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Abstract 

Pattern matching and variable binding are easily implemented 
in conventional computer architectures, but not necessarily in 
all architectures. In a distributed neural network architecture 
each symbol is represented by activity in many units and each 
unit contributes to the representation of many symbols. 
Manipulating symbols using this type of distributed 
representation is not as easy as with a local representation 
whore each unit denotes one symbol, but there is evidence that 
the distributed approach is the one chosen by nature. We 
describe a working implementation of a production system 
interpreter in a neural network using distributed representations 
for both symbols and rules. The research provides a detailed 
account of two important symbolic reasoning operations, 
pattern matching and variable binding, as emergent properties 
of collections of neuron-like elements. The success of our 
production system implementation goes some way towards 
answering a common criticism of connectionist theories: that 
they aren't powerful enough to do symbolic reasoning. 

1. Introduction 
Computer scientists and others have long been interested in 

neural network architectures as a means of exploring the 
question of intelligence. In the past these architectures have 
been successfully applied to relaxation problems such as those 
found in low level vision (Marr and Poggio, 1979; Barrow and 
Tenenbaum, 1981; Ballard et a/.. 1983); they have also served as 
the basis for various pattern recognition and associative 
memory schemes proposed throughout the years (Minsky and 
Papert, 1969; Post, 1969; Hinton and Anderson, 1981). 
Recently, a movement within Al and cognitive science called 
"connectionism" has arisen to investigate massively parallel 
representations built from simple homogeneous elements as 
models for higher level cognitive processes. Examples include 
finding the correct reference frame for object recognition 
(Hinton, 1981), a psychologically plausible theory of word 
recognition (McClelland and Rumelhart, 1981), and a 
mechanism for context-based word sense disambiguation 
(Cottrell, 1984). 

To implement the highest level of cognitive functioning, the 
one responsible for general reasoning, requires some sort of 
symbolic inference architecture. On a conventional computer 
this might be provided by a Lisp interpreter, a resolution 
theorem prover, or a production system interpreter, all three of 

which have certain operations in common, namely pattern 
matching and variable binding. On a connections architecture 
these operations can be difficult to implement, especially if 
distributed representations are used Ballard and Hayes (1984) 
have suggested one way of performing unification in a 
connectionist network, but they use a local representation. 

In a distributed representation each symbol is represented by 
activity in many units and each unit contributes to the 
representation of many symbols. Manipulating symbols this way 
is not as easy as with a local representation where each unit 
denotes one symbol, but there is evidence that the distributed 
approach is the one chosen by nature. A key problem, then, is 
how pattern matching and variable binding can be achieved in 
systems that use distributed representations. In answer to this 
problem we present two simple production system interpreters 
implemented as neural networks, in which distributed 
representations are used for both the wot king memory elements 
and the production rules. The research provides a detailed 
account of pattern matching and variable binding operations as 
emergent properties of collections of neuron like elements.* 

2. Two Production Systems 
The type of production system we consider here consists of a 

working memory that contains triples of symbols and a set of 
production rules that reference this memory. Each rule has a 
left hand side that matches a pair of working memory triples and 
a right hand side that specifies any number of triples to be 
added to or deleted from working memory if the rule should fire. 
Variables may appear on the left hand sides of rules, where they 
act as constraints on the match process, and on the right hand 
sides where their values are instantiated to define the actions 
the rules take during firing. Our first production system 
interpreter did not permit variables in the rules; it was 
conceptually very close to a finite state machine. A sample 
production rule from this interpreter is shown below. The rule 
states that if the triples (F A A) and (F B B) are present in 
working memory, then we may replace them with the triple (G A 
B). 

'The binary threshold computing elements featured in connectionist models 
are commonly refened to simply as "neurons." but the use of this term by us 
and by most other connectionist researchers should be understood as 
metaphorical. Connections' models are not intended to be physiologically 
correct in all their detail (they rarely are), rather, they should be computationally 
interesting and/or psychologically plausible. 
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We implemented this interpreter as a neural network simulated 
on a Symbolics 3600 Lisp Machine with about 7000 binary 
threshold units; the weights and thresholds were constrained to 
be small signed integers. The particular values used for weights 
and thresholds of the various cell types are all predefined 
program constants; knowledge about rules is stored in the 
connection patterns of the neurons rather than in the weights. 
The contents of working memory are encoded in the states 
(either on or off) of working memory cells. 

Our second production system interpreter is similarly 
specialized. It accepts rules where a variable appears in the first 
position of both triples on the left hand side of each rule, and 
optionally in the first position of right hand side triples. This 
system interprets rules such as the following: 

Here, the appearance of = x in both left hand side triples 
means the rule can match pairs such as (F A B) and (F C D), but 
not pairs such as (F A B) and (G C D). Our second interpreter, 
written as an extension of the first, uses about 0000 units and a 
completely different set of weights. 

