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Abstract 

We describe a problem solver that met non-chronological 
backtracking in situations involving tradeoffs. The novel aspect 
of the problem solver is it ability to weigh advantages and 
disadvantages of alternatives at choke points. Whenever 
untenable situations arise, this information is available to the 
backtracker to determine the most appropriate backtracking point. 
By endowing the backtracker with access to domain-specific 
knowledge, a highly contextual approach to reasoning in 
dependency directed backtracking situations can be achieved. 

An area of investigation now commonly referred to as 
"Dependency Directed Reasoning," has had a major 
impact on AI research in the last decade (de Kleer et.al, 
1977; Doyle, 1978, 1979, 1980; McAllcster, 1980; Stallman 
and Sussman, 1977). In this paper we describe some 
dependency directed reasoning features of a problem solver 
called P L A N E T (Dhar, 1984). It has been designed to 
help planning managers in a large computer manufacturing 
company wi th the formulation and investigation of models 
for allocation of resources. Since the process of resource 
planning1 involves making assumptions that are continually 
subject to revision, dependency information plays a crucial 
role in the maintenance and incremental change of planning 
models. What is of particular interest in this paper is a 
heuristic procedure for dependency directed backtracking 
that addresses one drawback of existing dependency 
frameworks, namely, determining what belief (set of 
assumptions) in an existing model to change whenever an 
undesirable state arises. 

2. The Need far Dependency Directed Backtracking 

The problem of formulating a resource planning 
model has two important features. First, as assumptions 
about various parts of the task environment are made, 
choices in other parts of the environment are constrained. 
Second, there are usually resource requirement tradeoffs 
among the alternatives that can be made. These features 

1We use the term paw and planning to refer to busbmt (manufacturing or 
resource) plan(ing), and not a plan as normally understood in AI . A 
manufacturing plan it an interrelated set of choices about various parts of the 
manufacturing process. A resource plan indicates the types and amounts of 
resources a manufacturing plan requires. 

are operationalized in P L A N E T in terms of a "compute-
quiesce-guess" cycle as in M O L G E N (Stefik, 1980) where 
processing continues wi th existing constraints until a 
quiescent state is reached. When the program quiesces, 
but has not completely solved the problem, it creates a new 
constraint by "guessing" and restarts processing. The 
guess is based on a heuristic evaluation of alternative 
choices. The cycle of compute-quiesce-guess continues 
unti l the problem is solved. 

Table 1 shows various resource requirements for 
carrying out four manufacturing activities. For example, 
resource requirements for "S-test," which an activity that 
tests assembled modules, depends on the choice of testing 
devices. In choosing among such alternatives, the program 
picks the most "balanced** alternative in light of the 
organization's resource availability picture at the time. 
Because these choices are made successively using limited 
look-ahead,2 it leaves open the possibility that some 
resource constraint w i l l be violated, thereby forcing the 
problem solver to undo one or more of its previous 
choices. 

As an example, let us consider a situation where the 
three choices indicated in table 1 have been made when 
saving space was considered more important than saving 
capital. Further, assume that at this point in the plan 
formulation, there is only $2 mil l ion more left to be 
allocated. With this "money is no object** attitude the 
program is now in trouble. It cannot chose either the 
SIM-tester or the FA-tester, as either choice would 
consume more than the remaining capital. Clearly, some 
previous selection must be undone to alleviate the problem 
and several maneuvers are available. Under such 
circumstances, the problem solver must be capable of 
reasoning about the most rational course of action rather 
than simply making a blind selection. In the following 
paragraphs, we present a formal treatment of P L A N E T s 
backtracking method. 

3. Dependancy Directed Resoning in PLANET 

The data dependency and backtracking mechanisms of 
P L A N E T are built on top of RUP (McAllester, 1980). An 
overconstrained state is equivalent to a RUP contradiction. 
When overconstrained, P L A N E T must f ind and retract an 
existing choice that contributed to die unacceptable state of 
affairs. An alternative choice is then made as a 

2 It does not know how many choices still need to be made, i.e. how much 
of the model stilt needs to be crafted, and what me tradeoffs involved will be. 
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Table 1 

These tablet indicate resource-requirements/tradeoffs for 
four decisions. The selected alternative in the first three is 
in bold type. The units of Labor are workers working, 
Capital is in millions of dollars, and Space is in thousands 
of square feet of f loor space. 

replacement, and processing continues. We refer to this 
backtracking behavior as Second Guessing. 

Whenever the program is quiescent and must resort to 
guessing it is making a "Forced Choice". In such 
situations, several alternatives typically exist. We call each 
forced choice a decision level item. Each of the 
alternatives available in the context of a decision level item 
is called a selection level item. Note that for any given 
decision level item there exists a set of at least two 
selection level items. For exposition, we will denote 
particular decision level items with a subscripted D and 
denote particular selection level items with a subscripted S. 
Sets of either will be denoted in italics, i.e. D, and 5. 

When the program is processing a decision level item 
it is guessing. The guess is to pick some element from a 
set of selection level items. When the guess is made, only 
heuristic estimates of resource tradeoffs are available to 
evaluate the merits of particular alternatives. By the time 
the program finds itself in an over-constrained state 
considerable computation could have been done in 
developing a more accurate assessment of resource 
consumption and establishing other constraints. This 
information is not available to PLANET when guessing but 
is available when second guessing. The key point here is 
that the evaluation function used by the second guesser is 
more accurate than the evaluation function used by the 
guesser, allowing problem solving to continue with the 
benefit of new hindsight. 

