
AUTOMATED ENHANCEMENT 
OF 

KNOWLEDGE REPRESENTATIONS1 

Robert Balzer 
USC/Information Sciences Institute 

4676 Admiralty Way 
Marina del Rey, CA 90292 

ABSTRACT 
A new class of maintenance tool is presented, designed specifically for 

enhancement of knowledge representation systems. These tools are 
based on the structure of a domain model and the ways it can be 
changed. A complete language for changing domain models is 
presented. Associated with each change is an explicit assumption in the 
previous model that is violated. A complete analysis is presented of 
how existing knowledge representation frames and the associated 
operations on those frames must be updated to correct these 
assumption violations introduced by changing the domain model. 

Such tools are an important first step towards support for an 
incremental development process. Almost no support currently exists 
for enhancing knowledge representation systems. The tools described 
here support enhancements involving modification to the domain 
model. Support for the remaining enhancements will require both 
more knowledgeable tools which understand the system they are 
manipulating, and more declarative structural specifications for such 
systems which facilitate that understanding. 

INTRODUCTION 
It is by now well known that maintenance is the dominant life-cycle 

cost for conventional software systems, often consuming 80-90% of the 
total effort. Yet this life-cycle phase has received remarkably little 
attention or support. The few tools that exist (such as debuggers, 
modification audit trails, configuration managers and regression testers) 
have been available for a long ume and are quite stable. There is scant 
evidence of further progress. 

In fact, the major thrust of the last several years in the Software 
Engineering community has been towards reducing the need for 
maintenance, rather than facilitating it. This thrust has centered on 
reducing (or eventually eliminating) implementation bugs through 
improved development methods (either informal or formal and either 
manual or automated). This thrust has begun to bear fruit. 
Improvements have been made in reducing the number of 
implementation errors. They may even be eliminated entirely via 
formalization and automation of the development process. 

But this thrust begs the maintenance problem because it only 
addresses one maintenance activity, the correction of implemenution 
bugs. This activity decays rapidly after a system is fielded, and the 
thrust merely lowers the initial level of that activity. 

Enhancement, rather than correction of implementation bugs, is the 
dominant maintenance activity. It grows rather than decays over time. 
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It is the source of the multi-year maintenance backlog experienced by 
most DP organizations. It wil l become even more dominant as the 
development improvement thrust partly reduces the need to correct 
implemenution bugs, and as the current trend towards release of 
systems in incremental stages, with enhanced functionality, accelerates. 

There are two reasons for such enhancements. The first is that no-
one has enough insight to build a system correctly the first ume (even 
assuming no implementation bugs). The second is that the mere 
existence of the system, and the insight gained from its usage, create a 
demand for new or altered facilities. 

Rather than attempting to eliminate the need for maintenance we 
should recognize that enhancement, not initial development, is the 
central software activity (and the basis for achieving the "softness" 
promised in software). 

This dominance of enhancement is even greater for Knowledge 
Based systems because they are developed via cut-and-try explority 
programming techniques. Our software life-cycle and support 
environments should be rethought accordingly. 

We have elsewhere presented our knowledge based version of such a 
paradigm and support environment [Balzer et al 83a]. This paper 
addresses the enhancement activity directly. It defines two types of 
enhancements, structural and functional, and focuses on the former. It 
categorizes the class of possible structural enhancements, defines a 
complete language for specifying such enhancements, and describes an 
implemented set of tools for effecting these structured enhancements. 
It also presents an analysis of the changes to existing knowledge 
representauon frames and the operations on them necessitated by these 
structural enhancements. 

The basis for all these capabilities is an explicit, modifiable domain 
model which defines the class of valid frames. The structure of this 
model determines the class of assumptions that can be explicitly 
represented. Change to such an assumption should cause propagation 
of effects to all places in the frames and the operations on them where 
that assumption was relied upon. Our leverage arises from the fact that 
the domain model forces these assumptions to be explicitly stated, and 
to be stated in such a way that reliance can be mechanically determined. 
This provides the basis for a new class of maintenance tools which 
support the propagation of effects into the frames and operations 
associated with a domain model. 

THE STRUCTURE OF A DOMAIN MODEL 
We therefore begin by examining the structure of a domain model. 

