
AUTOMATED ENHANCEMENT
OF

KNOWLEDGE REPRESENTATIONS1

Robert Balzer
USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

ABSTRACT
A new class of maintenance tool is presented, designed specifically for

enhancement of knowledge representation systems. These tools are
based on the structure of a domain model and the ways it can be
changed. A complete language for changing domain models is
presented. Associated with each change is an explicit assumption in the
previous model that is violated. A complete analysis is presented of
how existing knowledge representation frames and the associated
operations on those frames must be updated to correct these
assumption violations introduced by changing the domain model.

Such tools are an important first step towards support for an
incremental development process. Almost no support currently exists
for enhancing knowledge representation systems. The tools described
here support enhancements involving modification to the domain
model. Support for the remaining enhancements will require both
more knowledgeable tools which understand the system they are
manipulating, and more declarative structural specifications for such
systems which facilitate that understanding.

INTRODUCTION
It is by now well known that maintenance is the dominant life-cycle

cost for conventional software systems, often consuming 80-90% of the
total effort. Yet this life-cycle phase has received remarkably little
attention or support. The few tools that exist (such as debuggers,
modification audit trails, configuration managers and regression testers)
have been available for a long ume and are quite stable. There is scant
evidence of further progress.

In fact, the major thrust of the last several years in the Software
Engineering community has been towards reducing the need for
maintenance, rather than facilitating it. This thrust has centered on
reducing (or eventually eliminating) implementation bugs through
improved development methods (either informal or formal and either
manual or automated). This thrust has begun to bear fruit.
Improvements have been made in reducing the number of
implementation errors. They may even be eliminated entirely via
formalization and automation of the development process.

But this thrust begs the maintenance problem because it only
addresses one maintenance activity, the correction of implemenution
bugs. This activity decays rapidly after a system is fielded, and the
thrust merely lowers the initial level of that activity.

Enhancement, rather than correction of implementation bugs, is the
dominant maintenance activity. It grows rather than decays over time.

This research is supported by the Defense Advanced Research Project Agency under
Contract No MDA903 83 C 0335 Views and Conclusions contained in this report are
the authors and should not be interpreted as representing the official opinion or policy of
DARPA. the US Government, or am person or agency connected with them

It is the source of the multi-year maintenance backlog experienced by
most DP organizations. It wil l become even more dominant as the
development improvement thrust partly reduces the need to correct
implemenution bugs, and as the current trend towards release of
systems in incremental stages, with enhanced functionality, accelerates.

There are two reasons for such enhancements. The first is that no-
one has enough insight to build a system correctly the first ume (even
assuming no implementation bugs). The second is that the mere
existence of the system, and the insight gained from its usage, create a
demand for new or altered facilities.

Rather than attempting to eliminate the need for maintenance we
should recognize that enhancement, not initial development, is the
central software activity (and the basis for achieving the "softness"
promised in software).

This dominance of enhancement is even greater for Knowledge
Based systems because they are developed via cut-and-try explority
programming techniques. Our software life-cycle and support
environments should be rethought accordingly.

We have elsewhere presented our knowledge based version of such a
paradigm and support environment [Balzer et al 83a]. This paper
addresses the enhancement activity directly. It defines two types of
enhancements, structural and functional, and focuses on the former. It
categorizes the class of possible structural enhancements, defines a
complete language for specifying such enhancements, and describes an
implemented set of tools for effecting these structured enhancements.
It also presents an analysis of the changes to existing knowledge
representauon frames and the operations on them necessitated by these
structural enhancements.

The basis for all these capabilities is an explicit, modifiable domain
model which defines the class of valid frames. The structure of this
model determines the class of assumptions that can be explicitly
represented. Change to such an assumption should cause propagation
of effects to all places in the frames and the operations on them where
that assumption was relied upon. Our leverage arises from the fact that
the domain model forces these assumptions to be explicitly stated, and
to be stated in such a way that reliance can be mechanically determined.
This provides the basis for a new class of maintenance tools which
support the propagation of effects into the frames and operations
associated with a domain model.

THE STRUCTURE OF A DOMAIN MODEL
We therefore begin by examining the structure of a domain model.

