VIRTUAL UTERAL INHIBITION IN PARALLEL ACTIVATION MODELS OF ASSOCUTIVE MEMORY*

James A. Reggia

Department of Computer Science
University of Maryland
College Park, MD 20742 USA

ABSTRACT

This paper describes a new theory of how
spreading activation may occur in associative
memory models formulated as parallel activation
networks. The theory postulates that
competition for activation by nodes/concepts in
a network is a fundamental principle of memory
retrieval. Using only excitatory connections
between concepts, a specific implementation of
this model is able to demonstrate "virtual
lateral inhibition" between competitors and
other interesting behaviors that have required
use of explicit inhibitory connections in the
past.

| INTRODUCTION

During the last several years there has
been a great deal of interest in Al in
determining what kinds of parallel architectures
best meet the needs of various Al tasks. This
paper is concerned with "value-passing systems,"
networks in  which the processing elements
communicate by passing around continuous
quantities (numbers) and by performing simple
arithmetic operations on these values [4]. Such
architectures are often intended as models of
associative memory, and frequently they are
characterized by an analogy with neurobiological

networks and processing paradigms. Recent
examples include "connectionist models" [5],
"interactive activation models" [10], the

Boltzman machine [7] and ACT ML

This paper presents a new "competition-
based" theory about how spreading activation may
occur in value-passing associative  memory
models. First some terminology and the need for
a model of spreading activation that can support
"virtual lateral inhibition" are discussed.
Then a theory is introduced which postulates
that competition between cognitive activities
for limited resources is a fundamental
organizing principle of memory retrieval. A
specific instantiation of the theory is used to
illustrate the concepts involved.
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I PARALLEL ACTIVATION MODHS OF MEMCRY

In memory models implemented as value-
passing systems, each processing node typically
represents a "concept" or "hypothesis", and the
level of activation associated with a node
represents the relevance of or confidence in the
concept/hypothesis represented by that node
[1,5,73. For this reason, and because of the
distributed nature of the computations involved,
the term parallel activation network is used for
such models. Nodes communicate with each other
using links which have one or more weights
associated with them. If the link from node A
to node B has a positive weight, indicating that
activation of node A tends to increase
activation of node B, then such a |link s
excitatory. Conversely, a negative weight
indicates an inhibitory connection. There are
both excitatory and inhibitory interconnections
at the level of neuronal circuits in the nervous
system. It is therefore not surprising that
both types of interconnections have been adopted
by way of analogy in higher-level cognitive
networks.

It has often proven convenient to view
parallel activation networks as partitioned into
layers of conceptually similar nodes, and to
conceive of information as initially entering

one "lowest" layer (e.qg., features) and
propagating "upwards" to others (e.g., letters)
[2,10], When nodes in a lower layer directly

inhibit nodes in a higher layer such inhibition
may be called forward inhibition since it is in
the direction of initial flow of activation.
Conversely, inhibition in the opposite direction

may be called backward inhibition, and
inhibition between nodes in the same layer can
be referred to as lateral inhibition. Lateral

inhibition has long been recognized to play an
important role in contrast enhancement in neural
networks and has been argued to be an important

aspect of selective behavior [6]. Explicit
lateral inhibitory links have also often been
used in parallel activation models of
associative memory in cognitive science to
produce selective behavior [2,5,10],
representing one way in which these recent
cognltlvely-oriented models have borrowed

processing paradigms from earlier neural
modeling studies. For example, Figure 1 shows
two mutually Inhibitory nodes n; and n,. With a



typical model for spread of activation even a
transiently higher input to one node (say n,)
followed by equal inputs to both nodes can lead
to stabilization of activation with one node
maximally activated (ny and the other having
zero activation (n3). This "winner-take-all"
phenomenon [5] comes about because of the
lateral inhibitory connections.

Figure 1: Lateral inhibition using explicit
inhibitory links between two "competing" nodes
(modified from [5]). Weights are indicated
adjacent to connections.

