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Abstract 

In a recent paper, Etherington & Reiter formalized a 
simple version of semantic networks with exceptions in 
terms of Reiter's Default Logic. With this approach they 
were able to formally characterize the correctness of an 
inference algorithm in terms of Default Logic, and 
exhibited an algorithm that was correct in this sense. 
Finally, they concluded that massively parallel 
architectures for semantic networks, such as NETL 
apparently cannot implement this algorithm. In this 
paper, we present a different massively parallel 
architecture for the simplified semantic networks outlined 
in their paper which appears to avoid the objections to 
NETL. We also present some results of simulations in 
this framework of the examples presented in Etherington 
and Reiter. 

Introduction 
In a recent paper, Etherington & Reiter (1983) 

(hereafter E&R) formalized the inheritance hierarchy 
subset of semantic networks with exceptions in terms of 
Reiter's (1980) Default Logic. With this approach they 
were able to formally characterize the correctness of an 
inference algorithm in terms of Default Logic, and 
exhibited an algorithm that was correct in this sense. 
Finally, they concluded that massively parallel 
architectures for semantic networks, such as NETL 
(Fahlman, 1979), apparently cannot implement this 
algorithm. In this paper, we present a different massively 
parallel architecture for the simplified semantic networks 
outlined in their paper which appears to avoid the 
objections to NETL. We also present some results of 
simulations in this framework of the examples presented 
in E&R. 

The Problem 
Semantic networks have been found to be an 

efficient and useful representation of knowledge by AI 
researchers for many years. One principal advantage is 
the ability to store information about objects at 
appropriate levels of abstraction in the IS-A hierarchy, so 
that the fact that dogs, elephants, and people nurse their 
young, for example, can be stored once at the MAMMAL 
node. Retrieving all of the properties associated with an 

instance of some class is done by an inference procedure 
that is particularly simple in these systems, known as 
inheritance. 

As Hayes (1977) points out. there is an obvious 
correspondence between IS-A hierarchies and simple 
collections of FOPC formulas. For example, "Clyde is an 
instance of an Elephant" corresponds to the assertion 
Elephant(Clyde). Statements about classes, such as 
"Elephants are Gray", correspond to first-order formulae, 
in this case, (x).Elephant(x)=>Gray(x). Inheritance can 
then be seen as a repeated application of modus ponens. 
One nice property of inheritance hierarchies is that, since 
they are acyclic, modus ponens can only be applied a 
finite number of times, no more than the depth of the 
hierarchy. Also, as pointed out by E&R, the node labels 
in such hierarchies are unary predicates, e.g. 
MAMMAL(x). Finally, no exceptions are permitted to 
inheritance. A dog is a mammal, no matter what. 

Unfortunately, the real world is not as simple as a 
taxonomic hierarchy. Often it is useful to abandon the 
tree structure in favor of multiple inheritance hierarchies, 
and to allow exceptions to inheritance relations. This 
introduces non-monotonicity into the representation, as 
well as ambiguity. An common example of a non­
monotonic rule is: "assume a particular Elephant is Gray 
unless proven otherwise." This is often known as default 
reasoning and has been formalized by Reiter (1980). 
When combined with multiple inheritance, default 
reasoning can lead to ambiguity. A well-known example 
is: 

Nixon is a Quaker. 
Nixon is a Republican. 
Republicans are normally non-pacifists. 
Quakers are normally pacifists. 
Reiter's formalization of the above facts would be 

(assuming, for convenience, that Nixon is a type): 

(1) (x).Nixon(x)=>Quaker(x) 
(x).Nixon(x)=>Republican(x) 
Republican(x)f Pacifist(x) 

~Pacifist(x) 
Quaker(x):Pacifist(x) 

Pacifist(x) 

0) 
(2) 
(3) 
(4) 

(2) 

(3) 

(4) 
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(1) and (2) are just the first order rules 
corresponding to (1) and (2) above. (3) is an example of 
a default rule. The formula to the left of the colon is 
called the prerequisite of the default. If this is known, 
and the part to the right of the colon, (the justification) 
can be consistently assumed (i.e., its negation isn't 
provable from what we know), then we can infer 
~Pacifist(x), the consequent. Often, the justification 
contains all of the exceptions to the rule we know about. 
In this case, we might add "NRAmember(x)" to the 
justification of (4). 

