
AUTOMATIC PROGRAMMING FOR STREAMS

David Barstow
SchlumbergerDoll Research

Old Quarry Road
Ridgefield, Conn 06877-4108

Abstract
Most automatic programming research has focused on programs
which terminate and which produce output values upon
termination. By contrast, programs which operate on streams of
data usually do not terminate and usually produce streams of
output data during execution. Such stream programs may be
specified with a technique which is a generalization of
specification techniques for conventional programs The use of
transformations also seems to be an appropriate technique for
automatically synthesizing stream programs.

I. Introduction
Previous work on automatic programming (e.g., [Biermann et al
84]) has been concerned with sequential programs whose inputs
are available before the program executes and whose outputs
need not be produced until the program terminates However,
many computations must deal with data which is not available until
after the program has started and must produce data before it
terminates. In fact, in many cases the program must not
terminate; rather it must continually execute, responding to input
data as they become available and producing output data
whenever appropriate. Such computations are usually modeled
as communicating concurrent processes. One form of
communication among such processes involves streams of data.
In this paper, the automatic programming problem for stream
programs will be defined and an approach to solving the problem
will be described.

II. The Problem
A. Streams
There are several ways to model computation with streams,
ranging from pure dataflow [Ackerman 82] to coarse-grained
dataflow [Kahn and McQueen 77] to pipes [Ritchie and Thompson
74] In our work, we use a model called the Stream Machine,
which is essentially a coarse-grained dataflow model with
extensions for real-time computations [Barth, Guthery, and
Barstow 85].

For the sake of clarity, a somewhat simplified formulation will be
used in this paper:

A stream is a sequence of data values:

The length of s. ks, is initially 0 (i.e.. there are no data
values) and increases as new data values are added
to the stream.
Produce(s,x) adds x to s as a new data value; that is.
ks is incremented by one and s[Ks] is set to x Only
one process may add data values to any given stream.
Consume(s) reads a data value from stream s
Specifically, it returns the data value whose index is
the lowest of those values not yet read by the
consuming process. If there is no such value (i e , not
enough data values have been produced yet), the
process suspends execution and resumes after
another data value has been produced for the stream
Different consuming processes may consume the
elements at different rates without interfering with
each other Conceptually, one may think of each
consumer operating on a different copy of the stream.

Note that no process may alter a stream other than by adding at
one end and removing at the other, nor may a process determine
the length of the stream. Because of these characteristics,
computations modeled as processes communicating through
streams are equivalent to conventional dataflow, and thus are
deterministic.

B. Stream Programs
A stream program consists of a set of concurrently executing
processes communicating via streams. Each of the processes is
defined by a program written in a traditional sequential language,
extended by the two stream operations defined earlier
Produce(s,x) and Consume(s). Perhaps the most interesting
aspect of stream programs is that, in general, they may not
terminate. In fact, a typical stream process is a non-terminating
loop which consumes from some streams and produces on others
during each execution of the loop body.

C. Specifying Stream Programs
A specification of a stream programming problem consists of
terms and predicates. The terms are either static, refenng to
single data values, or they are streams, refering to streams of data
values*. All terms are typed; however, in the following discussion,
the types will be left implicit and should be clear from context. The

"In the following discussion, stream terms will be denoted by SMALL CAPITALS,
individual elements of a stream will be denoted by the index in brackets

D. Barstow 233

terms are partitioned into three sets, input terms, output terms,
and intermediate terms. There are two sets of predicates-
preconditions are predicates whose arguments are input terms;
postconditions are predicates whose arguments are input, output,
or intermediate terms.
Such a specification is similar to specification techniques for
conventional sequential programs [Biermann et al 84] In fact, if
there are no stream terms, we have a conventional style of
specification. For such conventional specifications, a program
would be said to satisfy the specifications if, for all values of the
input terms which satisfy the preconditions, the program
terminates with values for the output terms which satisfy all of the
postconditions. However, since there may be streams in the
specification and since stream programs may not terminate, we
must define the requirements for a target program somewhat
differently. Informally, we would like the program to guarantee
that all postconditions are satisfied by all stream elements which
have been consumed or produced so far. Somewhat more
formally, a program will be said to satisfy a specification if, for all
sequences of initial values on input streams which satisfy the
preconditions, the program eventually produces output streams
whose initial values satisfy the postconditions. For example,
consider the specification:

