
Parallelism in Inheritance Hierarchies with Exceptions

Garrison W. Cottrell

Department of Computer Science
University of Rochester

Rochester, YY .
Abstract

In a recent paper, Etherington & Reiter formalized a
simple version of semantic networks with exceptions in
terms of Reiter's Default Logic. With this approach they
were able to formally characterize the correctness of an
inference algorithm in terms of Default Logic, and
exhibited an algorithm that was correct in this sense.
Finally, they concluded that massively parallel
architectures for semantic networks, such as NETL
apparently cannot implement this algorithm. In this
paper, we present a different massively parallel
architecture for the simplified semantic networks outlined
in their paper which appears to avoid the objections to
NETL. We also present some results of simulations in
this framework of the examples presented in Etherington
and Reiter.

Introduction
In a recent paper, Etherington & Reiter (1983)

(hereafter E&R) formalized the inheritance hierarchy
subset of semantic networks with exceptions in terms of
Reiter's (1980) Default Logic. With this approach they
were able to formally characterize the correctness of an
inference algorithm in terms of Default Logic, and
exhibited an algorithm that was correct in this sense.
Finally, they concluded that massively parallel
architectures for semantic networks, such as NETL
(Fahlman, 1979), apparently cannot implement this
algorithm. In this paper, we present a different massively
parallel architecture for the simplified semantic networks
outlined in their paper which appears to avoid the
objections to NETL. We also present some results of
simulations in this framework of the examples presented
in E&R.

The Problem
Semantic networks have been found to be an

efficient and useful representation of knowledge by AI
researchers for many years. One principal advantage is
the ability to store information about objects at
appropriate levels of abstraction in the IS-A hierarchy, so
that the fact that dogs, elephants, and people nurse their
young, for example, can be stored once at the MAMMAL
node. Retrieving all of the properties associated with an

instance of some class is done by an inference procedure
that is particularly simple in these systems, known as
inheritance.

As Hayes (1977) points out. there is an obvious
correspondence between IS-A hierarchies and simple
collections of FOPC formulas. For example, "Clyde is an
instance of an Elephant" corresponds to the assertion
Elephant(Clyde). Statements about classes, such as
"Elephants are Gray", correspond to first-order formulae,
in this case, (x).Elephant(x)=>Gray(x). Inheritance can
then be seen as a repeated application of modus ponens.
One nice property of inheritance hierarchies is that, since
they are acyclic, modus ponens can only be applied a
finite number of times, no more than the depth of the
hierarchy. Also, as pointed out by E&R, the node labels
in such hierarchies are unary predicates, e.g.
MAMMAL(x). Finally, no exceptions are permitted to
inheritance. A dog is a mammal, no matter what.

Unfortunately, the real world is not as simple as a
taxonomic hierarchy. Often it is useful to abandon the
tree structure in favor of multiple inheritance hierarchies,
and to allow exceptions to inheritance relations. This
introduces non-monotonicity into the representation, as
well as ambiguity. An common example of a non­
monotonic rule is: "assume a particular Elephant is Gray
unless proven otherwise." This is often known as default
reasoning and has been formalized by Reiter (1980).
When combined with multiple inheritance, default
reasoning can lead to ambiguity. A well-known example
is:

Nixon is a Quaker.
Nixon is a Republican.
Republicans are normally non-pacifists.
Quakers are normally pacifists.
Reiter's formalization of the above facts would be

(assuming, for convenience, that Nixon is a type):

(1) (x).Nixon(x)=>Quaker(x)
(x).Nixon(x)=>Republican(x)
Republican(x)f Pacifist(x)

~Pacifist(x)
Quaker(x):Pacifist(x)

Pacifist(x)

0)
(2)
(3)
(4)

(2)

(3)

(4)

G.Cottrell 195

(1) and (2) are just the first order rules
corresponding to (1) and (2) above. (3) is an example of
a default rule. The formula to the left of the colon is
called the prerequisite of the default. If this is known,
and the part to the right of the colon, (the justification)
can be consistently assumed (i.e., its negation isn't
provable from what we know), then we can infer
~Pacifist(x), the consequent. Often, the justification
contains all of the exceptions to the rule we know about.
In this case, we might add "NRAmember(x)" to the
justification of (4).