Is an individual b for which Nixon(b) holds a pacifist 
or not? In Reiter's terminology, there are two extensions' 
consistent with our knowledge. An extension contains the 
first order facts and is closed under the default rules as 
well as first order theorem-hood. One contains 
Pacifist(b), the other -Pacifist(b). In general, the problem 
we want to solve is: Given an individual b, and a 
predicate P known to be true of b, we want to compute 
P1b), • • • ,Pn(b) such that the Pi's all he within a single 
extension. As noted by E&R, we can ignore the unary 
predicate argument, and the default theory is purely 
propositional. Fortunately, then, non-provability is 
computable. 

Etherington and Reiter's Algorithm 
We briefly review E&R's inference algorithm in 

intuitive terms. Those interested in the formal details 
may refer to their paper. The purpose of the algorithm is 
to "derive conclusions all of which lie within a single 
extension of the underlying default theory." When faced 
with multiple extensions, the algorithm randomly chooses 
one. The algorithm operates by successive 
approximations to an extension. Starting with the first 
order facts as a first approximation to an extension, it 
successively chooses (randomly) default rules which are 
not blocked by the current approximation or the previous 
approximation, and adds their consequents to the current 
approximation, until all of them are used. The 
constraints derived in previous approximations thus 
propagate to the current approximation. It iterates on 
this, starting with the first order facts ag. n, until two 
successive approximations are the same (convergence). 
Etherington (1983) has proved that this algorithm will 
always converge on an extension. The randomness is 
essential to the algorithm's ability to derive any possible 
extension, if it is run "enough" times. An important 
point about the algorithm as given is that it can be 
viewed as a relaxation-style constraint propagation 
technique. 

Unfortunately, NETL is unable to capture such 
algorithms due to the "one-shot" nature of marker-
passing. Markers are propagated through the network to 
find properties. Cancellation links can block this 
propagation to implement exceptions to inheritance. The 
very existence of cancellation links in the version of 
NETL discussed in E&R (discarded in later versions; see 

Touretzky, 1984) defeats marker passing because a link 
can be crossed before it is cancelled from a longer path. 
See Figures 1(a) and 1(b), reproduced from FAR. In 
Figure 1(a), F must be reached before B in order to 
generate the extension properly, and vice-versa in 1(b). It 
is clear from this that the problem with N ETL is not that 
it is a parallel machine. Rather, the problem is that is a 
single pass marker passing machine. 

An Alternate Parallel Approach 
An obvious answer to these objections is to relax the 

"one-shot" nature of the parallel network. Connectionist 
networks (Feldman & Ballard, 1982), being iterative, have 
no such restriction. Connectionist models consist of 
simple processing units connected by links. A unit or 
node is a computational entity comprised of: 

p: a continuous value in [-1,1], called the potential 
v: an output, in the range [0,1.0] in discrete jumps of .1 
i:a vector of inputs, 

and functions for updating these: 

We will term an application of these functions an 
update of the unit. Note that there is no interpreter for a 

(a) (b) 
Figure 1. Networks which defeat the shortest path heuris­
tic. 

connectionist network; all updates are done locally by 
each unit in parallel. There are no constraints on the 
functions that can be used, though they are usually kept 
simple. It is an important research topic at the moment 
to discover what constraints on the functions can be 
reasonably assumed without losing computational ability. 
In the following model, we show that even with simple 
updating functions, we can still get fairly powerful results. 
Finally, note that there is no mention of time in the 
definition. That is, in simulating such networks, the units 
could be scheduled for updating in various ways: They 
could be kept in lock step (synchronous) or they could be 
updated in random order, with some units perhaps being 
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updated several times before another gets a chance to be 
updated (simulating asynchrony). We use an 
asynchronous version in the following model. 

A connection (or link), is an identification of an 
element of a units input vector with the another unit's 
output, along with a weight, a value between -1 and 1. 
Any value transmitted on the link is multiplied by the 
weight before it is passed to the unit. In the following 
model, we use only use weights of -1 and 1. Links with 
negative weights are called inhibitory links. These are 
drawn with a small circle at their head in the figures. A 
special kind of link, modifier links, are node-link 
connections that have the effect that when the unit at 
their tail has positive output, they block activation from 
crossing the link at their head. These are also drawn with 
a small circle at their head, but since they are always 
incident on other links, there is no confusion between 
them and inhibitory links. 