We have a fairly conventional frame-based object model [Minsky

204 R. Balzer

81, Roberts 77, Bobrow 76] in which the data is self-describing (i.e., its
type(s) can be determined), all instances of a type can be obtained,
attribute declarations are inherited along subtype links, the range of an
attribute is type limited, and an attribute can be either required or
optional and either single or multi-valued. Our knowledge
representation language is quite a bit more elaborate [Balzer et al
81] but only these aspects are relevant to maintenance.

STRUCTURAL ENHANCEMENT
The set of all possible enhancements can be divided into two

categones - those that change the domain model and those that do not.
We call the former structural enhancements, and the latter functional
enhancements. The types of structural enhancement possible are
determined by the structure of the domain model. This leads fairly
directly to a complete language for stating such modifications. More
importantly, the explicit declarative nature of the model makes it clear
what assumption is being violated by each structural enhancement.
This knowledge can then be used to identify all the sites in the frames
and operations which relied upon the assumption. The complete
edmng language and the ability to identify all sites within the frames
and operations that must be updated provides the basis for the new
class of maintenance tools presented here, and the rauonale for focusing
exclusively on structural enhancement.

There are two basic types of structural enhancement: changing the
attribute structure and changing the type structure. The domain and
range of an attribute can be generalized (picking a supertype of the
current type), specialized (picking a subtype of the current type), or
changed incompatibly (picking a type which is neither a supertype nor
a subtype of the current type). The cardinality restriction can be
changed from one value in the enumerated range -(UNIQUE,
OPTIONAL, MULTIPLE, A N Y } to another.

Changes to the type structure involve changing the membership of
some enumerated set. The kinds of changes possible are simply adding
an item to or deleting an item from the enumerated set, refining an
existing item into several new ones, or combining existing items into a
new abstraction. These changes are handled analogously whether the
"enumerated set" is the set of instances of a type, the subtypes of a type,
or the attributes defined on a type.

AN EXAMPLE STRUCTURAL ENHANCEMENT
In order to illustrate the utility of structural enhancements and the

modifications involved to effect such changes, we have selected a single
actual example which we will use throughout this paper. This example
was completely effected by the tools described here with the exception
of propagation into the operations which are not yet implemented.
Here we wil l describe the original domain model, the change we wish to
make, and the modifications to the model required to effect that
change. Later sections wil l return to this example to describe the
propagation of these effects into the existing frames and operations.

The example we've chosen arose in our work on developing an
automated environment for software development [Balzer et al 83b].
As part of that effort we needed to represent the objects in the
programming domain. A piece of this domain model is shown
graphically in the top portion of Figure 1. Circles (or ovals) are used to
represent types. The subtypes of a type are placed below it and
connected to it by unlabeled links. Boxes are used to indicate attributes
associated with the type. We have suppressed showing the range and
count specification of the attribute to avoid cluttering the diagram.

This diagram indicates that the type PROGRAM-OBJECT has
FUNCTION, VARIABLE. RECORD, etc.. as subtypes, and
COMPONENT. SOURCE-TEXT, and MAINTAINER, as attributes.
This type was being used to represent the individual program objects
such as functions, variables, records, etc., which had a SOURCE-TEXT
that defined them, as well as the hierarchical module structure.
Modules had COMPONENTS which were either other modules or
individual program objects. The PROGRAM-OBJECT type was
clearly being overloaded, representing semantically different objects
based on whether they had components or a source-text. We decided to
make this distinction explicit, as shown in the bottom diagram of Figure
1, b\ refining the PROGRAM-OBJECT type into INDIV IDUAL-
PROG RAM-OBJECT, and MODULE subtypes which respectively
had SOURCE-TEXT and COMPONENT attributes. Furthermore, the
existing subtypes of PROG RAM-OBJECT should now become
subtypes of INDIVIDUAL-PROGRAM-OBJECT.

All of these changes are accomplished by a single use of the
REFINE-TYPE tool. The programmer indicates what type is to be
refined (PROGRAM-OBJECT), what new types (INDIV IDUAL-
PROGRAM-OBJECT and MODULE) are to be created as subtypes of
it. which attributes of the refined type are to be specialized to these new
subtype (SOURCE-TEXT to INDIVIDUAL-PROGRAM-OBJECT
and COMPONENT to MODULE) , and which existing subtypes should
become subtypes of the new subtypes (FUNCTION, VARIABLE,
RECORD, etc.. all become subtypes of INDIVIDUAL-PROGRAM-
OBJECT). The REFINE-TYPE tool invokes other tools to accomplish
these modifications to the domain model. For instance, after the new
subtypes have been created, attributes are moved to them from the
supertype via the SPECIALIZE-ATTRIBUTE-DOMAIN tool.

