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ABSTRACT 

This paper describes a new theory of how 
spreading a c t i v a t i o n may occur in assoc ia t ive 
memory models formulated as p a r a l l e l a c t i v a t i o n 
networks. The theory postu la tes t ha t 
compet i t ion fo r a c t i v a t i o n by nodes/concepts in 
a network is a fundamental p r i n c i p l e of memory 
r e t r i e v a l . Using only exc i t a t o r y connections 
between concepts, a s p e c i f i c implementation of 
t h i s model is able to demonstrate " v i r t u a l 
l a t e r a l i n h i b i t i o n " between compet i tors and 
other i n t e r e s t i n g behaviors that have requi red 
use of e x p l i c i t i n h i b i t o r y connections in the 
pas t . 

I INTRODUCTION 

During the l a s t several years there has 
been a great deal of i n t e r e s t in AI in 
determining what kinds of p a r a l l e l a rch i tec tu res 
best meet the needs of var ious AI t asks . This 
paper is concerned w i th "value-passing systems," 
networks in which the processing elements 
communicate by passing around continuous 
q u a n t i t i e s (numbers) and by performing simple 
a r i t hme t i c operat ions on these values [ 4 ] . Such 
a rch i tec tu res are o f ten intended as models of 
assoc ia t i ve memory, and f requent l y they are 
character ized by an analogy w i th neurob io log ica l 
networks and processing paradigms. Recent 
examples inc lude "connec t ion is t models" [ 5 ] , 
" i n t e r a c t i v e a c t i v a t i o n models" [ 1 0 ] , the 
Boltzman machine [7 ] and ACT ML 

This paper presents a new "compet i t i on -
based" theory about how spreading a c t i v a t i o n may 
occur in value-passing assoc ia t i ve memory 
models. F i r s t some terminology and the need for 
a model of spreading a c t i v a t i o n tha t can support 
" v i r t u a l l a t e r a l i n h i b i t i o n " are d iscussed. 
Then a theory is introduced which postu la tes 
t ha t compet i t ion between cogn i t i ve a c t i v i t i e s 
fo r l i m i t e d resources is a fundamental 
o rgan iz ing p r i n c i p l e of memory r e t r i e v a l . A 
s p e c i f i c i n s t a n t i a t i o n of the theory is used to 
i l l u s t r a t e the concepts invo lved . 

•Supported by the Of f i ce of Naval Research, the 
Nat iona l Science Foundation (DCR-8451430), and 
Software A rch i tec tu re and Engineer ing, I n c . 

II PARALLEL ACTIVATION MODELS OF MEMORY 

In memory models implemented as va lue-
passing systems, each processing node t y p i c a l l y 
represents a "concept" or "hypo thes is " , and the 
level of activation associated w i th a node 
represents the relevance of or confidence in the 
concept/hypothesis represented by tha t node 
[ 1 , 5 , 7 3 . For t h i s reason, and because of the 
d i s t r i b u t e d nature of the computations invo lved , 
the term parallel activation network is used for 
such models. Nodes communicate w i th each other 
using l i n k s which have one or more weights 
associated wi th them. If the l i n k from node A 
to node B has a p o s i t i v e weight , i n d i c a t i n g tha t 
a c t i v a t i o n of node A tends to increase 
a c t i v a t i o n of node B, then such a l i n k is 
excitatory. Conversely, a negat ive weight 
ind ica tes an inhibitory connect ion. There are 
both exc i t a to r y and i n h i b i t o r y in terconnect ions 
at the leve l of neuronal c i r c u i t s in the nervous 
system. I t i s there fo re not su rp r i s i ng tha t 
both types of in terconnect ions have been adopted 
by way of analogy in h i g h e r - l e v e l cogn i t i ve 
networks. 

