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Abstract 

In formalizing knowledge for common sense 
reasoning, one often needs to partition some domain. 
An instance of this from the Blocks World is the 
statement "All blocks are either held, on the table, or on 
another block." Although we can write this axiom in 
predicate calculus or in clause form for input to a 
theorem prover, such representations are highly space 
inefficient. In this paper we present a generalized clause 
form that allows for the compact representation of 
arbitrary partitions, along with a set of corresponding 
inference rules. Additionally, a theorem prover 
implementing these rules is described that demonstrates 
their utility with certain kinds of common sense rule 
bases. 

1. Introduction 

Reasoning about taxonomies has received attention, 
most notably within graph-structured representations. 
Shapiro (1979) introduces the AND-OR operator ( ), 
which when applied to a set of n literals indicates that 
between i and j of them, inclusive, are true. This has a 
rather simple representation within a semantic network, 
although the details of its use and properties are 
embedded within the graph search procedures. Hendrix 
(1979) develops a partitioned associative network 
through the judicious use of subset and disjoint arcs. 
Stickel (1982) discusses taxonomic reasoning by using a 
search through a connection graph built from a set of 
assertions. The work described in this paper contrasts 
with those cited above in combining its use of purely 
declarative knowledge, its generality in allowing one to 
reason about non-ISA as well as ISA partitions, and its 
simple inference rules, which can be added to an existing 
declarative theorem prover to enable more efficient 
taxonomic reasoning. 

2. Representation 

Two examples that are typical of commonsense 
reasoning are "All liquids either rest on a surface, rest in 
a container, flow along a surface, flow within a conduit, 
or fall in free space" (Hayes 1978) and "For any two 
times t1 and t2, either These kinds 
of partitions are more general than typical ISA 
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hierarchies. We can represent the latter statement using 
predicate calculus in conjunctive normal form (CNF) by 

where the first disjunction indicates that one of the 
conditions must hold, and the next three indicate that 
not more than one can hold. Unfortunately, as the 
number of partitions grows linearly, the CNF formula 
grows quadratically, as all partitions must be pairwise 
compared. We will introduce an n-ary exclusive-or 
operator, X, a syntactic variant of a connective used in 
(Hayes 1978) to capture this relationship among the 
partitions, and will write the above axiom 

The truth table for X is true just when exactly one of the 
literals inside is true, false otherwise. Using this 
notation, the expression of axioms like the above require 
a linear amount of space relative to the number of 
atoms, rather than the quadratic amount previously 
needed. This notation can be generalized, and any 
expression of the form 

where the B1 are literals will be called an X-bundle. The 
equivalent CNF formula, which will be called the 
Expand of X(B,, B, Bn) is the conjunction of all 
members of the set 

The degree of an X-bundle is the number of literals 
within it, so that the above X-bundle has degree n. Note 
that an X-bundle of degree one is equivalent to the 
literal it contains, and will usually be identified with that 
literal. 

An expression having the form 

where each of the A, are X-bundles, rather than simple 
literals, will be called an X-clause. This form reduces to 
regular clausal form when the degree of each A, is one. 
If only a single A1, has degree greater than one, we will 
call this a singular X-clause. A conjunction of X-clauses 
is in exclusive normal form (XNF), and as usual, we will 
think of this as a set Any set of clauses in CNF is 
therefore trivially in XNF. Converting the X-clause A1 

where each A, is an X-bundle, to a CNF 
clause produces 

Expand(Ai)}. 
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The space savings can thus theoretically be an 
exponential based on the number of X-bundles, 
although in practical cases using singular X-clauses (as 
defined above), the savings will be quadratic. 

3. Inference Rules 

A sound and complete set of inference rules for a set 
in XNF has been developed, and a presentation with 
proofs is given in (Tenenberg 1985). This set of rules 
was developed from looking at all of the ways in which 
an atom can occur twice in one parent clause, as in 
factoring, or in two parent clauses, as in binary 
resolution (Robinson 1965). Essentially, these inference 
rules involve unbundling the X-clauses slowly, peeling 
off the constituent X-bundles one at a time. Although 
all rules below are stated for propositions, the same rules 
apply to predicates, where the matching is between 
unifiable atoms. 

