
A Process Theory of Non-monoton ic Inference

James W. Goodw in

Department of Computer and Information Science

Linkoping University

Linkoping, Sweden

Abs t rac t : Artif icial Intelligence needs a formal theory of the

process of non-monotonic reasoning. Ideally, such a theory would

decide, for every proposition and state of the process, whether the

program should believe the proposition in that state, or remain

agnostic. Without non-monotonic inference rules, non-monotonic

inferences cannot be explained in the same relational, rule-based

fashion as other inferences. But with such rules, theoremhood is

often formally undecidable and thus a useless criterion for our

purpose. So how could any system be a "non-monotonic logic

programming language"?

Our method uses the language, inference rules and proofs of

non-monotonic logics, but ignores theoremhood. Instead, it defines

states of the reasoning process, and focuses on current proof as the

criterion for belief. It defines "admissible beliefs" and "valid proof"

for given states, and we prove in [5] that a belief is currently

admissible iff it is currently proven. The primitive non-monotonic

condition is "currently unproven".

The theory, Logical Process Theory, can accept a range of

non-monotonic logics. It was inspired by Doyle's RMS [3] and is

similar to his more recent theory in [4|. A model implementation,

WATSON, exists and has been used to write a small diagnostic

reasoner, which reasons non-monotonic ally using violation of

expectations and an abstraction hierarchy.

1. DEFINITION OF LOGICAL PROCESSES

Briefly, Logical Process Theory (LPT) accepts a triple

where L and I are the object language and inference rule of some

suitable logic, and £, the enumeration, is a control parameter. The

theory then specifies the admissible statet of an inference process

which obeys that logic and makes inferences in the order indicated

by £ A state consists simply of the set of inferences made so far,

and the set of formulas taken to be believed by the machine

executing the process. At no point is theoremhood in the given logic

defined or used by LPT itself; LPT deals always with finite,

computable states.

LPT requires of L only that it be a denumerable set of formulas;

their grammatical structure and semantics is opaque to LPT and

hence unrestricted.

The inference rule I may be any set of inference ttept. An inference

step is a triple <M,N,c>, where the monotonic antecedents M are a

set of formulas of L; the non-monotonic antecedents N are a set of

formulas of L; and the consequent c is a formula of L. We also

require some finite bound on the site of M and N for all inferences

in J.

Informally, an inference may be read: if all the formula

in M are currently believed, and none of the formulat in N are

currently believed, then c mutt be currently believed. Note that this

is stated as a constraint, not as an imperative (not as " i f ... then

infer c"). The constraint is understood to apply any state of the

process after the inference was made. Because it is a conditional

constraint, it does not necessarily force belief in c; for the same

reason, it can be safely made at any time, whether its antecedent

conditions are satisfied at that time or not.

No further restrictions are placed on L or J by LPT. Normally L

would be defined by a grammar, and J by a set of schemas or rules.

The rules of default logic |10], for example, have the form:

where a, b and c are single formulas; this may be expressed in LPT

by the schema

This research wot sponsored by the Swedish Board of Technical

Development.

186 J. Goodwin

We prefer the alternative of introducing non-mono tonicity directly

into the language L by a modal operator, as in [9|. WATSON uses

an operator UNPROVEN. In this case it is convenient to represent

the standard first-order inference rules as inferences in which N is

always empty, and to obtain all non-monotonicity via one inference

schema for introducing the modal operator, •

This may be read " i f a is not currently believed, then

"(UNPROVEN a)" must be currently believed".

Since L is denumerable and the sizes of M and N have a constant

bound, I is also denumerable. We denote enumerations of J by the

control parameter £. Intuit ively, £ represents the order in which

individual inference steps are taken by a Logical Process. To take

an inference step simply means to add it to the database; the

current database in the j : th state is therefore just the set of the first

j inferences of £.

To represent sets of beliefs, we define an IN/OUT libelling as a

total function from L to the set of labels { IN,OUT}. A state of the

machine is then a pair of a database and an I N / O U T

labelling G.

An individual inference is valid under an I N / O U T

labelling G if every formula in M is labelled IN by G, and every

formula in N is labelled OUT by G; 4 is invalid under G otherwise.

Where it is clear which labelling or state is intended, we say simply

that 4 is valid.

A state <D,G> is relaxed if for each either the consequent of d

is labelled IN by G, or 4 is invalid under G.

A relaxed state satisfies all the constraints in the database locally,

but to eliminate circular proofs, a non-local ordering must also be

imposed. Therefore: a state <D,G> is well-founded iff there exists a

partial order over Lu J such that

1. For every formula s labelled IN by G, there b a

which is valid under G, has s as its consequent, and

and

2. For every valid for every formula s in the monotonic

antecedents M of

Finally, an admissible state is one which is both relaxed and

well-founded, and its labelling b said to be an admissible labelling

for its database.

Having defined the admissible states, the main task at hand b to

relate them to proofs. A proof of a formula c b a tree of inferences

with c at the root, in which each node has for each of its monotonic

antecedents a daughter node proving that antecedent, and has no

other daughter nodes. A proof b valid in a Hate <P,G> if every

inference in the proof tree b contained in V and b valid under G.

(Premises are introduced by inferences with empty M and N. Such

inferences are always valid, and may appear at any point in the

enumeration. This allows inference and input of new external

information to be arbitrarily interleaved.)

