
THE TEACHABLE LETTER RECOGNIZER 

James Geller 
Department of Computer Science 

State University of New York at Buffalo 
Buffalo, NY 14260 

geller%buffalowcsnet-relay 

ABSTRACT 

The "Teachable Letter Recognizer" (TLR) is a program for 
letter learning which uses a method not vet described in the char­
acter recognition literature. TLR has two main characteristics: (1) 
It uses a discrimination tree as a knowledge representation. The 
discrimination tree is a quadtree w i t h some additions. (2) The 
two types of global features that are used to characterise a letter 
are the density of pixels and the overall "color", white, black or 
grey. TLR is invariant to shifts and shows several interesting 
effects which are related to human behavior, for example occa­
sionally it becomes confused when learning new letters. TLR's 
importance as a letter recognition program lies in its abil i ty to 
recognize some distortions of letters which it has never seen 
before, and for which it also does not have a transformation algo­
r i thm. 

1 INTRODUCTION 

This paper describes the Teachable Letter Recognizer" 
(TLR). TLR belongs to the class of programs which are intended 
to know nothing about the domain of usage and acquire their 
knowledge by interaction w i t h a "teacher". TLR owes some of its 
goals, as wel l as its name, to the 'Teachable language 
Comprehended (Qui l l ian, 1969). Instead of programming' 
knowledge into TLR 1 want to build a general knowledge 
representation and then teach letters by showing them to TLR. 
The other important A! source for TLR was the idea of using a 
discrimination net as a knowledge representation. This has been 
influenced by EPAM (Leigenbaum, 1963). 

TLR is conceptually different from classical approaches to 
letter recognition. Nevertheless TLR shares w i t h some graphics 
programs the use of a quadtree as a hierarchical data-structure. 
Eor a quadtree oriented approach to shape recognition see (Chien 
and Aggarwal , 1984). The reader is referred to (Samet, 1984) for 
a survey about quadtrees. 

To show the contrast between TLR and classical methods of 
character recognition 1 want to compare it w i t h two of the major 
techniques that have been discussed in the literature use of low 
level features and template matching. Eor a review of some prin 
ciples of character recognition see (Harmon, 1972). A psychologi­
cal treatment of letter recognition can be found for instance in 
(McClelland and Rumelhart, 1981). 

One of the classical approaches in character recognition is to 
employ some method of low level feature extraction. Examples of 
low level features include "line segments", "intersections", 
"corners", etc. Without questioning the idea of using features per 
se it seems disturbing that a vision system should have to do a 
vast amount of computation before it is able to say anything 
significant about the object that it is "watching". Even though 
there is a lot of evidence that early processing in the human brain 
is not accessible to introspection, it st i l l seems obvious that we can 
say something about the appearance of an object before we have 

perceived al l its l i t t le details. Therefore we have to look for 
different types of features that are more "global" or "structural". 

The fact that 1 want to look for "structural" as opposed to 
local features does not exclude a bottom up approach. Recognition 
of the global features should therefore not require the computa­
tion of small features, this means that "structural features" 
should be easily accessible "on the surface". In other words, 1 am 
looking for a characterization of an object which can be obtained 
by ignoring details. 

The other approach that 1 want to mention as different f rom 
TLR has been referred to by Harmon as a "parallel processing" 
technique, namelv template matching. Template matching does 
not create the same problem as local feature extraction because it 
is definitely a global process. However, template matching seems 
to make immediate use of al l the information available in the pic­
ture instead of accessing the easily available structural features 
first and looking at details later. 

TLR gains a lot of cJantv bv using a very simple control 
mechanism namelv depth first tree search. 

II TLR 

A. Input Data Format 

Conceptually the reader can think of the input data as con­
sisting of arrays of binarv values w i th each arrav representing 
one letter. Due to the fact that the program is implemented in 
LISP a letter is represented as a list structure of b's and w's. Fig-
ure 1 shows a reduced (8x8) binarv matrix and the corresponding 
list representation of the letter " 1 " . 

B. 