We have a fairly conventional frame-based object model [Minsky 
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81, Roberts 77, Bobrow 76] in which the data is self-describing (i.e., its 
type(s) can be determined), all instances of a type can be obtained, 
attribute declarations are inherited along subtype links, the range of an 
attribute is type limited, and an attribute can be either required or 
optional and either single or multi-valued. Our knowledge 
representation language is quite a bit more elaborate [Balzer et al 
81] but only these aspects are relevant to maintenance. 

STRUCTURAL ENHANCEMENT 
The set of all possible enhancements can be divided into two 

categones - those that change the domain model and those that do not. 
We call the former structural enhancements, and the latter functional 
enhancements. The types of structural enhancement possible are 
determined by the structure of the domain model. This leads fairly 
directly to a complete language for stating such modifications. More 
importantly, the explicit declarative nature of the model makes it clear 
what assumption is being violated by each structural enhancement. 
This knowledge can then be used to identify all the sites in the frames 
and operations which relied upon the assumption. The complete 
edmng language and the ability to identify all sites within the frames 
and operations that must be updated provides the basis for the new 
class of maintenance tools presented here, and the rauonale for focusing 
exclusively on structural enhancement. 

There are two basic types of structural enhancement: changing the 
attribute structure and changing the type structure. The domain and 
range of an attribute can be generalized (picking a supertype of the 
current type), specialized (picking a subtype of the current type), or 
changed incompatibly (picking a type which is neither a supertype nor 
a subtype of the current type). The cardinality restriction can be 
changed from one value in the enumerated range -(UNIQUE, 
OPTIONAL, MULTIPLE, A N Y } to another. 

Changes to the type structure involve changing the membership of 
some enumerated set. The kinds of changes possible are simply adding 
an item to or deleting an item from the enumerated set, refining an 
existing item into several new ones, or combining existing items into a 
new abstraction. These changes are handled analogously whether the 
"enumerated set" is the set of instances of a type, the subtypes of a type, 
or the attributes defined on a type. 

AN EXAMPLE STRUCTURAL ENHANCEMENT 
In order to illustrate the utility of structural enhancements and the 

modifications involved to effect such changes, we have selected a single 
actual example which we will use throughout this paper. This example 
was completely effected by the tools described here with the exception 
of propagation into the operations which are not yet implemented. 
Here we wil l describe the original domain model, the change we wish to 
make, and the modifications to the model required to effect that 
change. Later sections wil l return to this example to describe the 
propagation of these effects into the existing frames and operations. 

The example we've chosen arose in our work on developing an 
automated environment for software development [Balzer et al 83b]. 
As part of that effort we needed to represent the objects in the 
programming domain. A piece of this domain model is shown 
graphically in the top portion of Figure 1. Circles (or ovals) are used to 
represent types. The subtypes of a type are placed below it and 
connected to it by unlabeled links. Boxes are used to indicate attributes 
associated with the type. We have suppressed showing the range and 
count specification of the attribute to avoid cluttering the diagram. 

This diagram indicates that the type PROGRAM-OBJECT has 
FUNCTION, VARIABLE. RECORD, etc.. as subtypes, and 
COMPONENT. SOURCE-TEXT, and MAINTAINER, as attributes. 
This type was being used to represent the individual program objects 
such as functions, variables, records, etc., which had a SOURCE-TEXT 
that defined them, as well as the hierarchical module structure. 
Modules had COMPONENTS which were either other modules or 
individual program objects. The PROGRAM-OBJECT type was 
clearly being overloaded, representing semantically different objects 
based on whether they had components or a source-text. We decided to 
make this distinction explicit, as shown in the bottom diagram of Figure 
1, b\ refining the PROGRAM-OBJECT type into INDIV IDUAL-
PROG RAM-OBJECT, and MODULE subtypes which respectively 
had SOURCE-TEXT and COMPONENT attributes. Furthermore, the 
existing subtypes of PROG RAM-OBJECT should now become 
subtypes of INDIVIDUAL-PROGRAM-OBJECT. 