Is an individual b for which Nixon(b) holds a pacifist
or not? In Reiter's terminology, there are two extensions'
consistent with our knowledge. An extension contains the
first order facts and is closed under the default rules as
well as first order theorem-hood. One contains
Pacifist(b), the other -Pacifist(b). In general, the problem
we want to solve is: Given an individual b, and a
predicate P known to be true of b, we want to compute
P1b), • • • ,Pn(b) such that the Pi's all he within a single
extension. As noted by E&R, we can ignore the unary
predicate argument, and the default theory is purely
propositional. Fortunately, then, non-provability is
computable.

Etherington and Reiter's Algorithm
We briefly review E&R's inference algorithm in

intuitive terms. Those interested in the formal details
may refer to their paper. The purpose of the algorithm is
to "derive conclusions all of which lie within a single
extension of the underlying default theory." When faced
with multiple extensions, the algorithm randomly chooses
one. The algorithm operates by successive
approximations to an extension. Starting with the first
order facts as a first approximation to an extension, it
successively chooses (randomly) default rules which are
not blocked by the current approximation or the previous
approximation, and adds their consequents to the current
approximation, until all of them are used. The
constraints derived in previous approximations thus
propagate to the current approximation. It iterates on
this, starting with the first order facts ag. n, until two
successive approximations are the same (convergence).
Etherington (1983) has proved that this algorithm will
always converge on an extension. The randomness is
essential to the algorithm's ability to derive any possible
extension, if it is run "enough" times. An important
point about the algorithm as given is that it can be
viewed as a relaxation-style constraint propagation
technique.

Unfortunately, NETL is unable to capture such
algorithms due to the "one-shot" nature of marker-
passing. Markers are propagated through the network to
find properties. Cancellation links can block this
propagation to implement exceptions to inheritance. The
very existence of cancellation links in the version of
NETL discussed in E&R (discarded in later versions; see

Touretzky, 1984) defeats marker passing because a link
can be crossed before it is cancelled from a longer path.
See Figures 1(a) and 1(b), reproduced from FAR. In
Figure 1(a), F must be reached before B in order to
generate the extension properly, and vice-versa in 1(b). It
is clear from this that the problem with N ETL is not that
it is a parallel machine. Rather, the problem is that is a
single pass marker passing machine.

An Alternate Parallel Approach
An obvious answer to these objections is to relax the

"one-shot" nature of the parallel network. Connectionist
networks (Feldman & Ballard, 1982), being iterative, have
no such restriction. Connectionist models consist of
simple processing units connected by links. A unit or
node is a computational entity comprised of:

p: a continuous value in [-1,1], called the potential
v: an output, in the range [0,1.0] in discrete jumps of .1
i:a vector of inputs,

and functions for updating these:

We will term an application of these functions an
update of the unit. Note that there is no interpreter for a

(a) (b)
Figure 1. Networks which defeat the shortest path heuris­
tic.

connectionist network; all updates are done locally by
each unit in parallel. There are no constraints on the
functions that can be used, though they are usually kept
simple. It is an important research topic at the moment
to discover what constraints on the functions can be
reasonably assumed without losing computational ability.
In the following model, we show that even with simple
updating functions, we can still get fairly powerful results.
Finally, note that there is no mention of time in the
definition. That is, in simulating such networks, the units
could be scheduled for updating in various ways: They
could be kept in lock step (synchronous) or they could be
updated in random order, with some units perhaps being

196 G.Cottrell

updated several times before another gets a chance to be
updated (simulating asynchrony). We use an
asynchronous version in the following model.