3. Architecture of the Interpreters 
Figure 1 is a schematic diagram of our second production 

system interpreter, which is composed of five "spaces" of cells. 
(The first interpreter resembles the second except it is missing 
the Bind cell space.) The central space, labelled WM, is the 
working memory; it provides inputs to two clause spaces 
labelled C1 and C2. The clause spaces both influence and are 
influenced by two other spaces; one of these represents the 
production rules, while the other implements variable binding 
and is independent of specific rules. The system in figure 1 is 
known as a "two stroke production system engine" because it 
alternately performs each half of the classic production system 
recognize-act cycle. During the recognize stroke, WM cells 
exert influence on C1 and C2 cells and a relaxation algorithm is 
applied to cells in the C1, C2, Rule and Bind spaces until they 
settle into a state indicating a match. Then, during the act 
stroke, a set of gated connections from the Rule and Bind cells 
to the WM cels is opened, allowing the rule that fires to update 
the contents of working memory. 
3 .1 . Working Memory 

Working memory elements are triples of symbols. We have 
chosen an alphabet size of 25 symbols, giving 253 or 15,625 
possible triples. Of these, only about half a dozen will be 
present in working memory at any one time. The most 
straightforward representation for working memory would be a 
"local" one, where each possible triple is represented by a 
specific neuron. Then a neuron in the active state would 
indicate that the corresponding triple was present. We have 
rejected this idea in favor of a distributed representation known 
as coarse coding (Hinton, 1981; Hinton ef a/., 1985) for two 
reasons. First, local representations require too many neurons 
and too many connections; they quickly succumb to 
combinatorial explosion as the alphabet size or the length of a 
sequence increases. Neurons are not used efficiently this way; 

Figu re 1: Schematic diagram of our second 
production system interpreter. 

in the system we are describing, with six items in working 
memory, only about .04 percent of the working memory cells 
would be active using a local representation, while in the 
distributed representation about 7.5 percent are in use. Our 
second reason for preferring a distributed representation is that 
a direct tie between individual neurons and symbolic structures 
is physiologically implausible; it is reminiscent of the yellow 
Volkswagen cell idea. 

Using a distributed representation based on coarse coding we 
are able to cover the entire space of 15,625 triples with just 2000 
cells. Each cell has a "receptive field" of 63 or 216 triples, 
defined by the cross product of six randomly chosen symbols in 
each of the three positions of a sequence. For example, the cell 
described in figure 2 has the triples (C B R) and (F A A) in its 
receptive field, along with 214 other triples. The 2000 cells have 
slightly overlapping receptive fields: the average number of 
triples in the intersection of two cells' receptive fields is less than 
one. Yet in another sense there is a large degree of overlap, 
because each of the 15,625 possible triples falls within the 
receptive field of, on average, 28 different cells. 

3.2. Storing Triples in Working Memory 
"Storing" a triple in working memory using a coarse coded 

representation means turning on all the WM cells in whose 
receptive field it falls. On average this is about 28 cells; the 
number varies from one triple to another due to the random 
distribution of receptive fields. To test if a particular triple is 
present in working memory, we can check the fraction of active 
cells among those that can receive it. If this fraction is close to 
1.0, we may assume the triple is present. For example, let us 
store the triple (F A A) in working memory. To do so we will turn 
on the neuron described in figure 2, since (F A A) falls within its 
receptive field; we will also turn on about 27 other neurons. 
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Notice that (C B R) falls within the receptive field of the cell in 
figure 2. The total number of receptors common to two 
unrelated triples is small; the average number is slightly less 
than one. While 28 out of 28 (F A A) cells are active, only 1 out 
of about 28 (C B R) cells will be active. Thus we can state with a 
high degree of confidence that (F A A) is present in working 
memory but (C B R) is not. 

Flgu re 2: The receptive field table of a WM cell. 

3.3. Properties of Coarse Coding 
Coarse coded memory representations have several 

interesting features. One is immunity to noise. If we store some 
triples in WM, then turn a few cells on or off at random, the 
perceived contents of WM will not change. This is very 
important because we have allowed some overlap in the 
representation of triples: as production rules add and delete 
certain triples from working memory, the overlap will gradually 
affect the representation of other triples stored there. But 
because the overlap is small (due to small receptive field size) 
and the system is immune to small amounts of noise, the 
contents of WM are reasonably persistent. 