All of these changes are accomplished by a single use of the 
REFINE-TYPE tool. The programmer indicates what type is to be 
refined (PROGRAM-OBJECT), what new types ( INDIV IDUAL-
PROGRAM-OBJECT and MODULE) are to be created as subtypes of 
it. which attributes of the refined type are to be specialized to these new 
subtype (SOURCE-TEXT to INDIVIDUAL-PROGRAM-OBJECT 
and COMPONENT to MODULE) , and which existing subtypes should 
become subtypes of the new subtypes (FUNCTION, VARIABLE, 
RECORD, etc.. all become subtypes of INDIVIDUAL-PROGRAM-
OBJECT). The REFINE-TYPE tool invokes other tools to accomplish 
these modifications to the domain model. For instance, after the new 
subtypes have been created, attributes are moved to them from the 
supertype via the SPECIALIZE-ATTRIBUTE-DOMAIN tool. 

One change remains. We wish to make the two moved attributes 
REQUIRED instead of OPTIONAL. This requires two invocations of 
the CHANGE-CARDINALITY-RESTRICTION tool. 
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The effects of these changes to the domain model on the existing 
frames and operations will be described in the section dealing with 
those topics. 

PROPAGATING STRUCTURAL ENHANCEMENTS 
INTO EXISTING FRAMES 

Having a complete language for stating structural enhancements, and 
editing tools for making the necessary modifications to the domain 
model is a nice start. But it is only a beginning towards the goal of 
maintaining a system through such structural enhancements. Having 
altered the domain model, the effects of those changes must be 
propagated through both the operations that use the model and the 
frames already created by (or for) those operations. 

This propagation of effects is possible because the explicit declarative 
nature of the domain model forces the structural assumptions to be 
explicit. This enables us to identify which ones are violated by the 
enhancement. The structural nature of these assumptions allows us to 
detect all sites within the frames and operations which rely upon each 
assumption. This ability to identify the "usage" sites is the basis for the 
new maintenance tools presented below. This section focuses on 
propagating the effects of a structural enhancement into existing 
frames: the next section addresses propagation into operations. These 
propagation effects are summarized in Figure 2. 

Cardinality Restriction Modification 
When the cardinality restriction of an attribute is changed, only two 

assumptions can be violated. The first is the assumption that the 
attribute is required. If an optional attribute becomes required then 

instances without the attribute must have it added. If a required 
attribute becomes optional, then the existing frames are still valid, but 
the programmer may wish to remove some instances of the attribute. 
The second assumption that a cardinality restriction change can violate 
is that an attribute is single-valued. If a multi-valued attribute becomes 
single-valued, then instances with more than one value must be paired 
down to a single value. If a single-valued attribute becomes mulu-
valued, then the existing frames are valid but the programmer may wish 
to augment existing instances. 

Attribute Range Modification 
When the range of an attribute is changed, then only the assumption 

about the type of the value of that attribute is affected. If the range is 
generalized, then the existing data is valid, but the programmer may 
wish to generalize the value of some existing instances. If the range is 
specialized, then some instances (those whose attribute value is outside 
the specialization) are invalid and their attribute value must be replaced 
(i f the attribute is not required, it can be deleted rather than replaced). 
If the range is changed incompatibly, then all existing instances are 
invalid and their attribute value must be replaced (or alternatively, 
deleted if the the attribute is optional). 

Attribute Domain Modification 
When the domain of an attribute is changed, then only the 

assumption of which type of object has this attribute is affected. If the 
domain is generalized, then the attribute is applicable to more 
instances. If it is required, then it must be added to the newly 
applicable instances. If it is optional, then the existing frames are valid, 
but the programmer may wish to add it to the newly applicable 

FIGURE 2 
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instances. If the domain is specialized, then some instances (those 
which are not instances of the specialization) must have the attribute 
removed. 

The case of an incompatible change in the domain of an attribute is 
most interesting. It could simply be handled as the deletion of the 
attribute from the original domain and the addition of it to the new 
domain. This would destroy the attribute value from instances of the 
original domain and require the programmer to specify a value (or 
values) for instances of the new domain. However, we feel that the 
intent of such a change is almost always to MOVE the existing attribute 
values from instances of the original domain to "corresponding" 
instances of the new domain. This correspondence is defined by a path 
through the knowledge base which maps an instance of the original 
domain mto an instance (or possibly several) of the new domain. The 
attribute values are moved as defined by this mapping. This path can 
either be specified by the programmer or heuristically determined (via 
the shortest path of required single-valued attributes). 