For convenience, the potential function is then often 
broken down into two stages: An evidence function, 
which is applied to the inputs, and an activation function, 
which computes the actual potential given the result of 
the evidence function and the current potential. The 
activation function usually employs a decay parameter so 
that if the evidence goes to 0, so does the activation. A 
conjunctive connection is used to refer to two links that 
must both have non-zero input for the evidence function 
to pass a non-zero result to the activation function. We 
will use an output function that thresholds the potential 
(we use a threshold of 0 in this model, so negative 
activation is not spread) and rounds it to the nearest 
tenth. A unit that has non-zero output is called firing (or 
simply, "on"). 

In the so-called localist connectionist models, 
(Feldman & Ballard, 1982) we represent an object in the 
domain as a unit or small set of units1. The basic idea is 
that a unit stands for a value of a parameter (the 
unit/value principle) and collects inputs from other units 
which represent evidence for that value, positive or 
negative. For example, in vision, (see Ballard, 1984) a 
unit could represent the presence of an edge at a certain 
angle at a particular (x,y) coordinate on the retina. The 
unit's output represents its confidence that there is an 
edge at the point in the visual field that this unit refers to. 
Thus, at run time, the unit's output represents a 
confidence level in a hypothesis about the parameter it 
refers to. An output of 1.02 after convergence represents 
certainty about the parameter value represented by the 
unit. The links between the units are weighted, reflecting 
the importance to the receiving unit of the evidence from 
that link. Much of the information encoded in the 

lSee (Hinton. 1981) for a distributed connectionist approach to 
semantic networks. 

2Or, the maximum possible output after decay If we use a 
thresholded potential for the output, and the activation function em­
ploys decay, a unit's maximum output is reduced by the decay factor. 

network is contained in the connections between units 
(hence the name "connectionism"). 

Computation is performed by designating some of 
the units as input units. These are units that may be 
"clamped on", that is, their output is fixed by the 
experimenter. Activation is allowed to spread from these, 
and if the network is well-designed, it converges to a 
fixed point where no unit's output changes from one 
iteration to the next At this point the result is read out 
from the network by the experimenter. Unfortunately, 
no theory exists at the moment that guarantees 
convergence of these networks. Analysis is difficult when 
arbitrary functions are allowed on different units. This is 
one principle advantage of some connectionist models 
(Hinton & Sejnowski, 1983) that use uniform functions 
on all units, where analysis is possible. 

Connectionist networks are a natural architecture for 
solving relaxation style problems. Their "activation 
passing" is iterative, and constraints between hypotheses 
can be easily encoded in the networks as positive or 
negative links between mutually compatible or 
incompatible hypotheses (represented as processing units). 
The typical way to go about building connectionist 
models is to first decide on which elements of the domain 
we want to model, choose a way to encode those as units, 
and then to wire the units together in such a way as to 
encode constraints between the elements. Finally, we 
must choose an appropriate function for combining the 
evidence. In the following, we present a connectionist 
model of semantic networks of the kind discussed in 
E&R. It should be kept in mind that these have a 
particularly simple form. Properties are not distinguished 
from type nodes, and there are no two place predicates. 
For a different formulation of semantic networks in 
connectionist terms which overcomes these objections, see 
(Shastn & Feldman, 1984). 

A Connectionist Inheritance Model 
In E&R, a correspondence was made between the 

five link types of a semantic network (Strict IS-A and 
ISNT-A, Default IS-A and ISNT-A, and exception 
links) and formulae in Default Logic. Since our purpose 
here is to show that a connectionist network can mimic 
their inference algorithm, we start with formulae from 
Default Logic that correspond to inheritance axioms and 
display the corresponding bits of network. The first step, 
however, is to choose a representation of the predicates. 
Following the unit/value principle, we will start with two 
units for every predicate P, called +P and ~P, 
representing the two different possible assignments of 
truth values to those predicates. When computing an 
extension, a node that is firing (after convergence) 
represents that it is part of the extension. There is an 
immediate consistency constraint between these two 
nodes, i.e., they should not both be on in any stable state. 
Thus we should make them mutually inhibitory. 
However, a unit that has evidence should be allowed to 
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propagate that evidence before being inhibited. This is 
essential if we are to consider all possibilities in parallel. 
Thus we introduce a third unit, #P, (to use Touret/kys 
notation, if not his semantics), which represents 
"inconsistency". See Figure 2. This node inhibits +P 
and ~P if both of them are firing (by using a conjunctive 
connection). It outputs the maximum of the two, 
inhibiting both +P and -P3. Thus this introduces a 
delay in the inhibition between +P and -P. 