I t has o f ten proven convenient to view 
p a r a l l e l a c t i v a t i o n networks as p a r t i t i o n e d i n t o 
layers of conceptual ly s i m i l a r nodes, and to 
conceive of in fo rmat ion as i n i t i a l l y en te r ing 
one " lowest " layer ( e . g . , fea tures) and 
propagating "upwards" to others ( e . g . , l e t t e r s ) 
[ 2 , 1 0 ] , When nodes in a lower layer d i r e c t l y 
i n h i b i t nodes in a higher layer such i n h i b i t i o n 
may be ca l led forward inhibition since it is in 
the d i r e c t i o n o f i n i t i a l f low o f a c t i v a t i o n . 
Conversely, i n h i b i t i o n in the opposite d i r e c t i o n 
may be c a l l e d backward inhibition, and 
i n h i b i t i o n between nodes in the same layer can 
be re fe r red to as lateral inhibition. La te ra l 
i n h i b i t i o n has long been recognized to play an 
important ro le in cont rast enhancement in neural 
networks and has been argued to be an important 
aspect o f se lec t i ve behavior [ 6 ] . E x p l i c i t 
l a t e r a l i n h i b i t o r y l i n k s have also o f ten been 
used in p a r a l l e l a c t i v a t i o n models of 
assoc ia t i ve memory in cogn i t i ve science to 
produce se lec t i ve behavior [ 2 , 5 , 1 0 ] , 
represent ing one way in which these recent 
c o g n l t l v e l y - o r i e n t e d models have borrowed 
processing paradigms from e a r l i e r neural 
modeling s tud ies . For example, Figure 1 shows 
two mutual ly I n h i b i t o r y nodes n1 and n 2 . With a 
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t y p i c a l model fo r spread of ac t i va t i on even a 
t r a n s i e n t l y higher input to one node (say n,) 
fo l lowed by equal inputs to both nodes can lead 
to s t a b i l i z a t i o n of ac t i va t i on w i th one node 
maximally act ivated (n1 and the other having 
zero a c t i v a t i o n ( n 2 ) . This " w i n n e r - t a k e - a l l " 
phenomenon [ 5 ] comes about because of the 
l a t e r a l i n h i b i t o r y connections. 

Figure 1: Lateral inhibi t ion using expl ic i t 
inhib i tory l inks between two "competing" nodes 
(modified from [5 ] ) . Weights are indicated 
adjacent to connections. 

While l a t e r a l i n h i b i t i o n is a usefu l 
concept in p a r a l l e l ac t i va t i on models, the use 
o f e x p l i c i t l a t e r a l i n h i b i t o r y l i nks to achieve 
l a t e r a l i n h i b i t i o n poses a number of 
d i f f i c u l t i e s for implementing rea l world models 
of assoc ia t ive memory. At the cogn i t ive l e v e l , 
in cont rast to the neurobio log ica l l e v e l , there 
is at best l im i t ed empir ica l evidence for such 
explicit "negat ive associat ions" between the 
concepts invo lved . Published tabu la t ions of the 
associat ions between re la ted concepts usual ly 
inc lude only pos i t i ve weights ( f requenc ies) . 
Since these empi r i ca l studies do not provide 
negat ive weights between competing concepts, one 
is faced wi th the problem of determining how 
such weights are to be assigned in bu i ld ing 
p a r a l l e l a c t i v a t i o n networks where weights are 
based on p r o b a b i l i t i t e s [ 1 1 ] , Furthermore, as 
the number of "competing" nodes grows, the 
number of mutual l a t e r a l i n h i b i t o r y connections 
needed can grow qu i te r a p i d l y . For example, in 
the p r i n t - t o -wo rd mapping, a s ing le character 
node may connect to thousands of word nodes, 
each of which would apparently requi re a 
mutual ly i n h i b i t o r y connection wi th a l l o f i t s 
competing word nodes [ 1 0 ] , 

In the fo l l ow ing an approach to p a r a l l e l 
spreading a c t i v a t i o n is proposed tha t can 
resolve these problems. S p e c i f i c a l l y , t h i s 
approach is capable of producing virtual lateral 
i n h i b i t i o n : apparent l a t e r a l i n h i b i t i o n between 
competing nodes in the absence of e x p l i c i t 
l a t e r a l i n h i b i t o r y connections. This phenomenon 
is produced wi thout g iv ing up the notion that 
computations in p a r a l l e l a c t i v a t i o n networks 
should be l o c a l : each node can only "see" the 
a c t i v a t i o n and l i n k weights of i t s immediately 
adjacent neighbor nodes. 

I l l COMPETITION-BASED SPREAD OF ACTIVATION 

In previous p a r a l l e l ac t i va t i on models, the 
a c t i v a t i o n f lowing i n to a node is not determined 
by the l eve l of a c t i v i t y possessed by the 
rece iv ing node. Typ i ca l l y , the incoming 

a c t i v a t i o n "seen" by a node niis a weighted sum 
or some other func t ion of the a c t i v i t i e s of i t s 
neighbors [ 1 , 2 , 5 , 6 , 7 , 1 0 ] , This incoming 
a c t i v i t y is used by node n i to update i t s own 
a c t i v a t i o n l e v e l , which is then d i s t r i b u t e d by 
node n i dur ing the next increment of t ime as 
output to appropr iate neighbors. 