A connection (or link), is an identification of an
element of a units input vector with the another unit's
output, along with a weight, a value between -1 and 1.
Any value transmitted on the link is multiplied by the
weight before it is passed to the unit. In the following
model, we use only use weights of -1 and 1. Links with
negative weights are called inhibitory links. These are
drawn with a small circle at their head in the figures. A
special kind of link, modifier links, are node-link
connections that have the effect that when the unit at
their tail has positive output, they block activation from
crossing the link at their head. These are also drawn with
a small circle at their head, but since they are always
incident on other links, there is no confusion between
them and inhibitory links.

For convenience, the potential function is then often
broken down into two stages: An evidence function,
which is applied to the inputs, and an activation function,
which computes the actual potential given the result of
the evidence function and the current potential. The
activation function usually employs a decay parameter so
that if the evidence goes to 0, so does the activation. A
conjunctive connection is used to refer to two links that
must both have non-zero input for the evidence function
to pass a non-zero result to the activation function. We
will use an output function that thresholds the potential
(we use a threshold of 0 in this model, so negative
activation is not spread) and rounds it to the nearest
tenth. A unit that has non-zero output is called firing (or
simply, "on").

In the so-called localist connectionist models,
(Feldman & Ballard, 1982) we represent an object in the
domain as a unit or small set of units1. The basic idea is
that a unit stands for a value of a parameter (the
unit/value principle) and collects inputs from other units
which represent evidence for that value, positive or
negative. For example, in vision, (see Ballard, 1984) a
unit could represent the presence of an edge at a certain
angle at a particular (x,y) coordinate on the retina. The
unit's output represents its confidence that there is an
edge at the point in the visual field that this unit refers to.
Thus, at run time, the unit's output represents a
confidence level in a hypothesis about the parameter it
refers to. An output of 1.02 after convergence represents
certainty about the parameter value represented by the
unit. The links between the units are weighted, reflecting
the importance to the receiving unit of the evidence from
that link. Much of the information encoded in the

lSee (Hinton. 1981) for a distributed connectionist approach to
semantic networks.

2Or, the maximum possible output after decay If we use a
thresholded potential for the output, and the activation function em­
ploys decay, a unit's maximum output is reduced by the decay factor.

network is contained in the connections between units
(hence the name "connectionism").

Computation is performed by designating some of
the units as input units. These are units that may be
"clamped on", that is, their output is fixed by the
experimenter. Activation is allowed to spread from these,
and if the network is well-designed, it converges to a
fixed point where no unit's output changes from one
iteration to the next At this point the result is read out
from the network by the experimenter. Unfortunately,
no theory exists at the moment that guarantees
convergence of these networks. Analysis is difficult when
arbitrary functions are allowed on different units. This is
one principle advantage of some connectionist models
(Hinton & Sejnowski, 1983) that use uniform functions
on all units, where analysis is possible.

Connectionist networks are a natural architecture for
solving relaxation style problems. Their "activation
passing" is iterative, and constraints between hypotheses
can be easily encoded in the networks as positive or
negative links between mutually compatible or
incompatible hypotheses (represented as processing units).
The typical way to go about building connectionist
models is to first decide on which elements of the domain
we want to model, choose a way to encode those as units,
and then to wire the units together in such a way as to
encode constraints between the elements. Finally, we
must choose an appropriate function for combining the
evidence. In the following, we present a connectionist
model of semantic networks of the kind discussed in
E&R. It should be kept in mind that these have a
particularly simple form. Properties are not distinguished
from type nodes, and there are no two place predicates.
For a different formulation of semantic networks in
connectionist terms which overcomes these objections, see
(Shastn & Feldman, 1984).

A Connectionist Inheritance Model
In E&R, a correspondence was made between the

five link types of a semantic network (Strict IS-A and
ISNT-A, Default IS-A and ISNT-A, and exception
links) and formulae in Default Logic. Since our purpose
here is to show that a connectionist network can mimic
their inference algorithm, we start with formulae from
Default Logic that correspond to inheritance axioms and
display the corresponding bits of network. The first step,
however, is to choose a representation of the predicates.
Following the unit/value principle, we will start with two
units for every predicate P, called +P and ~P,
representing the two different possible assignments of
truth values to those predicates. When computing an
extension, a node that is firing (after convergence)
represents that it is part of the extension. There is an
immediate consistency constraint between these two
nodes, i.e., they should not both be on in any stable state.
Thus we should make them mutually inhibitory.
However, a unit that has evidence should be allowed to

