent changes to the program. 

The obvious solution to this problem is analogous to 
recompilation: let the user maintain the unoptimized code, and 
reoptimize after each change. This approach is grossly 
inefficient, especially for the sort of "exploratory 
programming" [Sheil 83] characteristic of Al research. Such 
programming, illustrated by Memoize 's own evolution, involves a 
repeated cycle of running the program, deciding to change its 
behavior, making the necessary edit, and resuming execution. 
Inserting a full-fledged reoptimization phase after every program 
edit would be wasteful: 

•Massive reoptimization would itself be time-
consuming, and wasteful to the extent that it was 
simply reinstalling identical caches. 

•If reoptimization were not fully automatic, it would 
include the expense of making the user answer the 
same questions as before, which would be wasteful 
to the extent that the answers had not changed. 

•Re-memoizing from scratch would mean discarding 
all existing caches, even though their entries might 
not be invalidated by the edit. These entries would 
have to be recomputed if they were needed again. 

On the other hand, we don't want the inefficiency of 
unoptimized code. What's needed is something like efficient 
incremental recompilation. Our solution is to let the user edit the 
memoized code, and have the machine (with some help from the 
user) do whatever is needed to keep the program safe. 

5 . 1 . Which caches are a f fec ted by a program edit 
Program edits can affect caching in various ways: 

•Existing cache entries may become invalidated. 

•A memoized function may become unsafe to 
memoize. 

•An existing cache may cease to be optimally cost-
effective. 

•An unmemoized function may become worthwhile to 
memoize. 

Memoize only worries about the first two cases. When a function 
becomes unsafe to memoize, its cache is removed. Memoize 
then considers re-memoizing the function. Failure to deal with 
the last two cases may affect the efficiency of the edited program, 
but not its safety. 

It is easy to see that editing a function may affect its own safety 
and that of its callers. When a function is edited, Memoize finds 
any memoized functions related to it in this way, and warns that 
their caches may no longer be safe. 

It is harder to identify other caches affected by editing a 
function. Some such effects could be noticed straightforwardly 
For example, if a function is modified to set a global variable, any 
memoized functions that access the variable would be affected. 
However, other cases would require sophisticated data flow 
analysis. Moreover, no matter how good the tools for such 
analysis were, they could not detect changes in the programmer's 
intent and implicit assumptions about the code . " " 

5 .2 . Speeding up re-opt imizat ion by reusing informat ion 
The cost of re-memoizing can be further reduced if all the 

information about the program used during the original 
memoizing process is recorded. Information known to depend 
only on properties of the program that haven't changed is still 
valid. This includes the results of program analysis as well as the 
user's answers to questions about the program. 

Memoize caches both kinds of information, but records its 
dependencies on the program only incompletely. The problem 
with caching a result of program analysis is that it may be 
invalidated by a change almost anywhere in the program. For 
example, changing f to call g may change whether h indirectly 
calls i. The problem with remembering the user's answer to a 
question about the program is that which properties of the 
program the answer depends on is implicit in the mind of the 
user. (See Section 2.1.) 

••• 
Barring a breakthrough in ESP research 



172 J. Mostow and D. Cohen 

6. Conclusion 
We have tried to systematically analyze the problems 

associated with software caching in a general programming 
environment. These problems include deciding which parts of a 
program are safe to memoize, transforming the rest of the 
program to make them safe, choosing the most cost-effective 
ones to memoize, and maintaining the optimized code. This 
analysis extends previous work on caching by considering side 
effects, shared data structures, beneficial behavior changes, and 
program edits. 

The insights we have gained include: 
•The right question to ask about a program 
transformation like Memo ize is not whether it leaves 
the program's behavior unchanged, but whether the 
changes it makes are acceptable. 

•There is not enough information in a program to 
determine which changes are acceptable. 

•Safety and cost analysis should be viewed as 
deciding how to rearrange a computation into 
cached and uncached parts, rather than a simple 
binary choice about whether to memoize a given 
function. 