While lateral inhibition is a useful
concept in parallel activation models, the use
of explicit lateral inhibitory links to achieve
lateral inhibition poses a number of
difficulties for implementing real world models
of associative memory. At the cognitive level,
in contrast to the neurobiological level, there
is at best limited empirical evidence for such
explicit "negative associations" between the
concepts involved. Published tabulations of the
associations between related concepts usually
include only positive weights (frequencies).
Since these empirical studies do not provide
negative weights between competing concepts, one
is faced with the problem of determining how
such weights are to be assigned in building
parallel activation networks where weights are
based on probabilitites [11], Furthermore, as
the number of "competing" nodes grows, the
number of mutual lateral inhibitory connections
needed can grow quite rapidly. For example, in
the print-to-word mapping, a single character
node may connect to thousands of word nodes,
each of which would apparently require a
mutually inhibitory connection with all of its
competing word nodes [10],

In the following an approach to parallel
spreading activation is proposed that can
resolve these problems. Specifically, this
approach is capable of producing virtual lateral
inhibition: apparent lateral inhibition between
competing nodes in the absence of explicit
lateral inhibitory connections. This phenomenon
is produced without giving up the notion that
computations in parallel activation networks
should be local: each node can only "see" the
activation and link weights of its immediately
adjacent neighbor nodes.

111 COMPETITION-BASED SPREAD OF ACTIVATION

In previous parallel activation models, the
activation flowing into a node is not determined
by the level of activity possessed by the

receiving node. Typically, the incoming
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activation "seen" by a node njs a weighted sum
or some other function of the activities of its
neighbors [1,2,5,6,7,10], This incoming
activity is used by node n; to update its own
activation level, which is then distributed by
node n; during the next increment of time as
output to appropriate neighbors.

In the competition-based parallel
activation theory described here, the spread of
activation is determined in a different way.
When a node n; assumes an activation level above
its normal resting level, its neighbors actively
compete for the "energy" possessed by node n;.
Further, the ability of a neighboring node to
compete for n;'s activity or resources is
proportional to that neighbors existing level
of activation. Resources acquired by a neighbor
node in this fashion occur at the expense of
resources that are available to its competitors,
leading one to predict that virtual Ilateral
inhibition will occur. The metaphor used here
is that the "stronger" a node is (i.e., the
higher its level of activation), the more
effectively it can compete with other nodes for
a source of energy/activation.

To examine this idea, one possible
instantiation of competition-based spreading
activation is presented below (other
formulations are possible and are currently
being explored). In the formulation given here,

the presence of an underlying associative
network is assumed where the nodes in the
network are partitioned into disjoint layers as
illustrated in Figure 2. For convenience, we
also assume that each node in one layer is
directly connected to at least one node in each
adjacent layer. (These assumptions are not an
essential part of the theory.)

Each connection between a node in one layer
and that in another has two weights reflecting
the directionally-oriented frequencies of
association between the "concepts" represented
by the nodes. For example, if n; is a node in
one layer associated with a node n; in a

different layer, then a bidirectional link
appears between n; and nj in the network. One
weight "attached" to this link is Wij
representing the frequency (conditional

probability estimate) with which the concept
represented by n; occurs given that the concept
represented by n; is known to be present.
Similarly, the attached weight W; represents
the frequency with which n; occurs given that n;
is known to be present. We restrict such
weights to 0.0 < wg < 1.0; the non-negative
nature of these weights distinguishes them from
the possibly negative "synaptic weights" in
neural models and in psychologically-oriented
parallel activation models of associative memory
[5,103. Nodes in this example network do not
explicitly inhibit other nodes in either the
same layer or in adjacent layers. Furthermore,
permitting weights to be highly asymmetric (wij
Wi in general) also distinguishes this
approach from others [7,8].
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Figure 2: A word-sense disambiguation network.

As a specific "toy" example, consider a
grossly simplified version of the problem of
mapping a word into the appropriate word sense
(Figure 2). Layer W represents word/morpheme
units (assume there are just four possible
words), layer S represents possible word senses
or "meanings" (again, just four), and layer C,
which we ignore for the time being, represents a
number of possible semantic contexts in which
word sense disambiguation can occur. Note that
each word node Wi relates to multiple senses,
e.g., node W2 is connected to S1, S2 and 54,
reflecting the ambiguity of words in natural
language. Thus {S1,52,S4} represents the nodes
in layer S which are competitors for the title
of "sense indicated by W2." Similarly, each
word sense is connected to multiple possible
words (e.g., synonyms).