Another interesting feature of the distributed representation is 
that it gives a gradual degradation of WM performance as the 
number of elements increases. Each triple added to WM 
increases the number of active cells, and therefore increases 
the overlap with triples that have not been explicitly added. As 
WM fills up, the fraction of active cells for triples that are "close" 
to those that have been stored approaches 1.0, and the dividing 
line between present and absent triples blurs. If many closely 
related triples are stored, such as (F A A), (F A B), (F A C), etc., 
then the system may exhibit local blurring, where it can't tell 
whether (F A X) is present or not, but it is certain that (G K Q) is 
absent. 

3.4. Clause Cells 
Each production rule contains exactly two clauses on the left 

hand side, where a clause is a specification of a triple. Since 
there are two clauses, each rule must match a pair of WM triples. 
Working memory holds half a dozen triples on average. The 
clause cells in CI and C2 provide a way to pull out specific 
working memory triples so they can be matched against the 

clauses in the production rules. Michael Mozer of UCSD has 
independently invented a device similar to clause spaces, which 
he calls "pull out networks," to allow a perception system to 
attend to specific objects in a scene (Mozer, 1984). 

There are 2000 cells in C1 space in one-to-one 
correspondence with the WM cells; the same is true for C2 
space. Each WM cell has an excitatory connection to its 
corresponding C1 and C2 cells. Thus, whenever a WM cell 
comes on, it tends to turn on the corresponding cells in the C1 
and C2 spaces. However, clause cells have a mutually inhibitory 
influence within their own space which is designed to limit the 
number of active clause cells to about 28 per space, i.e. just 
enough to represent one triple. The number of active cells in 
WM space is not regulated. Thus, while WM may hold a half 
dozen or more triples, when the network settles C1 and C2 
spaces will ideally hold just one triple each that has been 
selected out of WM space. 

It might appear possible for the C1 and C2 spaces to settle into 
states representing triples that bear no relation at all to the 
contents of working memory, but instead simply contain 28 
active neurons. This is a highly unlikely occurrence because a 
randomly chosen activation pattern in clause cell space will 
receive very little support from the Rule and Bind cells. The 
system's thresholds and bias levels have been chosen so that a 
clause cell cannot remain active unless it receives support from 
a reasonable number of- both Rule and Bind cells as well as its 
corresponding WM cell. 

4. Representation of Rules 
Each production rule is represented by a population of 40 Rule 

cells. Let us begin with our first production system interpreter, 
where the rules contain no variables, as in Rule-1 above. The 
left hand side of this rule references the triples (F A A) and (F B 
B). Each Rule cell that contributes to the representation of 
Rule-1 receives input from a random subset of the (F A A) cells 
in the C1 population, and an equal number of randomly chosen 
(F B B) cells in the C2 population. If a sufficiently large number 
of C1 and C2 cells are active, indicating that the triples (F A A) 
and (F B B) are present in working memory, the Rule cell will 
also become active. 

The 40 cells representing one production rule form a clique. 
Each cell in the clique provides a slight excitatory stimulus to the 
other cells in the clique, and a slight inhibitory stimulus to the 
Rule cells in other cliques. Thus, the Rule space is organized as 
a "winner take all" network (Feldman and Ballard, 1982); when 
the network settles, all the cells in one clique will be active and 
all the remaining cells will be inactive. This is how the system 
decides which rule to fire. 

One reason for implementing rules as collections of cells 
rather than as single Rule cells is that it allows for a graded 
response. If, during the settling phase, there is a weak match 
between one rule and working memory, this will be indicated by 
only some of the the corresponding Rule cells being active. If 
another rule matches more strongly, more of the cells in Its 
clique will be active, and they will eventually inhibit the cells in 
the other cliques. 
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Another reason for implementing rules with multiple cells is 
that it frees any one cell from having to represent the entire 
pattern associated with a production rule's left hand side. 
Instead, each Rule cell has just a small amount of information; 
only the clique as a group has the complete representation for 
the rule. This is a more plausible organization than one in which 
each rule is represented by a single cell, since it allows us to 
limit the number of connections each Rule cell must make to 
other cells. 

5. Settling 
Hopfield (1982) has shown that the state of a neural network 

with symmetric connections between units can be usefully 
described using the following energy measure, where s denotes 
the state (0 or 1) of the ith neuron, denotes the threshold of 
the /th neuron, and w9 denotes the weight of the connection 
between the ith and /th neurons: 

If neurons change state asynchronously and there is no 
transmission delay across connections, such networks are 
guaranteed to settle into a minimum energy state from any 
starting state. This analogy to physical systems is the basis of 
the Boltzmann Machine architecture (Fahlman et a/., 1983; 
Ackley er a/., 1985), but it is also important for non-Boltzmann 
neuron simulators such as the one discussed here. By 
designing the weights in our production system interpreter so 
that a successful rule match corresponds to a low energy state, 
we can match production rules against working memory by 
starting the network in a high energy state and allowing it to 
settle into an energy minimum. This is not a foolproof match 
technique; some problems with it will be discussed later. 