•This analysis requires a deep understanding of the 
program to be optimized, involving questions that are 
in general undecidable, e.g., "Is the result of function 
F ever smashed?," or depend on implicit 
assumptions, e.g., "Does the program rely on the 
difference between the values returned for EQUAL 
inputs?" 

In addition, the paper presents some non-obvious techniques 
for eliminating recomputation: 

•A simple mechanism that detects certain forms of 
infinite recursion. 

•Various schemes for detecting and preventing 
assaults on cache integrity. 

•Various schemes for identifying invalidated results. 

•A one-bit heuristic theory of computational 
complexity. 

•Exploitation of many-to-one mappings to increase hit 
rate and reduce update cost. 

•Methods for maintaining cached results and cache 
safety in the face of program edits. 

Memoize itself constitutes a contribution of sorts, but one that 
should not be misinterpreted. While it serves as a demonstration 
of many of the techniques described here, it is not a practical too l 
and should not be evaluated as one. For example, any statistics 
on its performance would be distorted by the extensive 
bookkeeping it performs for experimental purposes. The amount 
of speedup obtained by caching can be arbitrarily high or low, 
depending on the program to be memoized; evaluating a real tool 
would require applying it to a "representative" sample of 
programs. Moreover, applying such a tool to existing programs 
would say nothing about how much simpler the programs might 
have been if they had been developed with the tool in mind in the 
first place. 

The main value of Memoize has been as an exploratory 
vehicle: the bugs and opportunities it has exposed have greatly 
improved our insights into caching. One of these insights 
concerns the additional work required to extend Memoize into a 
useful tool. We had originally hoped that the process of installing 

caches in an Interlisp program could be made essentially 
automatic. We now understand much more clearly the obstacles 
to achieving that ideal. 

Acknowledgements 
We would like to thank Bill Swartout for asking some good 

questions and Bob Balzer for suggesting this problem in the first 
place. 

References 

[Anderson 81] J. A. Anderson (ed.), Cognitive Skills and their 
Acquisition, Erlbaum, 1981. Contains papers presented at 
1980 Carnegie Symposium on Cognition, Pittsburgh, PA. 

[Bird 80] R. S. Bird, "Tabulation techniques for recursive 
programs," ACM Computing Surveys 12, (4), 1980,403-417. 

[Kant 79] E. Kant, "A knowledge-based approach to using 
efficiency estimation in program synthesis," in /JCA/-6, 
pp. 457-462, Tokyo, Japan, 1979. 

[Lenat 79] D. B. Lenat, F. Hayes-Roth, and P. Klahr, "Cognitive 
economy in artificial intelligence systems," in IJCAI-6, 
pp. 531-536, Tokyo, Japan, 1979. 

[Marsh 70] D. Marsh, "Memo functions, the Graph Traverser, and 
a simple control situation," in B. Meltzer and D. Michie 
(eds.), Machine Intelligence 5, pp. 281-300, American 
Elsevier, New York, 1970. 

[Neches 81] Neches, R., Models of Heuristic Procedure 
Modification, Ph.D. thesis, Department of Psychology, 
Carnegie-Mellon University, 1981. 

[Paige&Koenig 82] R. Paige and S. Koenig, "Finite differencing 
of computable expressions," ACM TOPLAS 4, (3), July 1982, 
402-454. 

[Rosenbloom 83] Rosenbloom, P. S., The Chunking of Goal 
Hierarchies: A Model of Practice and Stimulus-Response 
Compatibility, Ph.D. thesis, Carnegie-Mellon University, 
1983. Comp. Sci. Tech. Rep. #83-148. 

[Sheil 83] Beau Sheil, "Power tools for programmers," 
Datamation, February 1983,131-144. 

[Teitelman 78] Teitelman, W., Interlisp Reference Manual, Xerox 
Palo Alto Research Center, 1978. 