The first rule generalizes binary resolution, and will 
be called X-resolution, which states that from the X-
clauses 

we can infer 

(The as indicate the remaining disjunction of X-bundles 
in the clause, and the underlined capital letters indicate 
the remaining literals in the X-bundle). 
With this rule 

entail 

Additionally, using the same rule, 

entail 

Likewise, from 

we can infer 

The second rule, called exclusion, unifies atoms that 
are the same, rather than complementary, and stems 
from a very simple fact - if we know that exactly one of 
some set of conditions holds, and we also know that one 
of these conditions does in fact hold, then we can infer 
that all of the rest do not hold. For example, from the 
X-clauses 

OnTable(A) and 
X(OnTable<A), Heid(A), OnOther(A)) 

we can infer both 
~Held(A) and -OnOthertA). 

The general form of this rule states that from the X-
clause parents 

(where the subscripts on C and E indicate the number of 
remaining literals in their respective X-bundles) we can 
infer any member from the set of clauses 
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The first three deal with intra-clausal matching of 
atoms (the remaining X-bundles were left off of clauses 
for notational clarity). The rule for matching 
complementary atoms in different X-bundles was 
entirely eliminated, since it always produces a linear 
number of non-unit children. 

Since one of A or ~A must be true, all of the B,'s must 
be false. 

2) 
In this case, since only one of the literals within the 
bundle can be true, A must be false, and the true literal 
must be one of the B's. 

3) 
If A is true, the first A establishes the truth of the clause 
independent of the following X-bundle. If A is false, 
then one of the B's must be true. 

The next two rules are special cases of X-resolution, 
and the third is a restriction on exclusion. 

5. Implementation 

This set of rules and strategy was quite powerful 
within several domains, although committing to unit 
resolution sacrificed completeness. Using only the set of 
general inference rules and strategy outlined above, with 
no domain specific rules, such as weighting of certain 
clauses or constants, there were several proofs that made 
only a few more inferences than the optimal proof tree. 
Figure 1 gives the proof tree that the theorem prover 
generated for a simple problem. All of the unit clauses 
were initially placed in the set of support, and the 
boldfaced clauses are subsumed by following clauses. 
Only one superfluous inference was made in a possible 
space of several hundred. 

Another example was run using a commonsense rule 
base with 50 X-clauses, that contained an axiomatization 
of a highly partitioned domain, with such axioms as 

PlaysGolf(z) X(Pensioner(z), KxMovieStar(/)) 
Building(z) X(Fasti oodJoint(/), Factory(/), Jail(z)). 

In typical proofs requiring 8-12 separate inferences, only 
3 to 5 times this number of clauses was generated. Even 
writing such a database for a clausal theorem prover 
would require 115 clauses, with the same proofs 
requiring at least 10-15 separate inferences. This space 
savings combined with shorter proof depth is significant, 
when one considers that in general, search spaces for 
proofs grow exponentially, thus raising the hope that 
more proofs will be made tractable using this method. 

6. Conclusion 

A logical form with corresponding inference rules has 
been presented that is useful in representing and 
reasoning within partitioned domains. Not only are 
declarative data bases smaller to write using the methods 
presented here, but fewer deductions are typically 
needed for a proof than using standard resolution. Due 
to the simplicity of its clause form and inference rules 
and its similarity to resolution-type systems, this 
extension can be added to many existing theorem 
provers with a minimum of effort, enabling better 
reasoning capabilities within taxonomic domains. 

Special thanks to Pat Hayes, whose wit, insights and 
criticism were invaluable, and Leo Hartman, who never 
seemed to lose curiosity nor tire of my long-winded 
explanations. 
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