In Figure 2, the weight W; corresponding
to spread of activation from node n; to node nj
is written adjacent to nj. The weights on
"outputs" from a node in one layer to nodes in
an adjacent layer sum to 1.0, consistent with
our earlier definition of weights as conditional
probability estimates. Each node n; in memory
has an activation level a;(t) at time t,
constrained so that &.U < a;(t) < 1.0, and we
let ai(t) represent the belief in the entity
represented by node n; Each node also has a
natural resting activation level r; and a decay
rate d; reflecting how quickly a;(t) returns to
the resting level in the absence of external
influences. We make two assumptions. First, we
assume that at time t the maximum rate at which
node n1 is capable of distributing activation to
its competing neighbors in an adjacent layer is
proportional to a;(t). Second, we assume that
n; parsimoniously "desires" to support at most a
total of one unit of activation in associated
competing nodes in an adjacent layer. Thus, the
total amount of activation n; distributes to an
adjacent layer at any point in time decreases as
the collective activity of its neighbors in that
layer rises. For example, in going from words
to word senses, this second assumption states
that each word maps onto exactly one of its
possible senses. These two assumptions can be
approximated by stating that the total output of
node n” to its neighbors at time t is given by

outg(t) = (1.0 ~ sum of mctivities of

neighbors) * a;(t)

as long as this quantity is non-negative, and
zero otherwise.

The idea of competition is introduced into
this model by permitting the neighbors of n; in
an adjacent layer to actively compete for the
total output activity of n; The ability of
neighbor node n; to compete for ni's output

activity out;(t) is proportional to its
"strength" a;(t), and to the weight of
association W;;. Thus, the activation out ji(t)

transferred from n; to n; at time t is given by
outji(t) = [Hji " aj(t)] " Outl(t)

(the symbol "*" is read "is proportional to").
"Stronger" neighbors of n; therefore extract a
greater portion of n;'s finite activation
energy, leaving a smaller portion for "weaker"
competitors. It is the fact that aj(t), the
activation of the receiving neighbor node,
appears in the formula for out;;(t) above that
makes this a competition-based model. Finally
we define the total flow of activity into a node
n; at time t to be
iﬂj(t) = z outdi(ﬂ.
i

the sum of all its inputs from neighbors.

In summary, a specific form of spreading
activation has been described where the portion
of a node ni's output activation going to
neighbor node n; is proportional to the ability
of n; to compete for that activity (reflected by
the formula for out;i(t) above). Given this
competition-based approach to distribution of
activation, we can adopt an approach similar to
that used by others to wupdate a node's
activation level (e.g., [10]). Let the symbol
I|(t) indicate the net flow of activation into
nn at time t,, i.e.,

Ii(t) = ing(t) =~ outy(t),

Then the rate a;(t) at which n;'s activation
changes is given by the net flow of activation
into the node minus the decay:

aj(e) = 1) * (1« ag(e)) - d; (aglt) -ry),

The term (1 = ay{t)) in this latter equation
assures that a;(t) approaches its maximum value
asymptotically. Note that all of the above
computations are local in the sense that n; only
needs to "see" the activations and weights
associated with its immediate neighbors.

Two numerical examples are now presented to
demonstrate the behavior of the above
competition-based parallel activation model.
These examples are based on the network in
Figure 2, and were Implemented using PAN, a
parallel activation network simulator. PAN is a
LISP program that permits one to specify a
network and method for spread of activation, and
to describe external inputs to the network that
are to occur during simulation, PAN then
performs the indicated simulation while
periodically displaying the activity level of
nodes (PAN is similar in spirit to ISCON



[12]). In the examples, PAN is used with the
specific competition-based model of spreading
activation described above. We have run larger
simulations (over 60 nodes) with different
networks but space limitations prevent their
discussion.

[NODE w1 0.0 0.0)

(NODE W2 0.0 0.0)

[NODE w3 0.0 0.0)

(NODE W4 0.0 0.0)

(NODE  S1 0.0 0.0)

(NODE  S2 0.0 0.0)

[NODE s3 0.0 0.0)

NODE S4 0.0 0.0)

PARIN W1 (SI 0.5) (S3 0.1))

PARIN W2 (S1 0.5) (S2 0.5) (S4 0.5))
PARIN W3 (S2 0.5) (S3 0.3)1

PARIN WA (s3 0.6) (S4 0.5))

SONIN SI (Wl 0.7) W2 0.1)1

[SONIN 82 W2 0.1%) W3 0.7)]

SONIN S3 (Wl  0.3) (W3 0.3) (W4 0.4))
SONIN S4 (W2 0.5) (W4 0.6))

INPUT W3 0.1 6.0 1.0)

[DELTA  0.1)

Figure 3: A simulation specification given to
PAN simulator based on network in Figure 2.