where INPUT and OUTPUT are input and output streams
respectively. A program satisfies this specification if, for all
sequences of initial values, INPUT[I], INPUT[2] INPUT[H], the

program eventually produces at least n elements of OUTPUT such
that

Thus, the automatic programming problem for streams is to
transform a specification of the form given above into a set of
programs, each described in a sequential language extended with
stream constructs, that satisfies the specification

III. An Approach

A. Relations on Streams
The difficult part in specifying a stream program is to describe the
pre- and postconditions. In our work, we initially tried to use a
relatively general technique in which relations referenced stream
values directly by their indices. We found, however, that
subsequent reasoning about the specifications was quite difficult
for many common cases (e.g merging two streams together to
create a third) because the manipulations of stream indices was
fairly complex. To simplify both specifications and subsequent
reasoning we are using a technique based on operators and
relations oriented toward streams, rather than toward stream
elements. The particular operators which we have found useful
are:

Generated)
F is a function of one integer argument. The resulting
stream consists of successive values of F for the natural
numbers. That is:

StreamMap
The s, are all streams; F is a function of k arguments
defined on the types of the elements of the s streams.
The resulting stream contains the value of F applied to
successive elements of the s streams

hilter{s,P)
s and P are streams. The elements of s are of any type;
the elements of P are Booleans. The elements of the
resulting filtered stream are those elements of s for which
the corresponding element of P IS true. More formally:

where is the smallest integer such that True occurs /
times in Note that this implies that
True.

The elements of the s streams are all of the same type; the
elements of c are integers in the range [1, .k]. The
resulting stream contains all of the elements of the s,
streams, merged according to the elements of c:

where / is the number of occurrences of c[/] in

Shift(s,k)
S is a stream; k is an integer. The elements of the resulting
stream are the same as the elements of s, shifted by k
indices. More formally.

Pack/ng(S,k)
S is a stream; k is an integer. The elements of the resulting
stream are vectors' of length k whose elements are of the
same type as the elements of s. The vectors in the
resulting stream correspond to continuous subsequences
of the elements of s

Window[sM)
s is a stream; k is an integer. The elements of the resulting
stream are vectors of length k whose elements are of the
same type as the elements of s The vectors in the
resulting stream correspond to a moving window over s:

In addition, we require one type of stream predicate which cannot
be expressed as a simple stream operator:

The s are all streams; R is a relation of k arguments

'Angle brackets will be used to denote the construction of a vector from a
sequence of values, individual vector elements will be denoted by enclosing the
index in angle brackets

234 D. Barstow

defined on the types of the elements of the s streams.

The s streams satisfy the StreamRelation expression if

successive elements of the s, streams satisfy Fi­

bs a simple example of a specification, consider a switching

problem: the elements of INPUT are to be split off into one of two

other streams, OUTPUT1 or OUTPUT2, depending on the value of

CONTROL, which is a stream whose elements are either 1 or 2.

Informally, INPUT is a merge of OUTPUT1 and OUTPUT2 More

formally:

We do not claim that this particular set of operators is complete or
in any sense primitive. Rather they seem to cover well the
software tasks which we have been studying. As our work
continues, we expect the set of operators to grow and evolve

Input Terms, INPUT, CONTROL

Output Terms, OUTPUT1 OUTPUT2

Postconditions
INPUT = Merge(CONTROL,OUTPUT1 ,OUTPUT2)

As a second example, consider the specification of a simple
feedback loop which adjusts the gain on an amplifier to keep the
amplitude of a signal close to 1:

B. Target Language
As stated earlier, a stream program consists of a set of
concurrently executing sequential programs. The sequential
programs themselves are written in a traditional sequential
programming language, extended to include stream operations.
The details of the sequential language are not particularly
important. In this paper, we will consider the basic primitives to be
the two stream operations, Produce(s,x) and Consume(s), and
assignment to a local variable. In addition, we will consider as
primitive any problem specification which does not involve

streams. We will assume that such programming problems can be
handled adequately by some other technique (e.g., algebraic
manipulation [Barstow et al 82]), leaving us free to focus in this
paper on automatic programming techniques for streams

In addition to these primitive operations, we will include in our
target language the following three control structures:

repetition wh i le expression do program

C. Transformation Rules for Stream Programs
Our approach to automatic programming for stream programs
involves the use of transformations: we represent knowledge
about programming with streams as transformations which
replace one part of a partially developed program by another To
date, we have identified three general types of transformations:
algorithm instantiation transformations produce sequential
algorithms for stream problems; problem reduction
transformations split a single stream problem into several,
presumably simpler, stream problems; stream elimination
transformations remove unnecessary streams by collapsing
several sequential processes into a single one.
C.1. Algorithm Instantiation Transformations
The algorithm instantiation transformations have two parts:

patterns consisting of particular types of relations on
streams
replacements consisting of particular sequential
algorithms

In general, the patterns may involve several relations. To date,
however, we have been working only with transformations whose
patterns involve a single relation, such as the following:

D. Barstow 235

C.2. Problem Reduction Transformations
Problem reduction transformations are intended to reduce
complex problems to problems which are simple enough to be
handled by the algorithm instantiation transformations. Since
subproblems handled by the algorithm instantiation
transformations correspond to separate processes in the target
program, the effect of a problem reduction transformation is to
introduce additional processes into the final program. Two
examples, stated informally, are

A postcondition relation may be separated into a
separate problem specification if it involves only input
streams and at most one intermediate or output
stream
A postcondition relation may be separated into a
separate problem specification if none of the
remaining postcondition relations involve any of the
first relation's intermediate or output streams.

C.3. Stream Elimination Transformations
While streams are convenient conceptual tools which can
contribute to simplicity and modularity in programming, there may
be a computational cost associated with their use. For this
reason, we are developing stream elimination rules.** Two such
rules, stated informally, are the following:

If two processes consume a stream exactly once
during each iteration of the loop in the process body,
the loop bodies of the two processes may be
combined.
If a process produces a single output stream which is
consumed by only one other process, and the second
process consumes the stream exactly once in the
body of the loop, then the body of the loop of the
second process may be merged with the body of the
loop of the first process at the point at which the
stream is produced by the first process.

IV. Example
In this section, we will consider an example drawn from a program

•Note that R(x 1 ..xk.) is simply another program specification whose input terms

" N o t e , however, that the use of such rules does not necessarily produce more
efficient code, since the efficiency of streams depends on the architecture of the
target machine For example, reducing the number of streams and processes may
prevent taking advantage of parallelism on a multiprocessor architecture

236 D. Barstow

designed to control a remote physical device communicating with
a computer through streams of signals and commands. The
primary job of the computer is to command the device to alternate
between two measurements. Associated with each measurement
is an A/D converter whose gain must be set with each command.
The gain commands for the measurements are received on
separate streams but must be sent to the device on a single output
stream.