Set Membership Modification 
When the membership of a set changes, then only the assumption of 

the set of alternative values (the pigeon-hole principle) is affected. If an 
item is added to the set, then the existing frames are valid (attributes are 
added with OPTIONAL as the cardinality restriction), but the 
programmer may wish to use the new item in place of. or in addition to, 
existing items. If an item is deleted, then use of that deleted item must 
be removed or replaced. If an item is refined, then the existing frames 
are valid, but the programmer may wish to substitute one of the 
refinements for use of the refined item (i.e., be more specific). If items 
are combined to form a new abstraction, then the existing frames are 
valid, but the programmer may wish to substitute the new item for 
some uses of the combined items (i.e., be more abstract). 

Example Frames Propagation 
Continuing with the example structural enhancement shown in 

Figure 1 which refined the type PROGRAM-OBJECT into 
INDIVIDUAL-PROGRAM-OBJECT and MODULE, and specialized 
some of its attributes, we consider here the effect of these changes on 
the existing frames. First, the existing frames remain valid when a type 
is refined, but the programmer may wish to reclassify some instances of 
the refined types as instances of one of the refinements. In this 
example, we wish to partition the existing instances among the two 
subtypes (those that have a SOURCE-TEXT are to become 
INDIVIDUAL-PROGRAM-OBJECTs and those that have 
COMPONENTS are to become MODULEs). The REFINE-TYPE tool 
allows such predicates to be specified and performs the indicated 
reclassifications. 

Second, the specialization of the domain of the two attributes may 
necessitate removal of this attribute from instances outside the 
specialized domain. In this example, since the existence of the attribute 
determined the reclassification, there are no such instances to update. 
However, the tool is unable to infer this result Instead, it dutifully 
checks for any such instances. 

Finally, the changing of the cardinality restriction of these attributes 
from OPTIONAL to REQUIRED causes the system to check for 
instances that need, but do not already have, the attribute. Again, this 
search is fruitless because the reclassification was based on the prior 
existence of the attributes. A l l of these changes to the existing frames, 
as well was the searches for frames requiring and/or desiring change, 
were performed by the frame propagation portion of the enhancement 
tools. 

PROPAGATING STRUCTURAL ENHANCEMENTS 
INTO OPERATIONS 

The previous section identified the assumptions that were violated by 
each type of structural enhancement and described how dependencies 
upon those assumptions could be detected and corrected in existing 
frames. The analysis of the deduction of on those same assumptions 
and their correction in existing operations is very similar. However, 
since this portion of the analysis has not yet been implemented, only a 
summary of the analysis (as shown in Figure 2) is presented here. The 
nature of these corrections is typically to change the conditionally of 
the code which uses a changed portion of the domain model so that it 
agrees with the conditionality defined by the model. 

The summary in Figure 2 distinguishes three types of usage of an 
attribute: consumer, producer, and creator. Consumer uses are all 
accesses to the value of an attribute; producer uses are all places which 
set, or remove, the value of the attribute, and, creator uses are the 
subset of producer uses which set the value of the attribute while 
creating an instance of the attribute's domain. 

Example Operation Propagation 
Returning once again to the structural enhancement example shown 

in Figure 1 which refined the type PROGRAM-OBJECT mto 
INDIVIDUAL-PROGRAM-OBJECT and MODULE, and specialed 
some of its attributes, we now consider what effects these changes have 
on the existing operauons. 

First, when a type is refined, the existing operations remain \alid but 
the programmer may wish to replace some uses of the refined item by 
one of its refinements. In this case, basically all uses of PROGRAM-
OBJECT were replaced by uses of one of the refinements. In those 
places where it was not known which refinement was present, a 
TYPECASE statement was inserted to make the selection. 

Second, the specialization of the domain of the two attributes causes 
both the the producer and consumer uses to be conditionalized. For 
this example, this conditionalization (after simplification) is a NO-OP 
because all uses already occur inside of the proper subtype 
determinauon (i.e. the necessary conditionality already exists). This 
results from the fact that in this example the attribute occurrence 
corresponds exactly to the subtype definition. 

Finally, the changing of the cardinality restriction of these attributes 
from OPTIONAL to REQUIRED causes the consumer uses (which 
remain valid) to be checked for unneeded conditional guards, and 
creates uses to include this attribute. 