2. PROPERTIES OF LOGICAL PROCESSES

The main theorem about Logical Processes correlates belief with

current proof: for any admittible ttate t and any formula c of L,

there it a valid proof of c in $ iff e it labelled IN in t. (Proof to

appear in [5]).

Some additional properties are as follows (proofs again in [5]):

Admissible states are physically representable: any database b

finite, and in any admissible state, the number of formulas labelled

IN is finite.

Non-monotonic belief behavior b actually obtained: a formula may

be IN in one state and OUT in a later state. This may result either

(1) because of new premises being given, or (2) merely due to

further inference based on information already available, or any

combination of the two.

We call both cases "non-monotonic inference", because the set of

currently admbsible beliefs may vary non-monotonically as the

process continues. From the perspective of a process theory of

inference, there b no very natural distinction between them, nor

much reason to try to find one.

(We have several times met the objection that "non-monotonici ty"

has a standard definition, according to which the case 1 above b

"non-monotonici ty" and case 2 b something else. Now,

"non-monotonic logic" has indeed a precise and well-establbhed

meaning: any logic in which adding premises may delete theorems.

But neither case 1 nor case 2 mentioned theorems; they described

non-monotonic inference, as a process in which current proof of a

formula may come and go. Thb b a reasonable use of the term

"non-monotonic inference", consistent with its common informal

use in A I . Certainly, non-monotonicity of belied during the

J.Goodwin 187

inference process is a different matter than non-monotonicity of

theorems under addition of premises. The former is computable

where the latter is not, and the former explains case 2 where the

latter does not allow the question to be put. For Artificial

Intelligence, those are advantages. Note also that the set of

inference rules which are "non-monotonic" is the same in either

sense.)

In a non-monotonic LP, a given database may have zero, one or

many admissible label l ing. Moreover, its predecessor or successor

may independently have zero, one or many admissible labelling*. It

is therefore possible that an admissible state s may be "inaccessible"

under a given £, in the sense that the process cannot reach s while

passing only through admissible states. However, there is always a

permutation of the init ial subsequence of £ up to and including s,

such that every state up to s is admissible.

By a proof adapted from [l] , for a database to have rero admissible

labell ing, it must contain a configuration called an "odd loop",

which is usually a kind of "Liar's Paradox" argument. By ruling
this case out, we guarantee continuity of the sequence of admissible

states, and also make possible an efficient reason maintenance

algorithm for finding them.

Since the formulas of L are opaque to LPT, LPT cannot say

anything about their consistency, in either a model theoretic sense,

or in terms of provability of a contradiction. This is only to be

expected, however, of a process theory of non-monotonic reasoning,

since the purpose of non-monotonicity is to allow a reasoning agent

to make unsound but reasonable inferences and then back out of

them if they turn out to be inconsistent due to new information or

- again, we stress the focus on process - simply due to further

reasoning. The only guarantee given by LPT, that of admissibility,

is that the system knows exactly what it does and does not have

current proof of.

3. WATSON: A MODEL IMPLEMENTATION

WATSON is a model implementation in LISP of a non-monotonic

Logical Process. It is a pure forward chaining system. The inference

rules are "wired i n " to the interpreter, which does nothing but add

dependencies (inferences permitted by the rules) to the database.

A l l valid inferences are drawn. Unlike previous systems [2,7] there is

no way to "escape to lisp" and manipulate dependencies.

How much can be done with pure non-monotonic inference alone?

DIAGNOSE is a small diagnostic reasoner written in WATSON,

which uses non-monotonicity both to reason by violation of

expectations, and to work downwards in an abstraction hierarchy.

So the system is not trivial.

Some inference rules which we cannot state in the format allowed

by LPT include a forward chaining analog of negation by failure;

conditional proof as in |3] and thus dependency directed

backtracking as well; and inferring the set of all currently proven

instances of a formula (contrast circumscription [8]). We have

already extended WATSON to use these rules, as well as to allow

expression of control in the language: "reasoned control of

reasoning". Revision of LPT to account for these extensions is in

progress.

R E F E R E N C E S

Charniak, Eugene et al. Artificial Intelligence Programming.

Lawrence Erlbaum, New Jersey, 1980.

de Kleer, Johan et al. "AMORD: Explicit Control of Reasoning". In

ACM SIGPLAN Notice,, 12:8 (1977).

Doyle, Jon. "A Truth Maintenance System". In Artificial

Intelligence 12 (1079) pp. 231-272.

Doyle, Jon. "The Ins and Outs of Reason Maintenance". In Proe.

IJCAI-8S, pp. 349-351.

Goodwin, James W. "WATSON: A Dependency Directed Inference

System". Forthcoming dissertation, L i nkp ing University, Sweden.

Goodwin, James W. "An Improved Algorithm for Non-monotonic

Dependency Net Update". Tech. Report L I T H - M A T - R 82-23,

Linkopiug University, Sweden.

McAllester, D. A. "Reasoning Ut i l i ty User's Manual". Al Memo

667, M I T Al Lab, Cambridge, Ma., 1982

McCarthy, John. "Circumscription - A Form of Non-Monotonic

Reasoning". In Artificial Intelligence, 13:1 (1980) pp. 27-39.

McDermott, Drew and Jon Doyle. "Non-Monotonic Logic I " . In

Artificial Intelligence, 13:1 (1980) pp. 41-72.

Reiter, R. "A Logic for Default Reasoning". In Artificial

Intelligence, 13:1 (1980) pp. 81-132.