A. Specification
The specification of the stream program for this example is as
follows:
Initial Problem

Input Terms:

Output Terms: COMMAND,GAIN

Intermediates: CONTROL

Preconditions:

Postconditions:
CONTROL = Generated)

F(i) = (i+ 1)mod 2)+ 1

GAIN = Merge(CONTROL,GAINrGAIN2)

StreamRe/ation(MeaSL/remenr,CONTROL,COMMAND)

B. Synthesis

B.1. Problem Reduction
This specification can be reduced to three simple subproblems by
applying each of the two problem reduction transformations
shown earlier. The specifications of the resulting subproblems
are:
Subproblem 1

Input Terms:
Output Terms: CONTROL

Preconditions:

Postconditions:
CONTROL = Generate(F)

Subproblem 2

I n p u t T e r m s : GAIN1 .GAIN2CONTROL

Output Terms: GAIN

Preconditions:
Postconditions:

Subproblem 3
Input Terms: CONTROL
Output Terms: COMMAND
Preconditions:

Postconditions:
StreamRe/ation(Measuremenf,cONTROL,cOMMANO)

B.2. Algorithm Instantiation
The first two subproblems may each be transformed into
algorithms by applying one of the transformations shown earlier.
The resulting algorithms are:
Subprogram 1

Subprogram 2

The third subproblem may also be transformed by an algorithm
instantiation transformation, but the relation Measurement
remains as a subproblem.
Subprogram 3

The relation Measurement does not involve any streams and may
be replaced by its definition, solved for y:
Subprogram 3

B.3. Stream Elimination
The second and third subprograms may be combined by applying
the first stream elimination transformation given earlier. The result
is:

Combined Subprograms: 2, 3

Note that, in this case, the StreamRelation postcondition could
have been expressed as a StreamMap:

The relation form was chosen for the sake of illustration.

D. Barstow 237

This may be combined with the first process by applying the
second stream elimination transformation given earlier, yielding:

Combined Subprograms: 1 ,2,3

B.4. Simplification and Optimization
Several simplifications and optimizations not related to streams
may now be applied, resulting in the final code for the original
specification:

Final Program

V. Discussion
To date we have tested these techniques by hand simulation on a
variety of specifications for software to control and record data
from Schlumberger's well logging tools. The tasks to be
performed by the software include encoding and decoding of
signals, multiplexing and demultiplexing of communication
channels, feedback loops, and simple calculations. We have also
done partial simulations for a few log interpretation programs. In
both situations, the specification and implementation techniques
seem to work well. As we implement the techniques, we expect to
make changes and extensions at a detailed level, but we also
expect the overall approach to remain essentially the same.

It should be noted that these techniques address only one aspect
of the problem of programming with streams. In a previous study,
we characterized the programming process for log interpretation
software in terms of four activities: informal problem solving,
formal manipulation, implementation selection, and target
language translation [Barstow 84]. The techniques described in

this paper only address issues which arise during formal
manipulation. Work is also underway on the other activities, such
as informal problem solving in which streams are used to
approximate continuous functions.

Acknowledgements
I am grateful to many colleagues for their criticisms and insights,
including Paul Barth, Paul Dietz, Rick Dinitz, Sol Greenspan,
Elaine Kant, David Steier, Stephen Smoliar, and Peter Will.

References
[Ackerman 82] W. Ackerman.

Dataflow Languages.
Computer 15(2): 15-23, February, 1982.

[Barstow 84] D. Barstow.
A perspective on automatic programming
A I Magazine 5(1):5-27. Spring, 1984.

[Barstow et al 82] D. Barstow, R. Duffey. S Smoliar, S. Vestal.
An automatic programming system to support

an experimental science.
In Sixth International Conference on Software

Engineering. Tokyo, Japan, September,
1982.

[Barth, Guthery, and Barstow 85]
P. Barth, S. Guthery, D. Barstow.
The Stream Machine.
In Eighth International Conference on Software

Engineering. London, England, August,
1985.

[Biermann et al 84]
A. Biermann, G. Guiho, Y. Kodratoff (editors).
Automatic Program Construction Techniques.
Macmillan, 1984.

[Kahn and McQueen 77]
G. Kahn, D. MacQueen.
Coroutines and networks of parallel processes.
In Information Processing 77. International

Federation of Information Processing
Societies, 1977.

[Ritchie and Thompson 74]
D. Ritchie, K. Thompson.
The UNIX Time-Sharing System.
Communications of the ACM 17(7):365-275,

July, 1974.