G.Cottrell 197

propagate that evidence before being inhibited. This is
essential if we are to consider all possibilities in parallel.
Thus we introduce a third unit, #P, (to use Touret/kys
notation, if not his semantics), which represents
"inconsistency". See Figure 2. This node inhibits +P
and ~P if both of them are firing (by using a conjunctive
connection). It outputs the maximum of the two,
inhibiting both +P and -P3. Thus this introduces a
delay in the inhibition between +P and -P.

The important point about this design is that this
subnetwork of three units representing a predicate has
only three stable states:
(1) They are all off.
(2) + Pis on.
(3) ~P is on.

Inhibi tory connect ion

Conjunct ive connect ion

Figure 2. The Spock representation of the predicate P.

Any other configuration of activation will cause changes
in some unit's activation. If only #P is on, it will go off.
If only one of the others are on as well, then #P will also
go off. If both are on, then #P will inhibit them until
one goes off. If #P is off and both of the others are on,
#P will come on. Thus if the network is at a fixed point,
the predicate P is either assigned the values true (+ P is
on), false (-P is on), or don't care (neither is on).

We make the following correspondence between the
four formulae defined in E&R, and networks in the
connectionist framework. All links shown have weight 1.

3An alternate formulation would have been to use two of these
units so that the stronger unit would not receive its own inhibition,
but the opposing units. We intend to explore this option in the fu­
ture.

Our encoding of an inference rule is thus just to put a
positive link from the antecedent to the consequent. This
is the first link in the encodings of (1) and (2), and it
guarantees that if + A comes on, eventually +B (or ~B,
as appropriate) will come on as well. Since these
correspond to first order facts, we don't allow any
exceptions to these (i.e., modifier links - see below). In
an attempt at some semblance of completeness, we
encode the contrapositive as well (remember we have no
interpreter to deduce these consequences). This is the
motivation for the second link in the encodings of (1) and
(2). We are explicitly adding the rule -B => ~A (or B
= > "A, in (2)). In E&R's formulation, extensions are
closed under first order inference. This has some odd
consequences, which we will see in the Cephalopod
example.

In the encodings of (3) and (4), there are no
"backwards" links like these, because the contrapositive
doesn't hold for default inferences. However, "B in (3)
(as well as any of the -t-Cj's) for example, should block
the inference of + B if it is on, so we use a modifier link
from ~B to the link between +A and +B. This blocks
activation from crossing the link if "B has any output at
all. Thus the modifier link seems a good choice for
encoding the semantics4.

Now, suppose we have encoded the rules (1) or (3)
as above. The inference of B from A corresponds to + A
being active, which activates + B. In the case of (3), this

4Modifier links have not been implemented in the ISCON
(Small et al. 1982) simulator. The actual implementation at least dou­
bles convergence times. See (Cottrcll. 1984) for details.

198 G.Cottrell

inference may be retracted later if ^B is inferred by some
other (necessarily first order) rule. A default rule will not
be able to infer ~B, since this will be blocked by the
modifier link from +B. The retraction is accomplished
by using activation functions that cause a unit's potential
to go to 0 if its evidence goes to 0. In the case of (1), the
inference may be retracted if the original inference chain
that lead to 4-A included a default inference that was
retracted.

An extension of a predicate P is computed by
treating +P as an input unit, that is, clamping it on, and
then letting the network converge. An extension of P the
corresponds to all of the predicate units that are on in a
stable state of the network, with the following caveat:
Some first order facts may not be relevant to the
computation of the extension. These will not be activated
at all. Also, all facts derivable from the extension will not
be included (e.g., A = > A or B). So the actual extension
is the logical closure of the union of W and the active
predicates in the stable state.

