
TAXONOMIC REASONING

Josh D. Tenenberg
Dept. of Computer Science

University of Rochester
Rochester, NY 14627

(716)275-5671
josh@rochester

Abstract

In formalizing knowledge for common sense
reasoning, one often needs to partition some domain.
An instance of this from the Blocks World is the
statement "All blocks are either held, on the table, or on
another block." Although we can write this axiom in
predicate calculus or in clause form for input to a
theorem prover, such representations are highly space
inefficient. In this paper we present a generalized clause
form that allows for the compact representation of
arbitrary partitions, along with a set of corresponding
inference rules. Additionally, a theorem prover
implementing these rules is described that demonstrates
their utility with certain kinds of common sense rule
bases.

1. Introduction

Reasoning about taxonomies has received attention,
most notably within graph-structured representations.
Shapiro (1979) introduces the AND-OR operator (),
which when applied to a set of n literals indicates that
between i and j of them, inclusive, are true. This has a
rather simple representation within a semantic network,
although the details of its use and properties are
embedded within the graph search procedures. Hendrix
(1979) develops a partitioned associative network
through the judicious use of subset and disjoint arcs.
Stickel (1982) discusses taxonomic reasoning by using a
search through a connection graph built from a set of
assertions. The work described in this paper contrasts
with those cited above in combining its use of purely
declarative knowledge, its generality in allowing one to
reason about non-ISA as well as ISA partitions, and its
simple inference rules, which can be added to an existing
declarative theorem prover to enable more efficient
taxonomic reasoning.

2. Representation

Two examples that are typical of commonsense
reasoning are "All liquids either rest on a surface, rest in
a container, flow along a surface, flow within a conduit,
or fall in free space" (Hayes 1978) and "For any two
times t1 and t2, either These kinds
of partitions are more general than typical ISA

This work was supported in part by an Office of Naval
Research Dept. of the Navy grant number N00014-80-C-
0197 and the Rome Airforce Development Center

hierarchies. We can represent the latter statement using
predicate calculus in conjunctive normal form (CNF) by

where the first disjunction indicates that one of the
conditions must hold, and the next three indicate that
not more than one can hold. Unfortunately, as the
number of partitions grows linearly, the CNF formula
grows quadratically, as all partitions must be pairwise
compared. We will introduce an n-ary exclusive-or
operator, X, a syntactic variant of a connective used in
(Hayes 1978) to capture this relationship among the
partitions, and will write the above axiom

The truth table for X is true just when exactly one of the
literals inside is true, false otherwise. Using this
notation, the expression of axioms like the above require
a linear amount of space relative to the number of
atoms, rather than the quadratic amount previously
needed. This notation can be generalized, and any
expression of the form

where the B1 are literals will be called an X-bundle. The
equivalent CNF formula, which will be called the
Expand of X(B,, B, Bn) is the conjunction of all
members of the set

The degree of an X-bundle is the number of literals
within it, so that the above X-bundle has degree n. Note
that an X-bundle of degree one is equivalent to the
literal it contains, and will usually be identified with that
literal.

An expression having the form

where each of the A, are X-bundles, rather than simple
literals, will be called an X-clause. This form reduces to
regular clausal form when the degree of each A, is one.
If only a single A1, has degree greater than one, we will
call this a singular X-clause. A conjunction of X-clauses
is in exclusive normal form (XNF), and as usual, we will
think of this as a set Any set of clauses in CNF is
therefore trivially in XNF. Converting the X-clause A1

where each A, is an X-bundle, to a CNF
clause produces

Expand(Ai)}.

192 J. Teneberg

The space savings can thus theoretically be an
exponential based on the number of X-bundles,
although in practical cases using singular X-clauses (as
defined above), the savings will be quadratic.

3. Inference Rules

A sound and complete set of inference rules for a set
in XNF has been developed, and a presentation with
proofs is given in (Tenenberg 1985). This set of rules
was developed from looking at all of the ways in which
an atom can occur twice in one parent clause, as in
factoring, or in two parent clauses, as in binary
resolution (Robinson 1965). Essentially, these inference
rules involve unbundling the X-clauses slowly, peeling
off the constituent X-bundles one at a time. Although
all rules below are stated for propositions, the same rules
apply to predicates, where the matching is between
unifiable atoms.