6. Rule Firing 
The right hand side of a rule consists of a set of triples to add 

to working memory and a set to delete from it. A rule can add 
triples by exciting the WM cells that receive those triples, and it 
can delete triples by inhibiting those same WM cells. Thus, the 
right hand side of a rule specifies two populations of WM cells: 
those to be excited and those to be inhibited. The 40 Rule cells 
that represent a rule each make connections (of the appropriate 
type, either excitatory or inhibitory) to a random subset of the 
total population of cells the rule is to affect. However, these 
connections are gated so that the Rule cells can only influence 
the WM cells during rule firing, rather than all the time, and the 
WM cells cannot influence the rule cells through symmetric 
connections. Although this would appear to violate Hopfield's 
conditions, we can show that during each settling phase the 
network is equivalent to another network that does not violate 
these conditions, and thus its behavior during a settling can be 
understood in terms of energy minimization even though the 
whole sequence of settlings cannot. 

Once the network of C1, C2, and Rule cells has settled into a 
stable state indicating a match, it is a simple matter to fire the 

right hand side of the rule that matched. This is the rule whose 
clique of Rule cells is active. All we need do is open the gate on 
the connections between Rule space and WM space. Each 
active Rule cell will supply a small amount of inhibition or 
excitation to certain WM cells. If a cell receives enough of these 
inputs, its state will be changed. Once the gate is closed, WM 
cells retain their most recent state until the gate is opened again 
at the next rule firing. 

Consider the case where Rufe-1 has matched successfully, 
and it is now time to fire its right hand side. Each Rule cell will 
supply excitatory inputs to some of the WM cells that receive the 
triple (G A B), and inhibitory inputs to some of the WM cells that 
receive (F A A) or (F B B). To guard against a stray Rule cell 
upsetting the contents of working memory, the weights and 
thresholds are set so that the concerted action of several Rule 
cells is required to change the state of a WM cell in either 
direction. In other words, WM cells exhibit hysteresis. 

The distributed nature of the rule representation means no 
single Rule cell contains a complete representation of a 
production rule; a rule's successful matching and firing does not 
critically depend on the behavior of any single cell or small 
group of cells; and during rule firing a few Rule cells can be 
turned on or off at random without effecting the updating of 
working memory at all. 

7. Variable Binding 
Let us now consider rules where a variable appears on the left 

hand side. In the system as it is currently implemented, the 
variable must appear in the first position of each triple. Rule-2 , 
whose left hand side contains (= x A B) and ( = x C D), is an 
example. This rule can match pairs of triples such as (F A B) 
and (F C D), but it cannot match the pair (F A B) and (G C D) 
because the symbol in the first position of each triple is different. 

To represent the binding of the variable = x we use a device 
called Bind cells. These are similar to the mapping units used 
for object recognition in (Hinton, 1981). Since there are 25 
separate symbols in our alphabet, the variable ■ x can have 25 
possible values. We represent each possible value by a 
population of 40 Bind cells, so there are 40 cells for the symbol 
A, 40 for the symbol B, and so on. Bind cells receive input from 
cells in both C1 and C2 space, and also influence the cells in 
those spaces. For example, each F cell receives input from a 
random subset of the C1 and C2 cells that have an F in the first 
column of their receptive field tables. Each group of 40 Bind 
cells forms a clique; every cell in a clique excites its neighbors 
slightly, and also slightly inhibits the cells in the other cliques. 
Thus, Bind space is another winner-take-all network. 

Suppose that WM contained the triples (F A B), (F C 0), and a 
few other random triples such as (G 0 K). Suppose Rule-2 was 
present in the network's long term production memory (i.e. in 
the connections of the appropriate rule cells.) Then as settling 
progressed C1 space would settle into the representation of (F A 
B) and C2 space would settle into the representation of (F C 0). 
Each F Bind cell would be getting excitation from several cells in 
each of C1 and C2 space, so the F Bind cells would become the 
active clique. Also, as the F bind cells become active, they tend 
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to support C1 and C2 cells representing triples that begin with F, 
thereby strengthening the representation of (F A B) and (F C D) 
in their respective clause spaces. 