The important point about this design is that this 
subnetwork of three units representing a predicate has 
only three stable states: 
(1) They are all off. 
(2) + Pis on. 
(3) ~P is on. 

Inhibi tory connect ion 

Conjunct ive connect ion 

Figure 2. The Spock representation of the predicate P. 

Any other configuration of activation will cause changes 
in some unit's activation. If only #P is on, it will go off. 
If only one of the others are on as well, then #P will also 
go off. If both are on, then #P will inhibit them until 
one goes off. If #P is off and both of the others are on, 
#P will come on. Thus if the network is at a fixed point, 
the predicate P is either assigned the values true ( + P is 
on), false (-P is on), or don't care (neither is on). 

We make the following correspondence between the 
four formulae defined in E&R, and networks in the 
connectionist framework. All links shown have weight 1. 

3An alternate formulation would have been to use two of these 
units so that the stronger unit would not receive its own inhibition, 
but the opposing units. We intend to explore this option in the fu­
ture. 

Our encoding of an inference rule is thus just to put a 
positive link from the antecedent to the consequent. This 
is the first link in the encodings of (1) and (2), and it 
guarantees that if + A comes on, eventually +B (or ~B, 
as appropriate) will come on as well. Since these 
correspond to first order facts, we don't allow any 
exceptions to these (i.e., modifier links - see below). In 
an attempt at some semblance of completeness, we 
encode the contrapositive as well (remember we have no 
interpreter to deduce these consequences). This is the 
motivation for the second link in the encodings of (1) and 
(2). We are explicitly adding the rule -B => ~A (or B 
= > "A, in (2)). In E&R's formulation, extensions are 
closed under first order inference. This has some odd 
consequences, which we will see in the Cephalopod 
example. 

In the encodings of (3) and (4), there are no 
"backwards" links like these, because the contrapositive 
doesn't hold for default inferences. However, "B in (3) 
(as well as any of the -t-Cj's) for example, should block 
the inference of + B if it is on, so we use a modifier link 
from ~B to the link between +A and +B. This blocks 
activation from crossing the link if "B has any output at 
all. Thus the modifier link seems a good choice for 
encoding the semantics4. 

Now, suppose we have encoded the rules (1) or (3) 
as above. The inference of B from A corresponds to + A 
being active, which activates + B. In the case of (3), this 

4Modifier links have not been implemented in the ISCON 
(Small et al. 1982) simulator. The actual implementation at least dou­
bles convergence times. See (Cottrcll. 1984) for details. 
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inference may be retracted later if ^B is inferred by some 
other (necessarily first order) rule. A default rule will not 
be able to infer ~B, since this will be blocked by the 
modifier link from +B. The retraction is accomplished 
by using activation functions that cause a unit's potential 
to go to 0 if its evidence goes to 0. In the case of (1), the 
inference may be retracted if the original inference chain 
that lead to 4-A included a default inference that was 
retracted. 

An extension of a predicate P is computed by 
treating +P as an input unit, that is, clamping it on, and 
then letting the network converge. An extension of P the 
corresponds to all of the predicate units that are on in a 
stable state of the network, with the following caveat: 
Some first order facts may not be relevant to the 
computation of the extension. These will not be activated 
at all. Also, all facts derivable from the extension will not 
be included (e.g., A = > A or B). So the actual extension 
is the logical closure of the union of W and the active 
predicates in the stable state. 

Finally, we specify what the units compute. An 
evidence function which appears reasonable for our 
purposes is to take the maximum of all positive input 
(from subtypes) and add the minimum of all inhibitory 
inputs. The motivation for this rule is that we will use 
one "source" for the network's activation, namely the 
predicate whose extension we are seeking, and so it does 
not seem appropriate to use more evidence than the 
maximum from that source. However, there are 
arguments against this. In a non-demonstration system, 
one would want an alternate way to combine evidence, 
for example Dempster-Shafer rules (see Ginsberg, 1984), 
for some extensions of Dempster-Shafer rules for 
semantic networks). This is especially important for 
default rules. If someone is a Republican and an NRA 
member and a veteran then we would be more inclined to 
assume they are not a pacifist, even if they are a Quaker. 
See Shastri and Feldman (1985) for a formal theory of 
evidence that incorporates these considerations. Anyway, 
for the examples we will be discussing, the max and min 
rule appears sufficient. 