In the competit ion-based p a r a l l e l 
a c t i v a t i o n theory described here, the spread of 
a c t i v a t i o n is determined in a d i f f e r e n t way. 
When a node ni assumes an a c t i v a t i o n leve l above 
i t s normal res t i ng l e v e l , i t s neighbors a c t i v e l y 
compete fo r the "energy" possessed by node n i. 
Fur ther , the a b i l i t y of a neighboring node to 
compete for n i ' s a c t i v i t y or resources is 
p ropor t iona l to tha t ne ighbo rs e x i s t i n g l eve l 
of a c t i v a t i o n . Resources acquired by a neighbor 
node in t h i s fashion occur at the expense of 
resources that are ava i lab le to i t s compet i tors , 
leading one to p red ic t tha t v i r t u a l l a t e r a l 
i n h i b i t i o n w i l l occur. The metaphor used here 
is that the "s t ronger" a node is ( i . e . , the 
higher i t s l eve l o f a c t i v a t i o n ) , the more 
e f f e c t i v e l y i t can compete w i th other nodes for 
a source of ene rgy /ac t i va t i on . 

To examine t h i s idea, one poss ib le 
i n s t a n t i a t i o n of competit ion-based spreading 
a c t i v a t i o n is presented below (other 
formulat ions are possib le and are c u r r e n t l y 
being explored) . In the formulat ion given here, 
the presence of an under ly ing assoc ia t ive 
network is assumed where the nodes in the 
network are pa r t i t i oned i n to d i s j o i n t layers as 
i l l u s t r a t e d in Figure 2. For convenience, we 
also assume that each node in one layer is 
d i r e c t l y connected to at least one node in each 
adjacent layer . (These assumptions are not an 
essen t ia l part of the theory . ) 

Each connection between a node in one layer 
and that in another has two weights r e f l e c t i n g 
the d i r e c t i o n a l l y - o r i e n t e d frequencies of 
assoc ia t ion between the "concepts" represented 
by the nodes. For example, if n i is a node in 
one layer associated wi th a node n j in a 
d i f f e r e n t l aye r , then a b i d i r e c t i o n a l l i n k 
appears between ni and nj in the network. One 
weight "a t tached" t o t h i s l i n k i s w i j 
represent ing the frequency ( cond i t i ona l 
p r o b a b i l i t y est imate) w i th which the concept 
represented by n i occurs given tha t the concept 
represented by n j is known to be present . 
S i m i l a r l y , the attached weight W j i represents 
the frequency w i th which n j occurs given tha t n i 
is known to be present . We r e s t r i c t such 
weights to 0.0 < w s t < 1.0; the non-negative 
nature of these weights d is t ingu ishes them from 
the possib ly negative "synapt ic weights" in 
neural models and in psycho log ica l l y -o r ien ted 
p a r a l l e l a c t i v a t i o n models of assoc ia t ive memory 
[5 ,103. Nodes in t h i s example network do not 
e x p l i c i t l y i n h i b i t other nodes in e i t he r the 
same layer or in adjacent l aye rs . Furthermore, 
pe rm i t t i ng weights to be h igh ly asymmetric ( w i j 
W j i i n general) also d is t ingu ishes t h i s 
approach from others [ 7 , 8 ] . 
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Figure 2: A word-sense disambiguat ion network. 

As a s p e c i f i c " t o y " example, consider a 
g ross ly s i m p l i f i e d version of the problem of 
mapping a word i n t o the appropr iate word sense 
(Figure 2 ) . Layer W represents word/morpheme 
u n i t s (assume there are j u s t four poss ib le 
words), layer S represents possib le word senses 
or "meanings" (aga in , j u s t f o u r ) , and layer C, 
which we ignore for the time being, represents a 
number of poss ib le semantic contexts in which 
word sense disambiguation can occur. Note tha t 
each word node Wi re la tes to m u l t i p l e senses, 
e . g . , node W2 is connected to S1, S2 and S4, 
r e f l e c t i n g the ambiguity o f words in na tu ra l 
language. Thus {S1,S2,S4} represents the nodes 
in layer S which are competi tors for the t i t l e 
of "sense ind ica ted by W2." S i m i l a r l y , each 
word sense is connected to m u l t i p l e poss ib le 
words ( e . g . , synonyms). 