Informal ly a quadtree is a tree representing a picture where 
every node is either a leaf or has exactly four sons. A leaf con­
tains either a " w " (whi te) or a "b" (black) and represents a square 

0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 
0 0 01 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 1 0 0 00 
0 0 0 1 0 0 0 0 
0 0 0 1 0 0 00 

(w 

u 
w 
w 
(w 
(w 
(w 
(w 

w 
w 
w 
w 
w 
w 
w 
w 

w w w w w w ) 
w w w w w w ) 
w b w w w w) 
w w w w w w ) 
w b w w w w ) 
w b w w w w ) 
w b w w w w ) 
w b w w w w ) ) 

Figure 1. Matrix and List Representation of " i " 



250 J. Geller 

of the picture in the given color. A non leaf is said to represent a 
grey area and is obtained by combining four sons in a way that a 
square of double the length of the "son squares" is bui l t , t h e root 
represents the whole picture. If the root is a leaf, then it describes 
an entirely black or entirely whi te square. The precise method of 
representing a picture w i t h a quadtree is explained in (Samet, 
1984). 

The quadtree used in this paper adds three aspects to a nor­
mal quadtree, ( l ) The representations of al l known letters are 
integrated into a single tree structure. (2) A l l nodes contain infor­
mation about the objects they belong to. (3) Every node contains 
information about the relative densities of black pixels of the area 
it is representing (relative to the father area). 

Item 3 f rom above is the source for the name given to this 
type of quadtree, namely "density-quadtree". Items 1 - 3 seem to 
just i fy the treatment of a density quadtree as a form of 
knowledge representation as opposed to simply a data structure. I 
w i l l refer to the additional information in the quadtree as "object 
knowledge' . Figure 2 shows a BNE definition of a density-
quadtree. 

"0.00 ... 1.00 in Figure 2 stands for al l rational numbers 
between 0 and 1 w i t h a precision of t w o digits after the period. 
This is an arbi trary l imi t which is easily changeable. 

In order to explain the meaning of the different parts of a 
density-quadtree a small example fo l lows. Assume the fo l lowing 
<son>: 

(w 0).3(a e o)0).4(gq)) 
ml 
(m (....) 0.3 ( j l k)0.41 (mn))) 

The line containing " w " indicates that the given node is a 
leaf node for the letters (a e o g q). This means that al l these 
letters have a purely wh i te sub-area corresponding to this node. 
The line consisting only of " n i l " indicates that this node is not a 

leaf for any letter w i t h a corresponding purely black area. 
Final ly the line containing an " m " indicates that the letters (j 1 k 
m n) are grey in the given area. Therefore they have to be 
described by a recursive sub-tree which is indicated by (....). 

The number 0.4 is the approximate density of black pixels 
at this node relative to the number of black pixels of the area 
corresponding to the immediate parent node for the letters " g " 
and " q " . 

c Learning 
In the learning phase letters given in a format similar to 

Figure 1 are subjected to a density-quadtree analysis. The tree 
structures of a l l letters are integrated into one single density-
quadtree. The process of doing this and the very structure of the 

tree itself are designed to permit a high degree of structure shar­
ing between objects that are looking similar. 

On the other hand t w o letters create a more complicated tree 
if they are very different, because they can share less information. 
The important characteristic of a letter is its structural distribu 
tion of black, wh i te and grey values, and letters share structural 
distributions if their two-dimensional appearances are similar. 

The second measure used to ensure that the tree is not grow­
ing unnecessarily is to keep the number of <value>s in the 
<value-hint-l '> small by using a learning scheme w i t h a "compet-
ing letter". Any time TLR is asked to learn a new letter it first 
tries to recognize this new letter. If the recognition gives a 
different letter name than the one told by the teacher, then there 
is a potential danger of repeating this mistake at the next recogni­
tion process. Therefore the letter obtained bv the recognition pro­
cess is called the competing letter' and given as an additional 
parameter to the tree building function. 

If the current new letter has a density value that is sl ight ly 
different from all the values at the current ly analyzed node, then 
the tree building function w i l l not add a new density value, 
unless this would put a letter and a competing letter together into 
the same <hint hst>. If the new letter was already in the 
<hint- l ist>, then nothing w i l l be added at a l l . (This could hap 
pen if t w o sl ight ly different handwri t ten versions of the same 
letter are taught). 