When the program becomes over-constrained it has 
processed several decision level items. We call the set of 
these items For each there is a set, St of 
alternative selection level items (choice) that could have 
been guessed. We call the distinguished guess in S, as Sct. 
Thus, the set of all selection level choices (guesses) that 

have been made is 

A subset, S , of $ contains all S guesses that have 
contributed to the over-constrained state. 5 can be 
computed by chasing current dependency information. The 
subset, D, of b - the set of decision level items that need to 
be reconsidered - is derivable from 5. 

Given D, the second guesser can reason, in a "given 
what I know now" manner, about two related issues: 

Determize which element of D to reconsider. 
Reconsider, find a different selection for the chosen decision 
item. 

To elaborate, consider the previously described 
situation where PLANET has suddenly realized that it is 
about to over allocate capital by at least $1 mi l l ion. Prom 
table 1, we see that the set 5 is {shorts/opens-tester, L-20, 
P I ) . The set D is then {MIF-test, S-Test, Insertion). 
Examination of D reveals that S-Test is the best decision 
level item to reconsider. The set {L-20 QV FC-33) is then 
scrutinized using the added information that an acceptable 
choice would have to consume at least $1 mil l ion less than 
L-20. Note that in second guessing, PLANET has access to 
information that was not available when it first attempted 
to process the decision level item S-Test. Quite l i terally, it 
is using hindsight. 

The set of choices in 5 are indeed responsible for the 
over constrained state. We claim that the identification of 
a scapegoat in S and its replacement is made more rational 
by examining each selection level candidate in the context 
of its decision level item. Furthermore, each of the 
decision level items should be compared and contrasted. 
This distinction is important - the selection level items a r t 
the retractable "assumptions", but second guessing pivots 
around the decision level items. 

4. Reasoned Assartien and Retraction— of Assumptions 

In order to facilitate a rational reconsideration of 
choices, we provide explicit structures that maintain context 
at the decision level. Whenever a contradiction arises, the 
program can use this plus information on the type of 
constraint violation to determine which assumptions to 
retract to best alleviate the problem. Each choice is 
represented as a structured object (enclosed within braces): 

{decision: Dt 

selection: St 

alternatives : 

The "advantages" and "disadvantages" slots are lists of 
dotted pairs; the first element in a pair is a selection item 
(an alternative to the selection S1), and the second is a list 
of resource categories for which the alternative is 
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advantageous or disadvantageous respectively. Whenever 
an unacceptable allocation of resource, R, arises, the 
program invokes a two step procedure to determine its 
revised set of choices. First, all decision level items 
disregarding R as a disadvantage are recorded. Then, the 
combined pool of selection level items are compared to 
determine the selection best alleviating the underlying 
problem. The object representation of the S-Test decision 
in our example would be: 

{decision: (modules: S-Test) 
selection: L-20 
alternatives : (QV FC-33) 
disadvantages : ((QV labor capital)(FC-33 labor capital)) 
advantages : ((QV space)(FC-33 space))} 

In this example, PLANET correctly identified three 
decision points as having disregarded capital. It identifies 
S-Test as the decision level item to reconsider, and 
modifies the selection associated with it. The important 
aspect of this examination is that it had a specific goal: 
Identify the decision level items that contribute to the over 
constrained situation that also disregard the down side on 
the resource for which a constraint has been violated. In 
effect, the procedure focuses on a problem specific set of 
contributing factors instead of merely finding some basic 
set of entailment. 

PLANET routinely makes these kinds of revisions. 
When faced with the task of reevaluating previous choices, 
it applies both problem specific and domain specific 
knowledge to identify the choice. In doing so, it uses 
hindsight - the current problem state - to identify its 
backtracking point. Like other non-chronological 
backtrackers (Stallman and Sussman, 1977; Doyle, 1979; 
McAllester, 1980) only those inferences dependent on the 
choice are retracted. 

In the example considered above, a detailed 
comparison of the resource implications of alternative 
selections was possible. Unfortunately, this is not always 
the case. If the set of potential backtracking points 
identified includes choices about the more abstract parts of 
a manufacturing plan where detailed resource requirements 
have not yet been assessed, a quantitative comparison is 
not possible. Projecting the consequences of the various 
maneuvers is then difficult. Further, if long chains of 
dependencies exist, the program might pick as its best 
move one that involves undoing large parts of the partially 
formulated plan since this would free up the maximum 
amount of the scarce resource. In other situations, a 
revision might only alleviate the problem marginally, 
allowing it to recur a few steps later. Finally, a limitation 
of the existing backtracking scheme is that the program is 
unable to recognize situations where it might be better off 
retracting a combination of choices as opposed to a single 
decision. We are currently working on ways by which 
domain specific knowledge about these situations may be 
represented in terms of dependency information and made 
accessible to the backtracker. 

In conclusion, the issues raised here have been driven 
by a complex, real-world problem where existing 
formalisms proved to be useful but inadequate in modeling 
the essential nature of the problem. We have developed a 
scheme whereby a backtracker might assess more rationally 
the reasons for an untenable situation, and modify its 
existing set of choices in light of the evolving scenario of 
constraints. While the methods outlined above arc 
preliminary, they represent a step toward a more general 
method for reasoned introduction and retraction of 
assumptions for decision situations where tradeoffs are 
involved. 
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