The result of the evidence function is passed to the 
activation function. We have implemented two activation 
functions in this system. One uses table lookup and looks 
almost like iterative marker passing (it only uses three 
values), and the other is more continuous valued. The 
first function appears in Table 1. The basic idea is to 
move towards the value of your input. This version of 
the system we call Spock because it doesn't allow 
intermediate interpretations. A unit is on, or it isn't. The 
second uses the activation function in Table 2 (due to 
McClelland & Rumelhart, 1981). In this function, E is 
the result of the evidence function, p is the potential and 
d is a decay constant (we used .2 in the simulations). We 

5For a sketch of how to mimic their algorithm exactly, see (Cot-
trell 1984). 

call this version Dr. Spock because it is more permissive, 
allowing intermediate values. If one had no decay, then 

Table 1. The Spock Activation Function 

Evidence 
0 
0 
0 
1 
1 
1 

-1 
-1 
-1 

Current Pot. 
0 

-1 
0 

-1 
0 

-1 

New Pot. 
0 
0 
0 
I 
1 
0 
-1 
0 

-1 

Table 2: The Dr. Spock Activation function 

starting the system with a 1 on the assumed unit, and 
only using weights of 1 or -1 on links, then the result is 
that units only take on the values 0 or 1. The problem 
with this is that if a unit is at 1, then it will stay there if it 
is not inhibited, causing false inferences to stay around. 
The desire to try to have a system with no decay led to 
the table lookup function above. 

We should state at this point that there is a major 
difference between F&R's algorithm and the following 
implementation5. We claim here, without proof, that if 
the network only encodes a consistent set of first order 
(inheritance) rules, we can allow all first order rules to fire 
in parallel and the network converges. An interesting 
question is whether we can allow all inferences to 
proceed in parallel, including the default inferences, while 
relying on our predicate networks to guarantee 
consistency. While at this stage we have no proof of 
convergence or correctness, experimental results with the 
system support the conjecture. E&Rs algorithm 
stipulates introducing one default rule at a time, 
generating all inferences, and then trying another, so we 
depart from their algorithm in this. The difference is that 
we don't wait for first order consequences to propagate 
before we try another default. We use a random update 
order (simulating asynchrony) to allow one default to run 
before another, as in E&R's algorithm. If they are 
"competing" defaults (as in the Nixon example), this 
ensures one will block the other, so this is basically a tie-
breaking strategy. Another method would be to use noise 
in a synchronous network to break ties. 

Simulation Results 
We present the results of simulating several of the 

networks from E&R. In the following, the results are 
from the Spock version except where noted. This is 
because in almost all cases, the results from the two 
systems were similar. As noted above, we use a random 
update order. That is, units are all equally likely to be 
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updated at any point. An "iteration" consists of doing as 
many updates as there are units in the network. Note that 
this doesn't mean that all units have been updated; some 
may have been updated more than once, others not at all. 

We begin with the Cephalopod example from E&R, 
shown in Figure 3. The source of this example is 
(Fahlman et al, 1981). In English, it's: 

Molluscs are normally shell-bearers. 
Cephalopods must be Molluscs but normally are no! 
shell-bearers. 

Nautili must be Cephalopods and must be shell-
bearers. 

The default theory corresponding to this (as given in 
E&R) is: 

Figure 3. E&Rs network representation of Cephalopod 
facts. 

For this example we spread activation from the 
+ Cephalopod node in order to find the extension of 
Cephalopod. To shorten the tables, only iterations where 
one of the units in the table changed are shown. This is 
a "typical" execution, although of course they are rarely 
the same. We simulated this network about ten times, 
and it never took longer than 15 iterations to converge. 
As the results in Table 3 show, activation spreads from 
+ Cephalopod and activates "Shell-Bearer, which blocks 
the IS-A link from + Mollusc to + Shell-Bearer. 

An interesting result here is that "Nautilus is 
inferred! Since E&R require that "an extension ... is 
closed under the Defaults of D as well as first order 
theoremhood", then they will have to live with this. The 
inference came about because -Nautilus was consistent, 
allowing us to infer "Shell-Bearer from +Cephalopod. 