Finally, we specify what the units compute. An
evidence function which appears reasonable for our
purposes is to take the maximum of all positive input
(from subtypes) and add the minimum of all inhibitory
inputs. The motivation for this rule is that we will use
one "source" for the network's activation, namely the
predicate whose extension we are seeking, and so it does
not seem appropriate to use more evidence than the
maximum from that source. However, there are
arguments against this. In a non-demonstration system,
one would want an alternate way to combine evidence,
for example Dempster-Shafer rules (see Ginsberg, 1984),
for some extensions of Dempster-Shafer rules for
semantic networks). This is especially important for
default rules. If someone is a Republican and an NRA
member and a veteran then we would be more inclined to
assume they are not a pacifist, even if they are a Quaker.
See Shastri and Feldman (1985) for a formal theory of
evidence that incorporates these considerations. Anyway,
for the examples we will be discussing, the max and min
rule appears sufficient.

The result of the evidence function is passed to the
activation function. We have implemented two activation
functions in this system. One uses table lookup and looks
almost like iterative marker passing (it only uses three
values), and the other is more continuous valued. The
first function appears in Table 1. The basic idea is to
move towards the value of your input. This version of
the system we call Spock because it doesn't allow
intermediate interpretations. A unit is on, or it isn't. The
second uses the activation function in Table 2 (due to
McClelland & Rumelhart, 1981). In this function, E is
the result of the evidence function, p is the potential and
d is a decay constant (we used .2 in the simulations). We

5For a sketch of how to mimic their algorithm exactly, see (Cot-
trell 1984).

call this version Dr. Spock because it is more permissive,
allowing intermediate values. If one had no decay, then

Table 1. The Spock Activation Function

Evidence
0
0
0
1
1
1

-1
-1
-1

Current Pot.
0

-1
0

-1
0

-1

New Pot.
0
0
0
I
1
0
-1
0

-1

Table 2: The Dr. Spock Activation function

starting the system with a 1 on the assumed unit, and
only using weights of 1 or -1 on links, then the result is
that units only take on the values 0 or 1. The problem
with this is that if a unit is at 1, then it will stay there if it
is not inhibited, causing false inferences to stay around.
The desire to try to have a system with no decay led to
the table lookup function above.

We should state at this point that there is a major
difference between F&R's algorithm and the following
implementation5. We claim here, without proof, that if
the network only encodes a consistent set of first order
(inheritance) rules, we can allow all first order rules to fire
in parallel and the network converges. An interesting
question is whether we can allow all inferences to
proceed in parallel, including the default inferences, while
relying on our predicate networks to guarantee
consistency. While at this stage we have no proof of
convergence or correctness, experimental results with the
system support the conjecture. E&Rs algorithm
stipulates introducing one default rule at a time,
generating all inferences, and then trying another, so we
depart from their algorithm in this. The difference is that
we don't wait for first order consequences to propagate
before we try another default. We use a random update
order (simulating asynchrony) to allow one default to run
before another, as in E&R's algorithm. If they are
"competing" defaults (as in the Nixon example), this
ensures one will block the other, so this is basically a tie-
breaking strategy. Another method would be to use noise
in a synchronous network to break ties.

Simulation Results
We present the results of simulating several of the

networks from E&R. In the following, the results are
from the Spock version except where noted. This is
because in almost all cases, the results from the two
systems were similar. As noted above, we use a random
update order. That is, units are all equally likely to be

G.Cottrell 199

updated at any point. An "iteration" consists of doing as
many updates as there are units in the network. Note that
this doesn't mean that all units have been updated; some
may have been updated more than once, others not at all.

We begin with the Cephalopod example from E&R,
shown in Figure 3. The source of this example is
(Fahlman et al, 1981). In English, it's:

Molluscs are normally shell-bearers.
Cephalopods must be Molluscs but normally are no!
shell-bearers.

Nautili must be Cephalopods and must be shell-
bearers.

The default theory corresponding to this (as given in
E&R) is:

Figure 3. E&Rs network representation of Cephalopod
facts.

