
An Approach to Dependency Directed Backtracking
using Domain Specific Knowledge

Vasant Dhar
Dept. of Computer Applications and Information Systems, New York University.

Casey Quayle
Bolt, Beranek and Newman Inc., Boston, Massachusetts.

Abstract

We describe a problem solver that met non-chronological
backtracking in situations involving tradeoffs. The novel aspect
of the problem solver is it ability to weigh advantages and
disadvantages of alternatives at choke points. Whenever
untenable situations arise, this information is available to the
backtracker to determine the most appropriate backtracking point.
By endowing the backtracker with access to domain-specific
knowledge, a highly contextual approach to reasoning in
dependency directed backtracking situations can be achieved.

An area of investigation now commonly referred to as
"Dependency Directed Reasoning," has had a major
impact on AI research in the last decade (de Kleer et.al,
1977; Doyle, 1978, 1979, 1980; McAllcster, 1980; Stallman
and Sussman, 1977). In this paper we describe some
dependency directed reasoning features of a problem solver
called P L A N E T (Dhar, 1984). It has been designed to
help planning managers in a large computer manufacturing
company wi th the formulation and investigation of models
for allocation of resources. Since the process of resource
planning1 involves making assumptions that are continually
subject to revision, dependency information plays a crucial
role in the maintenance and incremental change of planning
models. What is of particular interest in this paper is a
heuristic procedure for dependency directed backtracking
that addresses one drawback of existing dependency
frameworks, namely, determining what belief (set of
assumptions) in an existing model to change whenever an
undesirable state arises.

2. The Need far Dependency Directed Backtracking

The problem of formulating a resource planning
model has two important features. First, as assumptions
about various parts of the task environment are made,
choices in other parts of the environment are constrained.
Second, there are usually resource requirement tradeoffs
among the alternatives that can be made. These features

1We use the term paw and planning to refer to busbmt (manufacturing or
resource) plan(ing), and not a plan as normally understood in AI . A
manufacturing plan it an interrelated set of choices about various parts of the
manufacturing process. A resource plan indicates the types and amounts of
resources a manufacturing plan requires.

are operationalized in P L A N E T in terms of a "compute-
quiesce-guess" cycle as in M O L G E N (Stefik, 1980) where
processing continues wi th existing constraints until a
quiescent state is reached. When the program quiesces,
but has not completely solved the problem, it creates a new
constraint by "guessing" and restarts processing. The
guess is based on a heuristic evaluation of alternative
choices. The cycle of compute-quiesce-guess continues
unti l the problem is solved.

Table 1 shows various resource requirements for
carrying out four manufacturing activities. For example,
resource requirements for "S-test," which an activity that
tests assembled modules, depends on the choice of testing
devices. In choosing among such alternatives, the program
picks the most "balanced** alternative in light of the
organization's resource availability picture at the time.
Because these choices are made successively using limited
look-ahead,2 it leaves open the possibility that some
resource constraint w i l l be violated, thereby forcing the
problem solver to undo one or more of its previous
choices.

As an example, let us consider a situation where the
three choices indicated in table 1 have been made when
saving space was considered more important than saving
capital. Further, assume that at this point in the plan
formulation, there is only $2 mil l ion more left to be
allocated. With this "money is no object** attitude the
program is now in trouble. It cannot chose either the
SIM-tester or the FA-tester, as either choice would
consume more than the remaining capital. Clearly, some
previous selection must be undone to alleviate the problem
and several maneuvers are available. Under such
circumstances, the problem solver must be capable of
reasoning about the most rational course of action rather
than simply making a blind selection. In the following
paragraphs, we present a formal treatment of P L A N E T s
backtracking method.

3. Dependancy Directed Resoning in PLANET

The data dependency and backtracking mechanisms of
P L A N E T are built on top of RUP (McAllester, 1980). An
overconstrained state is equivalent to a RUP contradiction.
When overconstrained, P L A N E T must f ind and retract an
existing choice that contributed to die unacceptable state of
affairs. An alternative choice is then made as a

2 It does not know how many choices still need to be made, i.e. how much
of the model stilt needs to be crafted, and what me tradeoffs involved will be.