Figure 4. The Spock implementation of the knowledge in 
Figure 3. 

However, since Nautilus => Shell-Bearer, first order, 
then ""Shell-Bearer => -Nautilus, and we get the result 
that we prove "Nautilus from assuming it to be 
consistent. This is not unintuitive, since if Cephalopods 
are usually not Shell-Bearers, then they are usually not 
Nautili. This is just not what we expect from an 
inheritance hierarchy. Not including such "downward" 
inferences would eliminate completeness, but would also 
eliminate a problem with the final example. 

Table 3. Trace of Unit Outputs from Example 1 

Activating Cephalopod 
Iteration 2 3 4 5 

+ Nautilus 0 0 0 0 
"Nautilus 0 0 1 1 

. + Cephalopod 1 1 1 1 
+ Mollusc 0 0 0 1 

+ Shell- BearerO 0 0 0 
- Shell- Bearer 0 1 1 1 

Activating Nautilus 
3 6 8 9 

1 1 1 1 
0 0 0 0 
0 0 1 1 
0 0 0 1 
0 0 1 1 
0 0 0 0 

If we activate + Nautilus instead, activation spreads 
to + Cephalopod and + Shell-Bearer, and + Nautilus 
cancels the IS-A from + Cephalopod to "Shell-Bearer, 
resulting in the correct extension. 

If we use the default theory relating to the NETL 
version of this hierarchy6 given in E&R (see Figure 5), 
we get an ambiguity with respect to whether a given 
Cephalopod has a shell or not, since the default IS-A 
from + Mollusc to + Shell-Bearer is not cancelled. Also, 
in this version all inferences are defaults, so "Nautilus is 
never inferred. Our network shows a marked preference 
for shortest paths in this case. In 20 runs, we got "Shell-

6Note that in NETL (as of 1979), all inferences arc defaults and 
only exceptions to ISNT-A's are allowed. 

The connectionist implementation of these rules is given 
in Figure 4. Note the "downward" link from -S~B to -N, 
encoding the contrapositive. 
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Figure 5. The NETL version of the Cephalopod example. 
All inferences are defaults. 
Bearer 18 times and + Shell-Bearer only twice. This is 
not surprising, given that the activation is most likely to 
follow the shorter path first. (In simulations of the Nixon 
example described earlier, where the paths are of equal 
length, the the results were 50-50 between the two 
extensions.) 

In example 3 we show that we overcome the fixed 
radius problems of NETL. The networks in Figure 1 
defeat any shortest path algorithm. As Table 4 shows 
(left hand side), since activation is computed continually, 
the effects of node + F are felt when it gets activated, and 
the IS-A from +B to X is cancelled, allowing +C to 
become active. Note that, because this is all default 
inferences, +C can't be inferred until C goes off, 
because -C blocks the inference of +G Table 4 shows 
that the network of Figure 1(b) works as well. In this 
case, it is practically impossible for X to come on, since 
+ B is almost always inferred early, blocking the 
inference of X. If it did the network would still 
converge as it did for the network of Figure 1(a). In this 
case, the Dr. Spock version was a little slower, because X 
took several iterations to decay to 0. The modifier links 
are strict, so that any output from X stops default 
inference of +C. 

In all of the previous examples, the results from the 
two activation functions were essentially the same. The 
final example shows that this is not always the case. The 
example is given in Figure 6. It is nearly identical to the 
example in Figure 1(a), except that the inferences are all 
first order in the left hand chain. This example looks 
harmless because it has a unique extension. However, 
where the Dr. Spock activation function takes only 
slightly more than 100 iterations to converge on the 
extension, the Spock function required over 1000 
iterations! To see why, recall that first order IS-A's allow 
downward inference of -P's. (Both A => B and A => "B 
result in contrapositives with negative consequents). 
Secondly, the delay in inhibition between a " + " node 

Table 4. Trace of Unit Outputs from Example 3 

Iteration 

+ A 
+ B 
+ C 
~c 
+ D 
+ E 
+ F 

Figure 1(a) 
2 5 7 11 14 16 

1 1 1 1 1 1 
0 0 1 1 1 1 
0 0 0 0 0 0 
0 0 0 1 1 0 
0 1 1 1 1 1 
0 0 0 1 1 1 
0 0 0 0 1 1 