Final ly it is necessary to mention that there is a preprocessor 
for "learn*' that removes the "whi te strips" around the letter 
before quadtree analysis starts. This makes the recognition pro­
cess invariant towards shifts but unfortunately forces the pro 
gram frequently to deal w i t h areas of odd numbered size which 
cannot be broken down evenly. In this case the analysis is contin 
ued w i t h four areas of different size. 

D. Recognition 

In the recognition phase an unknown letter is analyzed in 
the same way as in the learn phase. However, whi le analyzing 
the area, the integrated quadtree is also traced through its 

corresponding nodes. If the unknown letter happens to have a 
black area at the given level, then analysis stops for this branch 
of the quadtree and the <hint- l ist> of the <b-seg> is added to a 
result list. (The analogue thing happens for a purely whi te area). 

If the unknown letter is grey, and the given node contains 
an <m-seg>, then analysis is continued. The four sons of the sub­
tree are recursively analyzed relative to the four sub-areas of the 
area. <hint- l ist>s for the computed densities are added to the 
result list. This use of the quadtree bears a strong resemblance to 
the use of a discrimination tree. After the whole tree has been 
searched in the described way, the result list might look l ike ((a 
b) (a) (a c) (c) (a) (a)) for a quadtree which contained pictures of 
"a", "b " and "c". 

The most important characteristic of the result l ist is that it 
contains sublists of vary ing length. Sublists that were contributed 
by the top nodes in the density quadtree tend to be long, because 
on the top levels most letters look the same. This sounds l ike a 
strong statement, but on the top level al l letters are grey and 
therefore similar. 

TLR decides what letter it saw by counting the number of 
occurrences of each letter in the result list. However before this 
is done the result list is pruned by removing a l l sub lists that are 
longer than a so called "effort" value. If the effort value is set to 
a low value (1-3) then the evaluation of the result list can be 
done comparably fast. It is not possible, however, to rely str ict ly 
on the short sub-lists derived f rom the leaves because the analysis 
of a new distortion might bottom out at an earlier level. There­
fore in some cases short sub-lists alone might not be sufficient and 

Figure 2. BNT Definition: Density-quadtree 

((w 0).3(a e o)0.4(gq)) 
ml 
(m (....) 03 ( j l k)0.41 (mn))) 



J. Geller 251 

a higher effort \alue would be necessary. 

Af ter learning more and more letters the length of <,hmt 
list>s w i l l get longer even at the leaves which w i l l also require 
the user to raise the effort of recognition. 

III RLSLLTS OK WORKING WITH TLR 

In this section two series of tests of TLR w i l l be described. 
The goal of both of them was to investigate TLR's most important 
feature: Its abi l i ty to recognize some distortions that it has not 
been confronted w i t h before. 

The first experiment used onlv 4 letters, namelv "a", "b". 
" g " and "o"; "a" and "o" were chosen because they look similar in 
many handwrit ings, Fvery letter was shown in one original 
form and ten different distortions. That means TLR was shown 
eleven sets of the letters "a", "b" , "g " and "o" in precisely this 
order. The first set of lour letters could of course not be recog 
ni/ed, because TLR is started without any prior knowledge. The 
results of this test run were quite encouraging. 

Th i r t \ one distortions out of fortv were immediately recog-
nized. Nevertheless, all of them were presented a second time to 
TLR in order to improve its knowledge. Lor three of the letters 
TLR suggested t w o or more possible solutions w i t h almost identi­
cal hint counts. In these cases correct solutions could be obtained 

by raising the "effort level". In six cases TLR confirmed wrong 
results. Af ter teaching these letters again TLR finally recognized 
them. 

Test data consisted of hand printed lower case letters of one 
subject that were "digitized" w i th an editor. A bias to the 
handwr i t ing of the subject cannot be excluded, however an effort 
was made to make distorted letters really different. 

Lnforcing knowledge of one letter can weaken the memory 
of another letter, because the relative number of hints for the 
second letter diminishes in the tree. To test for this possibility al l 
fo r ty letters were presented again for recognition after the experi­
ment was finished. Four letters were recognized incorrectly, and 
three out of these four required unexpectedly high effort values 
(approximately 8) to be recognized correctly. This stands in con­
trast to the case where TLR returns two letters w i t h similar hint 
counts, because in that case the necessity of a higher effort level is 
immediately obvious. 