For this example we spread activation from the
+ Cephalopod node in order to find the extension of
Cephalopod. To shorten the tables, only iterations where
one of the units in the table changed are shown. This is
a "typical" execution, although of course they are rarely
the same. We simulated this network about ten times,
and it never took longer than 15 iterations to converge.
As the results in Table 3 show, activation spreads from
+ Cephalopod and activates "Shell-Bearer, which blocks
the IS-A link from + Mollusc to + Shell-Bearer.

An interesting result here is that "Nautilus is
inferred! Since E&R require that "an extension ... is
closed under the Defaults of D as well as first order
theoremhood", then they will have to live with this. The
inference came about because -Nautilus was consistent,
allowing us to infer "Shell-Bearer from +Cephalopod.

Figure 4. The Spock implementation of the knowledge in
Figure 3.

However, since Nautilus => Shell-Bearer, first order,
then ""Shell-Bearer => -Nautilus, and we get the result
that we prove "Nautilus from assuming it to be
consistent. This is not unintuitive, since if Cephalopods
are usually not Shell-Bearers, then they are usually not
Nautili. This is just not what we expect from an
inheritance hierarchy. Not including such "downward"
inferences would eliminate completeness, but would also
eliminate a problem with the final example.

Table 3. Trace of Unit Outputs from Example 1

Activating Cephalopod
Iteration 2 3 4 5

+ Nautilus 0 0 0 0
"Nautilus 0 0 1 1

. + Cephalopod 1 1 1 1
+ Mollusc 0 0 0 1

+ Shell- BearerO 0 0 0
- Shell- Bearer 0 1 1 1

Activating Nautilus
3 6 8 9

1 1 1 1
0 0 0 0
0 0 1 1
0 0 0 1
0 0 1 1
0 0 0 0

If we activate + Nautilus instead, activation spreads
to + Cephalopod and + Shell-Bearer, and + Nautilus
cancels the IS-A from + Cephalopod to "Shell-Bearer,
resulting in the correct extension.

If we use the default theory relating to the NETL
version of this hierarchy6 given in E&R (see Figure 5),
we get an ambiguity with respect to whether a given
Cephalopod has a shell or not, since the default IS-A
from + Mollusc to + Shell-Bearer is not cancelled. Also,
in this version all inferences are defaults, so "Nautilus is
never inferred. Our network shows a marked preference
for shortest paths in this case. In 20 runs, we got "Shell-

6Note that in NETL (as of 1979), all inferences arc defaults and
only exceptions to ISNT-A's are allowed.

The connectionist implementation of these rules is given
in Figure 4. Note the "downward" link from -S~B to -N,
encoding the contrapositive.

200 G. Cottrell

Figure 5. The NETL version of the Cephalopod example.
All inferences are defaults.
Bearer 18 times and + Shell-Bearer only twice. This is
not surprising, given that the activation is most likely to
follow the shorter path first. (In simulations of the Nixon
example described earlier, where the paths are of equal
length, the the results were 50-50 between the two
extensions.)

In example 3 we show that we overcome the fixed
radius problems of NETL. The networks in Figure 1
defeat any shortest path algorithm. As Table 4 shows
(left hand side), since activation is computed continually,
the effects of node + F are felt when it gets activated, and
the IS-A from +B to X is cancelled, allowing +C to
become active. Note that, because this is all default
inferences, +C can't be inferred until C goes off,
because -C blocks the inference of +G Table 4 shows
that the network of Figure 1(b) works as well. In this
case, it is practically impossible for X to come on, since
+ B is almost always inferred early, blocking the
inference of X. If it did the network would still
converge as it did for the network of Figure 1(a). In this
case, the Dr. Spock version was a little slower, because X
took several iterations to decay to 0. The modifier links
are strict, so that any output from X stops default
inference of +C.