V. Dhar 189

Table 1

These tablet indicate resource-requirements/tradeoffs for
four decisions. The selected alternative in the first three is
in bold type. The units of Labor are workers working,
Capital is in millions of dollars, and Space is in thousands
of square feet of f loor space.

replacement, and processing continues. We refer to this
backtracking behavior as Second Guessing.

Whenever the program is quiescent and must resort to
guessing it is making a "Forced Choice". In such
situations, several alternatives typically exist. We call each
forced choice a decision level item. Each of the
alternatives available in the context of a decision level item
is called a selection level item. Note that for any given
decision level item there exists a set of at least two
selection level items. For exposition, we will denote
particular decision level items with a subscripted D and
denote particular selection level items with a subscripted S.
Sets of either will be denoted in italics, i.e. D, and 5.

When the program is processing a decision level item
it is guessing. The guess is to pick some element from a
set of selection level items. When the guess is made, only
heuristic estimates of resource tradeoffs are available to
evaluate the merits of particular alternatives. By the time
the program finds itself in an over-constrained state
considerable computation could have been done in
developing a more accurate assessment of resource
consumption and establishing other constraints. This
information is not available to PLANET when guessing but
is available when second guessing. The key point here is
that the evaluation function used by the second guesser is
more accurate than the evaluation function used by the
guesser, allowing problem solving to continue with the
benefit of new hindsight.

When the program becomes over-constrained it has
processed several decision level items. We call the set of
these items For each there is a set, St of
alternative selection level items (choice) that could have
been guessed. We call the distinguished guess in S, as Sct.
Thus, the set of all selection level choices (guesses) that

have been made is

A subset, S , of $ contains all S guesses that have
contributed to the over-constrained state. 5 can be
computed by chasing current dependency information. The
subset, D, of b - the set of decision level items that need to
be reconsidered - is derivable from 5.

Given D, the second guesser can reason, in a "given
what I know now" manner, about two related issues:

Determize which element of D to reconsider.
Reconsider, find a different selection for the chosen decision
item.

To elaborate, consider the previously described
situation where PLANET has suddenly realized that it is
about to over allocate capital by at least $1 mi l l ion. Prom
table 1, we see that the set 5 is {shorts/opens-tester, L-20,
P I) . The set D is then {MIF-test, S-Test, Insertion).
Examination of D reveals that S-Test is the best decision
level item to reconsider. The set {L-20 QV FC-33) is then
scrutinized using the added information that an acceptable
choice would have to consume at least $1 mil l ion less than
L-20. Note that in second guessing, PLANET has access to
information that was not available when it first attempted
to process the decision level item S-Test. Quite l i terally, it
is using hindsight.

The set of choices in 5 are indeed responsible for the
over constrained state. We claim that the identification of
a scapegoat in S and its replacement is made more rational
by examining each selection level candidate in the context
of its decision level item. Furthermore, each of the
decision level items should be compared and contrasted.
This distinction is important - the selection level items a r t
the retractable "assumptions", but second guessing pivots
around the decision level items.

4. Reasoned Assartien and Retraction— of Assumptions

In order to facilitate a rational reconsideration of
choices, we provide explicit structures that maintain context
at the decision level. Whenever a contradiction arises, the
program can use this plus information on the type of
constraint violation to determine which assumptions to
retract to best alleviate the problem. Each choice is
represented as a structured object (enclosed within braces):

{decision: Dt

selection: St

alternatives :

The "advantages" and "disadvantages" slots are lists of
dotted pairs; the first element in a pair is a selection item
(an alternative to the selection S1), and the second is a list
of resource categories for which the alternative is