One change remains. We wish to make the two moved attributes
REQUIRED instead of OPTIONAL. This requires two invocations of
the CHANGE-CARDINALITY-RESTRICTION tool.

R. Balzer 205

The effects of these changes to the domain model on the existing
frames and operations will be described in the section dealing with
those topics.

PROPAGATING STRUCTURAL ENHANCEMENTS
INTO EXISTING FRAMES

Having a complete language for stating structural enhancements, and
editing tools for making the necessary modifications to the domain
model is a nice start. But it is only a beginning towards the goal of
maintaining a system through such structural enhancements. Having
altered the domain model, the effects of those changes must be
propagated through both the operations that use the model and the
frames already created by (or for) those operations.

This propagation of effects is possible because the explicit declarative
nature of the domain model forces the structural assumptions to be
explicit. This enables us to identify which ones are violated by the
enhancement. The structural nature of these assumptions allows us to
detect all sites within the frames and operations which rely upon each
assumption. This ability to identify the "usage" sites is the basis for the
new maintenance tools presented below. This section focuses on
propagating the effects of a structural enhancement into existing
frames: the next section addresses propagation into operations. These
propagation effects are summarized in Figure 2.

Cardinality Restriction Modification
When the cardinality restriction of an attribute is changed, only two

assumptions can be violated. The first is the assumption that the
attribute is required. If an optional attribute becomes required then

instances without the attribute must have it added. If a required
attribute becomes optional, then the existing frames are still valid, but
the programmer may wish to remove some instances of the attribute.
The second assumption that a cardinality restriction change can violate
is that an attribute is single-valued. If a multi-valued attribute becomes
single-valued, then instances with more than one value must be paired
down to a single value. If a single-valued attribute becomes mulu-
valued, then the existing frames are valid but the programmer may wish
to augment existing instances.

Attribute Range Modification
When the range of an attribute is changed, then only the assumption

about the type of the value of that attribute is affected. If the range is
generalized, then the existing data is valid, but the programmer may
wish to generalize the value of some existing instances. If the range is
specialized, then some instances (those whose attribute value is outside
the specialization) are invalid and their attribute value must be replaced
(i f the attribute is not required, it can be deleted rather than replaced).
If the range is changed incompatibly, then all existing instances are
invalid and their attribute value must be replaced (or alternatively,
deleted if the the attribute is optional).

Attribute Domain Modification
When the domain of an attribute is changed, then only the

assumption of which type of object has this attribute is affected. If the
domain is generalized, then the attribute is applicable to more
instances. If it is required, then it must be added to the newly
applicable instances. If it is optional, then the existing frames are valid,
but the programmer may wish to add it to the newly applicable

FIGURE 2

206 R. Balzer

instances. If the domain is specialized, then some instances (those
which are not instances of the specialization) must have the attribute
removed.

The case of an incompatible change in the domain of an attribute is
most interesting. It could simply be handled as the deletion of the
attribute from the original domain and the addition of it to the new
domain. This would destroy the attribute value from instances of the
original domain and require the programmer to specify a value (or
values) for instances of the new domain. However, we feel that the
intent of such a change is almost always to MOVE the existing attribute
values from instances of the original domain to "corresponding"
instances of the new domain. This correspondence is defined by a path
through the knowledge base which maps an instance of the original
domain mto an instance (or possibly several) of the new domain. The
attribute values are moved as defined by this mapping. This path can
either be specified by the programmer or heuristically determined (via
the shortest path of required single-valued attributes).

Set Membership Modification
When the membership of a set changes, then only the assumption of

the set of alternative values (the pigeon-hole principle) is affected. If an
item is added to the set, then the existing frames are valid (attributes are
added with OPTIONAL as the cardinality restriction), but the
programmer may wish to use the new item in place of. or in addition to,
existing items. If an item is deleted, then use of that deleted item must
be removed or replaced. If an item is refined, then the existing frames
are valid, but the programmer may wish to substitute one of the
refinements for use of the refined item (i.e., be more specific). If items
are combined to form a new abstraction, then the existing frames are
valid, but the programmer may wish to substitute the new item for
some uses of the combined items (i.e., be more abstract).