In Figure 2, the weight W j i corresponding 
to spread of a c t i v a t i o n from node n i to node nj 
is w r i t t e n adjacent to n j . The weights on 
"ou tpu ts " from a node in one layer to nodes in 
an adjacent layer sum to 1.0, consistent w i th 
our e a r l i e r d e f i n i t i o n of weights as cond i t i ona l 
p r o b a b i l i t y est imates. Each node n i in memory 
has an a c t i v a t i o n l e v e l a i ( t ) a t t ime t , 
constra ined so tha t ~ ' and we 
l e t a i ( t ) represent the b e l i e f i n the e n t i t y 
represented by node ni. Each node also has a 
na tu ra l r e s t i n g a c t i v a t i o n l eve l r i and a decay 
r a te d i r e f l e c t i n g how qu ick ly a i ( t ) re turns to 
the r e s t i n g l e v e l in the absence of ex te rna l 
i n f l uences . We make two assumptions. F i r s t , we 
assume tha t at t ime t the maximum ra te at which 
node n1 is capable of d i s t r i b u t i n g a c t i v a t i o n to 
i t s competing neighbors in an adjacent layer is 
p ropo r t i ona l to a i ( t ) . Second, we assume tha t 
n i parsimoniously "des i res " to support at most a 
t o t a l o f one u n i t o f a c t i v a t i o n in associated 
competing nodes in an adjacent l aye r . Thus, the 
t o t a l amount of a c t i v a t i o n n i d i s t r i b u t e s to an 
adjacent layer at any po in t in time decreases as 
the c o l l e c t i v e a c t i v i t y o f i t s neighbors i n tha t 
layer r i s e s . For example, in going from words 
to word senses, t h i s second assumption s tates 
t ha t each word maps onto exact ly one of i t s 
poss ib le senses. These two assumptions can be 
approximated by s t a t i n g tha t the t o t a l output of 
node n^ to i t s neighbors at t ime t is given by 

as long as t h i s quan t i t y is non-negat ive, and 
zero otherwise. 

The idea of compet i t ion is introduced i n t o 
t h i s model by pe rm i t t i ng the neighbors of n i in 
an adjacent layer to a c t i v e l y compete for the 
t o t a l output a c t i v i t y o f n i The a b i l i t y o f 
neighbor node n j to compete fo r n i 's output 
a c t i v i t y o u t i ( t ) i s p ropo r t i ona l t o i t s 
" s t r e n g t h " a j ( t ) , and to the weight o f 
assoc ia t ion W j i . Thus, the a c t i v a t i o n out j i ( t ) 
t r ans fe r red from n i to n j at t ime t is given by 

( the symbol " * " i s read " i s p ropo r t i ona l t o " ) . 
"St ronger" neighbors of n i the re fo re ex t rac t a 
greater po r t i on o f n j ' s f i n i t e a c t i v a t i o n 
energy, leav ing a smal ler po r t i on for "weaker" 
compet i to rs . I t i s the fac t tha t a j ( t ) , the 
a c t i v a t i o n of the rece iv ing neighbor node, 
appears in the formula for o u t j i ( t ) above tha t 
makes t h i s a competi t ion-based model. F i n a l l y 
we def ine the t o t a l f low of a c t i v i t y i n t o a node 
n j at t ime t to be 

the sum of a l l i t s inputs from neighbors. 

In summary, a s p e c i f i c form of spreading 
a c t i v a t i o n has been described where the po r t i on 
of a node n i ' s output a c t i v a t i o n going to 
neighbor node n j is p ropo r t i ona l to the a b i l i t y 
o f n j to compete for tha t a c t i v i t y ( r e f l e c t e d by 
the formula fo r o u t j i ( t ) above). Given t h i s 
competi t ion-based approach to d i s t r i b u t i o n of 
a c t i v a t i o n , we can adopt an approach s i m i l a r to 
t ha t used by others to update a node's 
a c t i v a t i o n l eve l ( e . g . , [ 1 0 ] ) . Let the symbol 
I | ( t ) i nd i ca te the net f low o f a c t i v a t i o n i n t o 
nn a t t ime t , i . e . , 

Then the rate a i ( t ) at which n i 's a c t i v a t i o n 
changes is given by the net f low of a c t i v a t i o n 
i n t o the node minus the decay: 

The term in t h i s l a t t e r equat ion 
assures tha t a i ( t ) approaches i t s maximum value 
asympto t i ca l l y . Note t ha t a l l o f the above 
computations are l oca l in the sense tha t n i on ly 
needs to "see" the a c t i v a t i o n s and weights 
associated w i th i t s immediate neighbors. 