One positive result of this experiment was that the number 
of errors that TLR made became smaller w i th greater knowledge 
(cf. Table 1.); however this gain was not accompanied by a degra­
dation of the recognition times. It w i l l require tests w i t h larger 
data sets to find out whether a saturation effect of learning can be 
achieved. 

Learning times for a letter were usually less than one 
minute real time on a VAX-750. Recognition times varied 
between several seconds and almost one minute, however were 
mostly in the order of fifteen seconds. 

Cycles 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Letters 
4 
8 
12 
16 
20 
24 
28 
32 
36 
40 

Errors 
0 
3 
4 
5 
6 
7 
9 
9 
9 
9 

Table 1. Number of accumulated errors 

The second experiment involved a test w i t h the complete 
alphabet. T w o sets of the entire alphabet were used, one learning 
set and one set of distortions. This time letters were not presented 
again after successful recognition. Seventeen out of twenty six 
letters were recognized immediately, one after adjusting the effort 
level, and eight letters required additional teaching. 

It should be noted that some of the distortions that were 
recognized were of different size or consisted of strokes of double 
w id th . These two types of variations could be recognized without 
the use of a scaling algorithm or a thinning algorithm. However 
TLR was not designed to deal w i t h rotated letters. 

IV CRITICISM OF TLR 
When TLR finds its own competing letter to differentiate it 

from a new letter that has to be learned, then some of its choices 
would surprise a human observer. So for example " i " was taken 
as an obvious competing letter for " j " , but "g " was chosen as 
"competing letter" for "k" , although people do not consider these 
letters to be similar. A detailed analysis of the density quadtree 
should show similar density values for these two letters. One 
reason why we see " g " and " k " as different and TLR does not is 
that we have a l iteral base line in mind, when we look at the 
letters. We also might think of words where " g " occurs and " g " 
clearly extends below the word but " k " does not. TLR never saw 
a "base l ine", and it does not know words. 

V CONCLUSIONS 

This paper introduced a letter recognition program called the 
"Teachable Letter Recognizer which uses a quadtree w i t h added 
object knowledge as a discrimination tree and knowledge 
representation. Global structural features, namely the b/w/grev 
structure and relative density values are used for the recognition 
process. An intelligent learning process that avoids unnecessary 
information and is based on "competing letters" is used. An effort 
value permits TLR to prune a list of hint-lists. Some distortions 
which are not known to the program beforehand and for which 
no Hans formation algotithm is implemented are nevertheless 
recognized. 

ACKNOWLEDGEMENTS 
I am indebted to Jon Hu l l , David Shapiro, Stuart Shapiro, Soon 
Chun and three anonymous referees for valuable contributions. 

REFERENCES 

Chien, C.W. and Aggarwal, J.k., "A Normalized Quadtree 
Representation', (Computet \ision, Graphics and Image Process 
ingt Vol . 26, 1984, pp. 331 346. 

Feigenbaum, E.A., "The Simulation of Verbal Learning Behavior", 
in: Feigenbaum, L.A. & 1 eldman, J. (Eds.) Computers and 
Thought, McGraw-Hi l l , 1963. 

Harmon, L.D, "Automatic Recognition of Print and Script", 
Proceedings of the IEEE, October, 1972, pp. 1165-1176. 

McClelland, J.L. and Rumelhart, D.E., "An Interactive Act ivat ion 
Model of Context Effects in le t ter Perception: Part 1. An Account 
of Basic Findings', Psychological Review, Vo l . 88, N. 5, 1981, pp. 
375-407. 

Qui lhan, M.R., T h e Teachable Language Comprehender: A Simu­
lation Program and the Theory of Language**, Communications of 
the ACM, Vo l . 12, 1969, pp. 459-476. 

Samet, H. The Quadtree and Related Hierarchical Data Struc­
tures" ACM Computing Surveys, Vol . 16, No. 2, June. 1984. 

file:///ision