Example Frames Propagation
Continuing with the example structural enhancement shown in

Figure 1 which refined the type PROGRAM-OBJECT into
INDIVIDUAL-PROGRAM-OBJECT and MODULE, and specialized
some of its attributes, we consider here the effect of these changes on
the existing frames. First, the existing frames remain valid when a type
is refined, but the programmer may wish to reclassify some instances of
the refined types as instances of one of the refinements. In this
example, we wish to partition the existing instances among the two
subtypes (those that have a SOURCE-TEXT are to become
INDIVIDUAL-PROGRAM-OBJECTs and those that have
COMPONENTS are to become MODULEs). The REFINE-TYPE tool
allows such predicates to be specified and performs the indicated
reclassifications.

Second, the specialization of the domain of the two attributes may
necessitate removal of this attribute from instances outside the
specialized domain. In this example, since the existence of the attribute
determined the reclassification, there are no such instances to update.
However, the tool is unable to infer this result Instead, it dutifully
checks for any such instances.

Finally, the changing of the cardinality restriction of these attributes
from OPTIONAL to REQUIRED causes the system to check for
instances that need, but do not already have, the attribute. Again, this
search is fruitless because the reclassification was based on the prior
existence of the attributes. A l l of these changes to the existing frames,
as well was the searches for frames requiring and/or desiring change,
were performed by the frame propagation portion of the enhancement
tools.

PROPAGATING STRUCTURAL ENHANCEMENTS
INTO OPERATIONS

The previous section identified the assumptions that were violated by
each type of structural enhancement and described how dependencies
upon those assumptions could be detected and corrected in existing
frames. The analysis of the deduction of on those same assumptions
and their correction in existing operations is very similar. However,
since this portion of the analysis has not yet been implemented, only a
summary of the analysis (as shown in Figure 2) is presented here. The
nature of these corrections is typically to change the conditionally of
the code which uses a changed portion of the domain model so that it
agrees with the conditionality defined by the model.

The summary in Figure 2 distinguishes three types of usage of an
attribute: consumer, producer, and creator. Consumer uses are all
accesses to the value of an attribute; producer uses are all places which
set, or remove, the value of the attribute, and, creator uses are the
subset of producer uses which set the value of the attribute while
creating an instance of the attribute's domain.

Example Operation Propagation
Returning once again to the structural enhancement example shown

in Figure 1 which refined the type PROGRAM-OBJECT mto
INDIVIDUAL-PROGRAM-OBJECT and MODULE, and specialed
some of its attributes, we now consider what effects these changes have
on the existing operauons.

First, when a type is refined, the existing operations remain \alid but
the programmer may wish to replace some uses of the refined item by
one of its refinements. In this case, basically all uses of PROGRAM-
OBJECT were replaced by uses of one of the refinements. In those
places where it was not known which refinement was present, a
TYPECASE statement was inserted to make the selection.

Second, the specialization of the domain of the two attributes causes
both the the producer and consumer uses to be conditionalized. For
this example, this conditionalization (after simplification) is a NO-OP
because all uses already occur inside of the proper subtype
determinauon (i.e. the necessary conditionality already exists). This
results from the fact that in this example the attribute occurrence
corresponds exactly to the subtype definition.

Finally, the changing of the cardinality restriction of these attributes
from OPTIONAL to REQUIRED causes the consumer uses (which
remain valid) to be checked for unneeded conditional guards, and
creates uses to include this attribute.

Unfortunately, since none of the tools for propagating effects into
operations is yet implemented, all of these checks and modifications
were performed manually.

CURRENT STATUS
Our goal in undertaking this effort was to obtain assistance in

enhancing systems. Our investigation of enhancement led to the
complete categorization of structural enhancement of (a subset of) our
domain modeling language and the analysis of the propagation effects
of such enhancements on both frames and operauons reported here.
They, in turn, form the basis for a new class of tools for performing
such enhancements. Implementation of these tools is well underway
and consists of three phases. The first consists of tools for modifying
the domain model as defined by the complete categorization presented
earlier. These tools are implemented and are being used to provide
structural enhancements to domain models.

file:///alid

R. Balzer 207

The second phase consists of tools for propagating the effects of
structural enhancements into existing frames. These tools are being
implemented as they are needed. One of these tools, refining an item,
has been used extensively (including the example provided in this
paper) to apportion the existing instances of a refined type among its
subtypes. Since many such instances may need to be reapportioned,
the tool uses a programmer-supplied predicate for apportionment
rather than interactively querying the programmer. The built-in facility
for our system to access all instances of a type [Goldman 83] makes
creating such tools straightforward. We anucipate no problems with
the remaining tools in this phase.