25 

1 
1 
1 
0 
1 
1 
1 

Figure 1(b) 
2 4 5 6 8 11 

1 1 1 1 1 1 
0 1 1 1 1 1 
0 0 0 1 1 1 
0 0 0 0 0 0 
0 0 1 1 1 1 
0 0 0 0 1 1 
0 0 0 0 0 1 

and a "*"" node induced by the " # " node allows 
inference chains to "pass" each other. What happens in 
this case is that the default inference of X starts a 
downward chain of "not" inferences. This meets an 
upward chain of positive inferences. They pass each 
other, then the consistency constraints begin turning off 
both 4- and predicate nodes in the middle of the chain. 
The inference chains then meet rather incorrigible 
resistance at both ends. +G has a hard time blocking 
the inference of X because by the time it gets there, its 
support is falling apart behind it. If it fails, X is 
inferred again straightaway, since + A is clamped on, and 
+ P follows from that. Then the process starts over again. 
Dr. Spock appears to be able to break out of this trap 
because the units are less "all or none". Because +G 
decays slowly, it is more likely to be on when +P tries to 
infer X, since any nonzero output from +G blocks the 
inference. On the other hand, Spock's activity resembles 
a search for a stable pattern of assignments o\^ 0 or 1 to 
the units, which takes a lot longer. 

Figure 6. This one causes Spock some trouble (but not 
the Dr.). 
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This behavior of the Spock function results from the 
fact that that the model does not wait for the results of 
first order knowledge to propagate before applying a 
default rule, and it took a while getting to the point of 
disagreement. In all of the other examples, the ambiguity 
was very localized. Local ambiguities are not hard for 
connectionist networks to handle. It is ones that depend 
on global properties of the network that are hard to deal 
with and still maintain a small radius o( communication 
(an unspoken assumption in most connectionist models). 
There are several ways this problem could be avoided. 

A change to the model that may speed convergence 
on such examples is to make default inferences literally 
less strong than first order ones. If a default inference 
link is weighted by .5 instead of 1, then a first order 
inference could more easily overcome it. In this case, we 
need an activation function that converges to its evidence, 
to propagate the .5 value (unfortunately, this is not a 
property the McClelland & Rumelhart function (called 
Dr. Spock here), enjoys). The function: 

achieves this7. Experiments with this scheme have been 
encouraging. The table lookup function could also be 
altered to reflect this other value. First order inferences 
which had a default at their source would then reflect that 
fact in their potential. In this way information that was 
non-local could be encoded in the signal. This still 
doesn't avoid the problem altogether. 1 here is no reason 
why a default inference could not be at the base of each 
chain. 

A second way to avoid this problem in the Spock 
version which avoids this pitfall is to disallow downward 
inferences altogether, by going the way of NETL, and 
assuming that everything is a default inference. (Or by 
foregoing our attempt at completeness; hence not 
encoding the contrapositive.) This does avoid the problem 
of two default inferences being at the bottom of 
competing chains. The competition at the top is a local 
one, since either outcome is consistent. Adding weights 
reflecting belief strengths, as advocated by Rich (1983), 
might make such a system a possible cognitive model. 

Conclusions 
We have seen how a connectionist model of 

inheritance mimics E&R's inference algorithm, avoiding 
the problems of NETL. So, a massively parallel 
inheritance scheme apparently can work. Two caveats 
should be mentioned. First, this is within the context of 
a very simple characterization of semantic networks. 
Second, the examples are only an informal (engineers) 
argument for correctness. What is missing from this 
presentation is a formal proof of correctness. A first cut 
would be to show that if the network is in a stable state, 
then the predicate units that are firing along with the 

7It turns out (unbeknownst to us when we derived it) that this is 
the function used by McClelland in his (1979) Cascade model. 

original W represent the "seed" of an extension (i.e., 
their closure is the extension), leaving the problem of 
convergence for another time. 

A second point is that the choice of activation 
function can make a big difference in the speed of 
convergence of the network. The current results appear 
to favor smoother activation functions over the relatively 
discrete Spock version. Also, an interesting avenue for 
exploration now is using weights on the links to encode 
default strengths. This could also have a speed-up effect 
on convergence, and could possibly be an interesting 
cognitive model. Finally, incorporating an evidence 
function that would better reflect the contribution of 
multiple sources of evidence is left for future research. 
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