Unfortunately, since none of the tools for propagating effects into 
operations is yet implemented, all of these checks and modifications 
were performed manually. 

CURRENT STATUS 
Our goal in undertaking this effort was to obtain assistance in 

enhancing systems. Our investigation of enhancement led to the 
complete categorization of structural enhancement of (a subset of) our 
domain modeling language and the analysis of the propagation effects 
of such enhancements on both frames and operauons reported here. 
They, in turn, form the basis for a new class of tools for performing 
such enhancements. Implementation of these tools is well underway 
and consists of three phases. The first consists of tools for modifying 
the domain model as defined by the complete categorization presented 
earlier. These tools are implemented and are being used to provide 
structural enhancements to domain models. 
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The second phase consists of tools for propagating the effects of 
structural enhancements into existing frames. These tools are being 
implemented as they are needed. One of these tools, refining an item, 
has been used extensively (including the example provided in this 
paper) to apportion the existing instances of a refined type among its 
subtypes. Since many such instances may need to be reapportioned, 
the tool uses a programmer-supplied predicate for apportionment 
rather than interactively querying the programmer. The built-in facility 
for our system to access all instances of a type [Goldman 83] makes 
creating such tools straightforward. We anucipate no problems with 
the remaining tools in this phase. 

The final phase consists of the tools for propagating the effects of 
structured enhancements into operations. Implementation is awaiting 
completion of both a static analyzer capable of detecting consumer, 
producer and creator uses of the types, attributes, and enumerated 
ranges from which our domain model is composed, and a type checker 
capable of determining the type of each value being produced and/or 
consumed by the operations. Once the static analyzer and type checker 
are available, we anucipate moderate difficulty in implementing these 
tools because of the syntactic and semantic variability allowed and 
because no-one has yet designed a suitable transformation system (as 
opposed to a set of ad hoc procedural manipulations) for making these 
kinds of modifications to operations. We believe that an important 
precursor to such a facility is a categorization of the types of program 
modification to be made, rules of composition, and rules for 
simplification. Such a foundation always appears to be necessary for 
formal manipulation of programs. 

CONCLUSION 
This paper addresses the dominant maintenance activity, 

enhancement. It focuses on those enhancements, called structural, that 
change the domain model. It shows how the domain model structures 
the validity assumptions of the domain and forces them to be explicitly 
stated. The structure of the model determines the type of changes that 
are possible to the model. These changes have been categorized into a 
complete language for specifying structural enhancements. Only four 
types of modification are possible: changing the domain, range, or 
cardinality restriction of an attribute, or modifying the set of items in an 
enumerated set (such enumerated sets include the type hierarchy, the 
set of attributes associated with a type, and explicitly enumerated 
ranges). 

Associated with each of these changes is a single validity assumption 
affected by the change (in the case of a cardinality restriction change 
there are two). The fact that reliance on these assumptions can be 
detected in both frames and operations provides the basis for 
automated tools that propagate the effects of a structural enhancement 
into both the frames and operations associated with the enhanced 
domain model. A complete analysis of these propagation effects was 
presented for each of the four types of structural enhancement. 
Generally the propagation effects on the frames directly mirror the 
structural changes to the model, while those on the operauons are 
evidenced in the addition or removal of conditional guards on the 
producer and consumer uses of the modified structure. 

One particularly interesting structural enhancement is an 
incompatible change to the domain of an attribute (as opposed to a 
generalization or specialization of the domain). Such a change is 
treated as a form of indirection and a mapping is used in both the 
frames and operauons to locate the corresponding object specified by 
the indirection. This mapping can either be specified as pan of the 
enhancement, or heuristically determined. 

Automated tools for the complete set of domain model modifications 
and for the propagation of effects of some of these modifications into 
the existing frames have been built and are being used. 

Such tools are an important first step towards support for an 
incremental development process [Balzer et al 83a] for both 
conventional and knowledge based software. 

The tools described in this paper support structural enhancements. 
The remaining, functional, enhancements will be more difficult to 
support because they involve changing the procedural component, the 
operations, rather than the declarative and highly structured domain 
model It is our belief that such tools must understand the functional 
aspects of the system they are manipulating, and that this will require a 
more declarative structural specification for these systems. 
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