Two numerical examples are now presented to 
demonstrate the behavior of the above 
competi t ion-based p a r a l l e l a c t i v a t i o n model. 
These examples are based on the network in 
Figure 2, and were Implemented using PAN, a 
p a r a l l e l a c t i v a t i o n network s imu la to r . PAN is a 
LISP program tha t permits one to spec i fy a 
network and method fo r spread of a c t i v a t i o n , and 
to describe ex te rna l inputs to the network t h a t 
are to occur dur ing s i m u l a t i o n , PAN then 
performs the ind ica ted s imu la t ion wh i le 
p e r i o d i c a l l y d i sp lay ing the a c t i v i t y l e v e l o f 
nodes (PAN is s i m i l a r in s p i r i t to ISCON 
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[ 1 2 ] ) . In the examples, PAN is used wi th the 
s p e c i f i c competit ion-based model of spreading 
a c t i v a t i o n described above. We have run larger 
s imula t ions (over 60 nodes) wi th d i f f e r e n t 
networks but space l i m i t a t i o n s prevent t h e i r 
d iscuss ion . 
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Figure 3: A s imulat ion spec i f i ca t i on given to 
PAN s imulator based on network in Figure 2. 

F igure 3 i l l u s t r a t e s a "s imula t ion 
s p e c i f i c a t i o n " as i t is given to PAN. The f i r s t 
e igh t l i nes speci fy the four word and four word 
sense nodes of Figure 2, i nd i ca t i ng tha t each 
node has both a res t i ng a c t i v i t y and a decay 
ra te of 0 .0 . The next four l i nes speci fy the 
PARent connections INto the word nodes along 
w i th appropr iate weights, and the subsequent 
four l i nes speci fy the corresponding SON 
connections INto the word senses (compare w i th 
Figure 2 ) . The next l i n e , i nd ica t ing external 
INPUT to the network, has the format 

(INPUT node s t a r t - t i m e stop-t ime amount). 
Figure 3 thus ind ica tes that an external INPUT 
of 1.0 u n i t s of ac t i va t i on enters word W3 dur ing 
the f i r s t 6 un i t s of t ime, s imula t ing the 
occurrence of word W3. Next a constant DELTA of 
0.1 un i t s o f t ime is spec i f i ed , i nd i ca t i ng the 
f ineness of time quan t i za t ion , and PAN is t o l d 
to run the s imula t ion for 20 un i t s of t ime. 

Upon g iv ing the s imulat ion spec i f i ca t i on in 
Figure 3 to PAN, the fo l l ow ing output was 
produced by the above competit ion-based model: 

Time 
0 

0.2 
1 
2 
4 
6 

10 
15 
20 

Hi 
0 

0.18 
0.55 
0.77 
0.95 
0.99 
0.98 
0.98 
0.98 

S2 
0 

0.007 
0.20 
0.43 
0.68 
0.79 
0.87 
0.90 
0.91 

S3 
0 

0.003 
0.01 
0.02 
0.02 
0.03 
0.04 
0.04 
0.04 

S3/S2 
1.0 
0.43 
0.05 
0.05 
0.03 
0.04 
0.04 
0.04 
0.04 

competit ion-based spread o f a c t i v a t i o n . F i r s t , 
the spread of a c t i v a t i o n is c ircumscribed in 
tha t it rad ia tes only to nodes S2 and S3, the 
senses evoked by W3. Ac t i va t i on leve ls in a l l 
other nodes remain at zero. Second, although 
the input st imulus terminates a f te r s ix un i t s of 
t ime, a c t i v i t y in the ac t i va ted nodes 
subsequently remains s t ab le . This is 
reminiscent o f "s tab le coa l i t ions 1 1 [ 5 ] . T h i r d , 
t h i s example demonstrates v i r t u a l l a t e r a l 
i n h i b i t i o n between S2 and S3, w i th the dominant 
S2 rap id l y suppressing a c t i v i t y in S3 i n d i r e c t l y 
by absorbing the ma jo r i t y of a c t i v i t i o n 
ava i lab le from W3. Past models of spreading 
a c t i v a t i o n have only produced such l a t e r a l 
i n h i b i t i o n by having e x p l i c i t i n h i b i t o r y 
connections between nodes l i k e S2 and S3. 
F i n a l l y , note tha t there i s a b r i e f i n i t i a l 
per iod of time when the r a t i o of a c t i v i t y S3/S2 
i s r e l a t i v e l y h i gh . This i n i t i a l "window o f 
oppor tun i t y " makes possib le some i n t e r e s t i n g 
context e f f e c t s , as i l l u s t r a t e d below. 