190 V. Dhar

advantageous or disadvantageous respectively. Whenever
an unacceptable allocation of resource, R, arises, the
program invokes a two step procedure to determine its
revised set of choices. First, all decision level items
disregarding R as a disadvantage are recorded. Then, the
combined pool of selection level items are compared to
determine the selection best alleviating the underlying
problem. The object representation of the S-Test decision
in our example would be:

{decision: (modules: S-Test)
selection: L-20
alternatives : (QV FC-33)
disadvantages : ((QV labor capital)(FC-33 labor capital))
advantages : ((QV space)(FC-33 space))}

In this example, PLANET correctly identified three
decision points as having disregarded capital. It identifies
S-Test as the decision level item to reconsider, and
modifies the selection associated with it. The important
aspect of this examination is that it had a specific goal:
Identify the decision level items that contribute to the over
constrained situation that also disregard the down side on
the resource for which a constraint has been violated. In
effect, the procedure focuses on a problem specific set of
contributing factors instead of merely finding some basic
set of entailment.

PLANET routinely makes these kinds of revisions.
When faced with the task of reevaluating previous choices,
it applies both problem specific and domain specific
knowledge to identify the choice. In doing so, it uses
hindsight - the current problem state - to identify its
backtracking point. Like other non-chronological
backtrackers (Stallman and Sussman, 1977; Doyle, 1979;
McAllester, 1980) only those inferences dependent on the
choice are retracted.

In the example considered above, a detailed
comparison of the resource implications of alternative
selections was possible. Unfortunately, this is not always
the case. If the set of potential backtracking points
identified includes choices about the more abstract parts of
a manufacturing plan where detailed resource requirements
have not yet been assessed, a quantitative comparison is
not possible. Projecting the consequences of the various
maneuvers is then difficult. Further, if long chains of
dependencies exist, the program might pick as its best
move one that involves undoing large parts of the partially
formulated plan since this would free up the maximum
amount of the scarce resource. In other situations, a
revision might only alleviate the problem marginally,
allowing it to recur a few steps later. Finally, a limitation
of the existing backtracking scheme is that the program is
unable to recognize situations where it might be better off
retracting a combination of choices as opposed to a single
decision. We are currently working on ways by which
domain specific knowledge about these situations may be
represented in terms of dependency information and made
accessible to the backtracker.

In conclusion, the issues raised here have been driven
by a complex, real-world problem where existing
formalisms proved to be useful but inadequate in modeling
the essential nature of the problem. We have developed a
scheme whereby a backtracker might assess more rationally
the reasons for an untenable situation, and modify its
existing set of choices in light of the evolving scenario of
constraints. While the methods outlined above arc
preliminary, they represent a step toward a more general
method for reasoned introduction and retraction of
assumptions for decision situations where tradeoffs are
involved.

References
1. de Kleer, J., Doyle, J., Steele, G. and Sussman, G.,

AMORD : Explicit Control of Reasoning,
Proceedings of the Symposium on Artificial
Intelligence and Programming Languages, 1977.

2. Dhar, Vasant., PLANET: An Intelligent Decision
Support System for the Formulation and
Investigation of Formal Planning Models, Ph.D.
Thesis, University of Pittsburgh, 1984.

3. Doyle, Jon., Truth Maintenance Systems for Problem
Solving, TR-419, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory,
1978.

4. Doyle, Jon., A Truth Maintenance System, Artificial
Intelligence, June, 1979.

5. Doyle, Jon., A Model For Deliberation, Action, and
Introspection, MTT-AI TR-S81, May 1980.

6. McAllester, D., Reasoning Utility Package, AI
Laboratory Memo 667, April 1982.

7. McDermott, Drew, and Doyle, Jon., Non-Monotonic
Logic I, Artificial Intelligence Not 1 and 2, April
1980 (special issue).

8. Stallman, Richard, and Sussman, Gerald., Forward
Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided
Circuit Analysis, Artificial Intelligence, volume
9, No.2, October 1977, pp 135-196.

9. Stefik, Mark., Planning with Constraints, Stanford
University, Computer Science Department,
STAN-CS-80-784,1980