Figure 3 illustrates a "simulation
specification" as it is given to PAN. The first
eight lines specify the four word and four word
sense nodes of Figure 2, indicating that each
node has both a resting activity and a decay
rate of 0.0. The next four lines specify the
PARent connections INto the word nodes along
with appropriate weights, and the subsequent

four lines specify the corresponding SON
connections INto the word senses (compare with
Figure 2). The next line, indicating external

INPUT to the network, has the format

(INPUT node start-time stop-time amount).
Figure 3 thus indicates that an external INPUT
of 1.0 units of activation enters word W3 during
the first 6 units of time, simulating the
occurrence of word W3. Next a constant DELTA of
0.1 units of time is specified, indicating the
fineness of time quantization, and PAN is told
to run the simulation for 20 units of time.

Upon giving the simulation specification in
Figure 3 to PAN, the following output was
produced by the above competition-based model:

Time Hi S2 S3 S3/S2
0 0 0 0 1.0
0.2 0.18 0.007 0.003 0.43
1 0.55 0.20 0.01 0.05
2 0.77 0.43 0.02 0.05
4 0.95 0.68 0.02 0.03
6 0.99 0.79 0.03 0.04
10 0.98 0.87 0.04 0.04
15 0.98 0.90 0.04 0.04
20 0.98 0.91 0.04 0.04
This simple "lossless" network illustrates a

number of important properties possible with
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competition-based spread of activation. First,
the spread of activation is circumscribed in
that it radiates only to nodes S2 and S3, the
senses evoked by Wa3. Activation levels in all

other nodes remain at zero. Second, although
the input stimulus terminates after six units of
time, activity in the activated nodes
subsequently remains stable. This is
reminiscent of "stable coalitions'' [5]. Third,
this example demonstrates virtual lateral

inhibition between S2 and S3, with the dominant
S2 rapidly suppressing activity in S3 indirectly
by absorbing the majority of activition
available from Wa3. Past models of spreading
activation have only produced such lateral
inhibition by having explicit inhibitory
connections between nodes like S2 and S3.
Finally, note that there is a brief initial
period of time when the ratio of activity S3/S2
is relatively high. This initial "window of
opportunity" makes possible some interesting
context effects, as illustrated below.

For the second example, we illustrate how a
prexisting "context" can result in the
appearance of a switch being thrown to redirect
the flow of activation. To do this, we use the
same simulation specification as that given in
Figure 3, except the previous single external
INPUT statement is replaced with the following
two statements:

(INPUT W3 0.1 6.0 1.0)
(INPUT S3 0.1 6.0 0.2)
The first input stimulus is exactly the same as
in the preceding example. The second weaker

input (0.2) is directed to S3 (recall that S3
was indirectly inhibited by S2 in the previous

example). This latter "input" is wused for
illustrative purposes to simulate positive
feedback from the "context" C2 in  which

disambiguation of word W3 is occurring (see
layer C in Figure 2). In this situation, PAN
produces the following listing of activations:

Time W3 S2 S3
0 0 0 0
0.2 0.18 0 0.05
1 0.57 0 0.32

4 0.96 0 0.81
10 0.99 0 0.93
15 0.99 0 0.95
20 0.99 0 0.95

In this example, the absolute contextual effect
produced by retrograde excitation to node S3
"switches" or "gates" the flow of activity from
node W3 completely to S3 (contrast with the
first example above). The absolute switching
here is contingent upon the resting level of S2
and S3 being zero Initially; in networks where
ri might be a very small positive number,
perhaps reflecting the relative frequency with
which the concept represented by node n; occurs,
switching/gating of the sort demonstrated here
directs a small amount of activation to S2.
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IV DISCUSSION

This paper has presented an approach to
spreading activation in parallel associative
networks that is distinguished from previous
approaches by its competition-oriented nature.
A theory of competition-based parallel
activation as a model of associative memory has
not been significantly studied in Al in the
past, although there is some relevant related
work. For example, the idea of nodes as active
agents bears some resemblance to "actors" [14 3,
and the "contract net framework" involves at
least an implicit notion of competition [133.
However, both of these and similar models are
"message passing systems" at the Al symbol
processing level [43. Others have postulated
competition and/or parsimonious allocation of
activation/energy as important influences in
cognition, but this work has been at the
"hardware level" of neural modeling and has been
formulated quite differently [3,7,8,9 3.

As illustrated above, even in the absence
of explicit inhibitory connections between
nodes, a competition-based approach to spreading
activation can exhibit a number of important

properties: virtual lateral inhibition between
appropriate nodes, circumscribed activation,
stability of activation ("stable coalitions"),
and context effects (e.g., switching). Our

research group is currently investigating the
feasibility of developing a full-scale model of
the cognitive activities involved in the real
world print-to-sound mapping [11]. This task
should provide an excellent test of the theory
of competition-based spread of activation
proposed in this paper.
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