For the second example, we i l l u s t r a t e how a 
p r e x i s t i n g "con tex t " can r e s u l t in the 
appearance of a switch being thrown to r e d i r e c t 
the flow of a c t i v a t i o n . To do t h i s , we use the 
same s imulat ion s p e c i f i c a t i o n as tha t given in 
Figure 3, except the previous s ing le ex te rna l 
INPUT statement is replaced w i th the f o l l ow ing 
two statements: 

(INPUT W3 0 . 1 6.0 1.0) 
(INPUT S3 0.1 6.0 0.2) 

The f i r s t input st imulus is exact ly the same as 
in the preceding example. The second weaker 
input (0.2) is d i rected to S3 ( r e c a l l tha t S3 
was i n d i r e c t l y i n h i b i t e d by S2 in the previous 
example). This l a t t e r " i npu t " is used fo r 
i l l u s t r a t i v e purposes to s imulate p o s i t i v e 
feedback from the "con tex t " C2 in which 
disambiguation of word W3 is occur r ing (see 
layer C in Figure 2). In t h i s s i t u a t i o n , PAN 
produces the fo l l ow ing l i s t i n g o f a c t i v a t i o n s : 

Time 
0 

0.2 
1 
4 

10 
15 
20 

W3 
0 

0.18 
0.57 
0.96 

0.99 
0.99 
0.99 

S2 
0 
0 
0 
0 
0 
0 
0 

S3 
0 

0.05 
0.32 
0.81 

0.93 
0.95 
0.95 

In t h i s example, the absolute contextual e f f e c t 
produced by retrograde e x c i t a t i o n to node S3 
"swi tches" or "gates" the f low of a c t i v i t y from 
node W3 completely to S3 (con t ras t w i th the 
f i r s t example above). The absolute swi tch ing 
here is cont ingent upon the r es t i ng l eve l of S2 
and S3 being zero I n i t i a l l y ; in networks where 
r i might be a very small p o s i t i v e number, 
perhaps r e f l e c t i n g the r e l a t i v e frequency w i th 
which the concept represented by node n i occurs, 
sw i t ch ing /ga t ing of the sor t demonstrated here 
d i r ec t s a small amount of a c t i v a t i o n to S2. 

This simple " l oss l ess " network i l l u s t r a t e s a 
number of important proper t ies possible wi th 
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IV DISCUSSION 

This paper has presented an approach to 
spreading a c t i v a t i o n i n p a r a l l e l assoc ia t ive 
networks tha t is d is t ingu ished from previous 
approaches by i t s compet i t ion-or ien ted nature . 
A theory of competi t ion-based p a r a l l e l 
a c t i v a t i o n as a model of assoc ia t ive memory has 
not been s i g n i f i c a n t l y studied in AI in the 
pas t , although there is some re levant re la ted 
work. For example, the idea of nodes as ac t ive 
agents bears some resemblance to " ac to r s " [14 3, 
and the "con t rac t net framework" involves at 
leas t an i m p l i c i t not ion of compet i t ion [133. 
However, both of these and s im i l a r models are 
"message passing systems" at the AI symbol 
processing l e v e l [4 3. Others have postu lated 
compet i t ion and/or parsimonious a l l o c a t i o n of 
ac t i va t ion /energy as important in f luences in 
c o g n i t i o n , but t h i s work has been at the 
"hardware l e v e l " of neural modeling and has been 
formulated qu i te d i f f e r e n t l y [ 3 , 7 ,8 ,9 3 . 

As i l l u s t r a t e d above, even in the absence 
of e x p l i c i t i n h i b i t o r y connections between 
nodes, a competi t ion-based approach to spreading 
a c t i v a t i o n can e x h i b i t a number of important 
p r o p e r t i e s : v i r t u a l l a t e r a l i n h i b i t i o n between 
appropr iate nodes, c ircumscribed a c t i v a t i o n , 
s t a b i l i t y o f a c t i v a t i o n ( "s tab le c o a l i t i o n s " ) , 
and context e f f e c t s ( e . g . , sw i t ch i ng ) . Our 
research group is cu r ren t l y i n ves t i ga t i ng the 
f e a s i b i l i t y of developing a f u l l - s c a l e model of 
the cogn i t i ve a c t i v i t i e s involved in the rea l 
world p r i n t - t o - sound mapping [ 1 1 ] . This task 
should provide an exce l len t t e s t of the theory 
of competi t ion-based spread of a c t i v a t i o n 
proposed in t h i s paper. 
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