The first rule generalizes binary resolution, and will
be called X-resolution, which states that from the X-
clauses

we can infer

(The as indicate the remaining disjunction of X-bundles
in the clause, and the underlined capital letters indicate
the remaining literals in the X-bundle).
With this rule

entail

Additionally, using the same rule,

entail

Likewise, from

we can infer

The second rule, called exclusion, unifies atoms that
are the same, rather than complementary, and stems
from a very simple fact - if we know that exactly one of
some set of conditions holds, and we also know that one
of these conditions does in fact hold, then we can infer
that all of the rest do not hold. For example, from the
X-clauses

OnTable(A) and
X(OnTable<A), Heid(A), OnOther(A))

we can infer both
~Held(A) and -OnOthertA).

The general form of this rule states that from the X-
clause parents

(where the subscripts on C and E indicate the number of
remaining literals in their respective X-bundles) we can
infer any member from the set of clauses

J. Teneberg 193

The first three deal with intra-clausal matching of
atoms (the remaining X-bundles were left off of clauses
for notational clarity). The rule for matching
complementary atoms in different X-bundles was
entirely eliminated, since it always produces a linear
number of non-unit children.

Since one of A or ~A must be true, all of the B,'s must
be false.

2)
In this case, since only one of the literals within the
bundle can be true, A must be false, and the true literal
must be one of the B's.

3)
If A is true, the first A establishes the truth of the clause
independent of the following X-bundle. If A is false,
then one of the B's must be true.

The next two rules are special cases of X-resolution,
and the third is a restriction on exclusion.

5. Implementation

This set of rules and strategy was quite powerful
within several domains, although committing to unit
resolution sacrificed completeness. Using only the set of
general inference rules and strategy outlined above, with
no domain specific rules, such as weighting of certain
clauses or constants, there were several proofs that made
only a few more inferences than the optimal proof tree.
Figure 1 gives the proof tree that the theorem prover
generated for a simple problem. All of the unit clauses
were initially placed in the set of support, and the
boldfaced clauses are subsumed by following clauses.
Only one superfluous inference was made in a possible
space of several hundred.

Another example was run using a commonsense rule
base with 50 X-clauses, that contained an axiomatization
of a highly partitioned domain, with such axioms as

PlaysGolf(z) X(Pensioner(z), KxMovieStar(/))
Building(z) X(Fasti oodJoint(/), Factory(/), Jail(z)).

In typical proofs requiring 8-12 separate inferences, only
3 to 5 times this number of clauses was generated. Even
writing such a database for a clausal theorem prover
would require 115 clauses, with the same proofs
requiring at least 10-15 separate inferences. This space
savings combined with shorter proof depth is significant,
when one considers that in general, search spaces for
proofs grow exponentially, thus raising the hope that
more proofs will be made tractable using this method.

6. Conclusion

A logical form with corresponding inference rules has
been presented that is useful in representing and
reasoning within partitioned domains. Not only are
declarative data bases smaller to write using the methods
presented here, but fewer deductions are typically
needed for a proof than using standard resolution. Due
to the simplicity of its clause form and inference rules
and its similarity to resolution-type systems, this
extension can be added to many existing theorem
provers with a minimum of effort, enabling better
reasoning capabilities within taxonomic domains.

Special thanks to Pat Hayes, whose wit, insights and
criticism were invaluable, and Leo Hartman, who never
seemed to lose curiosity nor tire of my long-winded
explanations.

figure 1

RFFFRFNCFS

[1] Hayes, P.J. "Naive Physics E: Ontology for Liquids",
Working Paper 63, Institut pour les Etudes Semantiques
et Cognitives. Geneva, 1978.

[2] Hendrix, G.C. "Encoding Knowledge in Partioned Networks"
in Associative Networks, cd. Findler, N.V. 1979.

[3] Robinson, J.A. "A Machine-Oriented Logic Based on the
Resolution Principle" Journal of ACM 12 (1965) 23-41.

[4] Shapiro, S.C. "The SNePS Semantic Network Processing
System", in Associative Networks, ed. Findler, N.V. 1979.

[5] Suckcl, M.F. "A NonClausal Connection-Graph Resolution
Theorem-Proving Program", Technical Note 268 SRI
International. Menlo Park, CA Oct. 1982.

[6] Tenenberg, J.D. "Reasoning Using Exclusion: An
Extension of Clausal Form", Technical Report 147
University of Rochester, Rochester. NY 1985.