In all of the previous examples, the results from the
two activation functions were essentially the same. The
final example shows that this is not always the case. The
example is given in Figure 6. It is nearly identical to the
example in Figure 1(a), except that the inferences are all
first order in the left hand chain. This example looks
harmless because it has a unique extension. However,
where the Dr. Spock activation function takes only
slightly more than 100 iterations to converge on the
extension, the Spock function required over 1000
iterations! To see why, recall that first order IS-A's allow
downward inference of -P's. (Both A => B and A => "B
result in contrapositives with negative consequents).
Secondly, the delay in inhibition between a " + " node

Table 4. Trace of Unit Outputs from Example 3

Iteration

+ A
+ B
+ C
~c
+ D
+ E
+ F

Figure 1(a)
2 5 7 11 14 16

1 1 1 1 1 1
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 1 1 0
0 1 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1

25

1
1
1
0
1
1
1

Figure 1(b)
2 4 5 6 8 11

1 1 1 1 1 1
0 1 1 1 1 1
0 0 0 1 1 1
0 0 0 0 0 0
0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

and a "*"" node induced by the " # " node allows
inference chains to "pass" each other. What happens in
this case is that the default inference of X starts a
downward chain of "not" inferences. This meets an
upward chain of positive inferences. They pass each
other, then the consistency constraints begin turning off
both 4- and predicate nodes in the middle of the chain.
The inference chains then meet rather incorrigible
resistance at both ends. +G has a hard time blocking
the inference of X because by the time it gets there, its
support is falling apart behind it. If it fails, X is
inferred again straightaway, since + A is clamped on, and
+ P follows from that. Then the process starts over again.
Dr. Spock appears to be able to break out of this trap
because the units are less "all or none". Because +G
decays slowly, it is more likely to be on when +P tries to
infer X, since any nonzero output from +G blocks the
inference. On the other hand, Spock's activity resembles
a search for a stable pattern of assignments o\^ 0 or 1 to
the units, which takes a lot longer.

Figure 6. This one causes Spock some trouble (but not
the Dr.).

G. Cottrell 201

This behavior of the Spock function results from the
fact that that the model does not wait for the results of
first order knowledge to propagate before applying a
default rule, and it took a while getting to the point of
disagreement. In all of the other examples, the ambiguity
was very localized. Local ambiguities are not hard for
connectionist networks to handle. It is ones that depend
on global properties of the network that are hard to deal
with and still maintain a small radius o(communication
(an unspoken assumption in most connectionist models).
There are several ways this problem could be avoided.

A change to the model that may speed convergence
on such examples is to make default inferences literally
less strong than first order ones. If a default inference
link is weighted by .5 instead of 1, then a first order
inference could more easily overcome it. In this case, we
need an activation function that converges to its evidence,
to propagate the .5 value (unfortunately, this is not a
property the McClelland & Rumelhart function (called
Dr. Spock here), enjoys). The function:

achieves this7. Experiments with this scheme have been
encouraging. The table lookup function could also be
altered to reflect this other value. First order inferences
which had a default at their source would then reflect that
fact in their potential. In this way information that was
non-local could be encoded in the signal. This still
doesn't avoid the problem altogether. 1 here is no reason
why a default inference could not be at the base of each
chain.

A second way to avoid this problem in the Spock
version which avoids this pitfall is to disallow downward
inferences altogether, by going the way of NETL, and
assuming that everything is a default inference. (Or by
foregoing our attempt at completeness; hence not
encoding the contrapositive.) This does avoid the problem
of two default inferences being at the bottom of
competing chains. The competition at the top is a local
one, since either outcome is consistent. Adding weights
reflecting belief strengths, as advocated by Rich (1983),
might make such a system a possible cognitive model.

Conclusions
We have seen how a connectionist model of

inheritance mimics E&R's inference algorithm, avoiding
the problems of NETL. So, a massively parallel
inheritance scheme apparently can work. Two caveats
should be mentioned. First, this is within the context of
a very simple characterization of semantic networks.
Second, the examples are only an informal (engineers)
argument for correctness. What is missing from this
presentation is a formal proof of correctness. A first cut
would be to show that if the network is in a stable state,
then the predicate units that are firing along with the

7It turns out (unbeknownst to us when we derived it) that this is
the function used by McClelland in his (1979) Cascade model.

original W represent the "seed" of an extension (i.e.,
their closure is the extension), leaving the problem of
convergence for another time.