One key difference between rules with variables and rules 
without is in the receptive field size of the Rule cells. There are 
about , cells tnat can receive (FAB) , but 
about cells that can receive (= x A B) for 
any value of «x. So the Rule cells must be given larger 
receptive fields and different connection strengths and 
thresholds in order to cover the larger number of clause cells 
matching a triple with a variable in it. A production system 
interpreter capable of accepting mixed rule types (i.e. some with 
variables, some without) would be a logical extension to our 
second system. 

The settling process by which rule matching is accomplished 
with variable binding is similar to what was described earlier, 
except that now C1 and C2 cells are influenced by both Rule 
cells and Bind cells, acting independently. However, the two 
populations of cells tend to work together to force the C1 and C2 
cells into representing triples that give a legal rule match. 

8. Performance 
Both production systems have run successfully on small test 

cases (sets of about six rules operating on a working memory 
holding two to six elements at a time.) In one test, which 
involved a finite state machine cycling through a series of six 
distinctive WM configurations, the system ran (overnight) 
through more than a thousand rule firings with no evidence of 
memory deterioration or other difficulty. A similar test using 
rules that involve variable binding gave equally encouraging 
results. 

However, we have also found situations that cause problems 
for the settling algorithm used in rule matching. A trivial case is 
one where no rule successfully matches working memory; the 
system will still settle into some sort of local energy minimum, 
since it must do so. However, it may be possible to detect this 
no-match condition if it turns out that all good matches have 
"deep" minima and unsuccessful matches have only shallow 
minima. In preliminary experiments using two sample 
production systems, this has in fact been the case. Our 
interpreter was able to reject faulty matches by checking 
whether the final settling energy of the system exceeded a given 
threshold. In that case, rather than going on to the firing phase 
it throws away the match and runs a new settling phase. 

If there is more than one possible successful match, the two 
possibilities may interfere with each other. Since the Rule cells 
and Binding cells compete independently; the state the system 
finally settles into may have two active cliques in Rule and/or 
Bind space, or there might be no active cliques left in one of the 
spaces. We have chosen to make the simplifying assumption 
that exactly one rule (with one binding) will be firable during 
each recognizeact cycle. However, it turns out that this 
assumption does not eliminate the possibility of interference 
among Rule or Bind cells. 

Consider a simple system of five production rules with no 
variable binding. The first four rules all reference the triple (A A 
A) which is present in working memory, and some other triples 

which are not present. The fifth rule references the triples (B B 
B) and (C C C), both of which are present. Working memory also 
contains some additional random triples. During settling, the C1 
cells corresponding to the representation for (A A A) will get 
support from four cliques of Rule cells, although the Rule cells 
will themselves be only weakly supported because they can get 
support for their C1 clause but not their C2 clauses. On the 
other hand, the C1 cells corresponding to (B B B) will be 
supported only by one clique, since only one rule references 
that triple, and similarly for the C2 cells representing (C C C). In 
this case, although only one of the five rules can be fired 
correctly, the system may still settle on the wrong rule due to the 
combined influence of the unsuccessful rules, or it may settle 
into a minimum that does not not represent a successful match 
at all. 

Obviously, when variable binding is permitted in rules, the 
potential for unsuccessful settling is increased. One way 
around such problems might be to use simulated annealing 
(Kirkpatrick, 1983) as the search technique rather than doing a 
straight gradient descent in energy space. Simulated annealing 
is a way to avoid getting stuck in local minima, so if there is a 
good match to be found, we can usually find it. We would then 
be adopting the Boltzmann approach (Ackley et a/., 1985), which 
is computationally more expensive to simulate than gradient 
descent, but a much more effective search technique. We are 
pursuing this idea in our next generation production system 
interpreter. 

9. Conclusions 
We have described an implementation of production systems 

on a neural network architecture in which two common symbolic 
reasoning operations, pattern matching and variable binding, 
were performed using distributed representations. The work 
demonstrates that connectionist architectures are not limited to 
solving low-level vision problems or implementing associative 
memory schemes; they can be programmable symbol 
processors. The success of our production system 
implementation goes some way towards answering a common 
criticism of connectionist theories: that they aren't powerful 
enough to do symbolic reasoning. 

Our results also serve as the beginnings of a theory of 
symbolic representation in the brain. While the details of our 
model are not physiologically correct, we have nonetheless 
made progress by showing how distributed symbolic 
representations, which are physiologically plausible, can be 
manipulated effectively. 

The brain is built from painfully slow and unreliable 
components: neurons, which fire less than once per millisecond, 
are susceptible to fatigue, and die off regularly. The only way 
the brain can succeed as a symbol processor is by exploiting 
massive parallelism using organizational principles that remain 
unknown for the present. By exploring the problem of 
computing with distributed representations, computer scientists 
may eventually uncover some of these principles. 
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