The final phase consists of the tools for propagating the effects of
structured enhancements into operations. Implementation is awaiting
completion of both a static analyzer capable of detecting consumer,
producer and creator uses of the types, attributes, and enumerated
ranges from which our domain model is composed, and a type checker
capable of determining the type of each value being produced and/or
consumed by the operations. Once the static analyzer and type checker
are available, we anucipate moderate difficulty in implementing these
tools because of the syntactic and semantic variability allowed and
because no-one has yet designed a suitable transformation system (as
opposed to a set of ad hoc procedural manipulations) for making these
kinds of modifications to operations. We believe that an important
precursor to such a facility is a categorization of the types of program
modification to be made, rules of composition, and rules for
simplification. Such a foundation always appears to be necessary for
formal manipulation of programs.

CONCLUSION
This paper addresses the dominant maintenance activity,

enhancement. It focuses on those enhancements, called structural, that
change the domain model. It shows how the domain model structures
the validity assumptions of the domain and forces them to be explicitly
stated. The structure of the model determines the type of changes that
are possible to the model. These changes have been categorized into a
complete language for specifying structural enhancements. Only four
types of modification are possible: changing the domain, range, or
cardinality restriction of an attribute, or modifying the set of items in an
enumerated set (such enumerated sets include the type hierarchy, the
set of attributes associated with a type, and explicitly enumerated
ranges).

Associated with each of these changes is a single validity assumption
affected by the change (in the case of a cardinality restriction change
there are two). The fact that reliance on these assumptions can be
detected in both frames and operations provides the basis for
automated tools that propagate the effects of a structural enhancement
into both the frames and operations associated with the enhanced
domain model. A complete analysis of these propagation effects was
presented for each of the four types of structural enhancement.
Generally the propagation effects on the frames directly mirror the
structural changes to the model, while those on the operauons are
evidenced in the addition or removal of conditional guards on the
producer and consumer uses of the modified structure.

One particularly interesting structural enhancement is an
incompatible change to the domain of an attribute (as opposed to a
generalization or specialization of the domain). Such a change is
treated as a form of indirection and a mapping is used in both the
frames and operauons to locate the corresponding object specified by
the indirection. This mapping can either be specified as pan of the
enhancement, or heuristically determined.

Automated tools for the complete set of domain model modifications
and for the propagation of effects of some of these modifications into
the existing frames have been built and are being used.

Such tools are an important first step towards support for an
incremental development process [Balzer et al 83a] for both
conventional and knowledge based software.

The tools described in this paper support structural enhancements.
The remaining, functional, enhancements will be more difficult to
support because they involve changing the procedural component, the
operations, rather than the declarative and highly structured domain
model It is our belief that such tools must understand the functional
aspects of the system they are manipulating, and that this will require a
more declarative structural specification for these systems.

REFERENCES

[Balzer et al 81] Balzer, R., N. Goldman, D. Wile, Operational
Specification as the Basis for Rapid Prototyping. ACM Sigsoft
Software Engineering Syposium onf Rapid Prototyping. Technical
Report, October 1981.

[Balzer et al 83a] Balzer, R., C. Green, T. Cheatham. "Software
Technology in 1990's," Computer Magazine, November 1983.

[Balzer et al 83b] Balzer, R., D. Dyer, M. Morgenstern, R. Neches,
"Specification-Based Computing Environment," in AAAl-83,
AAA1,1983.

[Bobrow 76] Bobrow, D.. and T. Winograd, An Overview of KRL, A
Knowledge Representation Language, Xerox, Technical Report
CSL-76-4, July 1976.

[Goldman 83] Goldman, Neil M., APS Reference Manual USC
Information Sciences Institute, 1983.

[Minsky 81] Minsky, M., "A Framework for Representing
Knowledge," in J. Haugeland (ed.), Mind Design, pp. 95-128, M I T
Press, Cambridge, Mass. 1981.

[Roberts 77] Roberts, R., and 1. Goldstein, FRL Users' Manual
Massachusetts Institute of Technology. Technical Report Al
Memo 408,1977.