A second point is that the choice of activation
function can make a big difference in the speed of
convergence of the network. The current results appear
to favor smoother activation functions over the relatively
discrete Spock version. Also, an interesting avenue for
exploration now is using weights on the links to encode
default strengths. This could also have a speed-up effect
on convergence, and could possibly be an interesting
cognitive model. Finally, incorporating an evidence
function that would better reflect the contribution of
multiple sources of evidence is left for future research.

Acknowledgements
I would like to thank James Allen and Jerry Feldman for
many helpful discussions on this paper, and Mark Fanty
for prompt addition of the asynchronous facility to the C
version of ISCON. This document greatly increased in
clarity through the comments of one Patrick J. Hayes,
who nevertheless may be dismayed at this association
with "connectionism". This work was supported by
grants IST-8208571 and MCS-8203920 from the National
Science Foundation.

Bibliography
Ballard, D.H. "Parameter networks." Artificial
Intelligence, 22, 235-267, 1984.
Cottrell, G.W. "Re: On inheritance hierarchies with
exceptions", in Proceedings of the Workshop on Non-
Monotonic Reasoning, New Paltz, N.Y., October 1984.
Etherington, D. "Formalizing non-monotonic reasoning
systems". TR 83-1, Department of Computer Science.
University of British Columbia, 1983.
Etherington D. and R. Reiter "On inheritance hierarchies
with exceptions", in Proceedings of the National
Conference on Artificial Intelligence, Washington, D.C.,
August 1983.
Fahlman, S. E. "NETL: A System for Representing and
Using Real-World Knowledge". MIT Press, Cambridge,
Mass, 1979.
Fahlman, S.E., Touretzky, D.S., and W. van Roggen.
"Cancellation in a parallel semantic network.'Tn
Proceedings of the Seventh International Joint Conference
on Artificial Intelligence, Vancouver, B.C., 1981.
Feldman, Jerome A. and Dana Ballard. Connectionist
Models and their Properties, Cognitive Science, 1982, 6
205-254.

Ginsberg, Matthew W. "Non-Monotonic Reasoning
Using Dempster's Rule." In Proceedings of the National
Conference on Artificial Intelligence, Austin, Texas,
August, 1984.

202 G. Cottrell

Hayes, P. J. In defense of logic. In Proceedings of the
Fifth Annual International Joint Conference on Artificial
Intelligence, Cambridge, Mass., 1977.
Hinton, G.E. Implementing semantic networks in parallel
hardware. In G. E. Hinton, & J. A. Anderson (Eds.),
Parallel models of associative memory, Hillsdale, N.J.:
Lawrence Erlbaum Associates, 1981.
Hinton, G.E. and T. Sejnowski. Optimal perceptual
inference. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.
Washington, D.C 1983.
McClelland, J.L. On the time relations of mental
processes: An examination of systems of processes in
cascade. Psych. Review. 86,
McClelland, J.L. and D.E. Rumelhart. An interactive
activation model of the effect of context in perception:
Part I, An account of basic findings. Psych. Review, 88,
Reiter, Ray "A Logic for Default Reasoning", Artificial
Intelligence 13, 1980, pp 81-132.
Rich, E. "Default reasoning as likelihood reasoning." In
Proceedings of the National Conference on Artificial
Intelligence, Washington, D.C, August 1983.
Shastri, L. and Feldman, J.A. Semantic networks and
neural nets. T.R. 131, Dept. of Computer Science,
University of Rochester, May 1984.
Shastri L. and J.A. Feldman. Evidential reasoning in
semantic networks: A formal theory. In this volume.
1985.

Small, S. L., Shastri L., Brucks M., Kaufman S., Addanki,
S. and Cottrell, G.W. ISCON: An Interactive Simulator
For Connectionist Networks, Technical Report 109,
Department of Computer Science, University of
Rochester, Dec. 1982.

Touretzky, David S. "The Mathematics of Inheritance
Systems." Ph.D. Thesis, Carnegie Mellon University
1984. Available as T.R. CMU-CS-84-136.

