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ABSTRACT 

This paper examines the various manifestations of 
input-expectation discrepancy that occurs in a broad 
spectrum of research on intell igent behavior. It makes 
the point that each of the different research activities 
highlights different aspects of an input-expectation 
reduction mechanism and neglects others. 

A comprehensive view of this mechanism has been 
constructed and applied in the design of a cognitive 
industr ial robot. The mechanism is explained as both a 
key for machine learning strategies, and a guide for the 
selection of appropriate memory structures to support 
intel l igent behavior. 

A . I n t r o d u c t i o n 
This paper is an at tempt to integrate and unify a 

spectrum of theories about intell igent behavior. I wi l l 
make the claim that input-expectation discrepancy 
reduction is the crux of a generic strategy that under­
lies intel l igent behavior. I then go one step further and 
argue that this mechanism may itself be a particular 
example of the even more general strategy of pr imary 
drive reduction or fitness enhancement. Thus we arrive 
at a mechanism that derives support from the basic 
mechanism of life — organic evolution. 

I at tempt to draw together work from cognitive 
modell ing, experimental psychology, A I , and brain 
modell ing. The motivations behind AI work are seldom 
this broad, perhaps because AI researchers often have 
an overly parochial view of what is directly relevant 
and thus of interest. I hope to demonstrate that each 
of these viewpoints carries w i th it a set of biases — cer­
ta in aspects of the phenomenon are emphasized and 
others are neglected. Thus, it is by surveying such a 
range of approaches that we can hope to construct a 
reasonably complete and unbiased view of the mechan­
ism of interest. 

B . Scenes, S c r i p t s , P l a n s , M O P s , T O P s , e tc . 
Tak ing a top-down approach, we find Schank 

(1982) advocating that high-level cognitive act iv i ty 
(such as engaging in day-to-day dialogue) is mediated 
by a complex set of interrelated memory structures: 
TOPs (Thematic Organization Packets), MOPs 
(Memory Organization Packets), Scripts, Scenes, and 
memories. A major part of Schank's thesis is that 
learning is driven by expectation failures from predic­
tions encoded in memory. 

For Schank, " the dominant notion in bui lding and 
altering memory structures is expectation-failure." 

When this happens he offers three general possibilities: 
(A) Modi fy specific expectation 
(B) Al ter script itself 
(C) Index as expectation failure 
These three classes of memory modification 

correspond to fine tuning, a generalization, and expect­
ing an accepted anomaly in the generalized informa­
t ion , respectively. 

A first t ime failure is indexed as an exceptional 
occurrence. Repeti t ion of similar failures suggests that 
what we believed was exceptional is perhaps quite nor­
mal and so a more drastic revision of memory struc­
tures is called for: either replacement of an entire 
structure, or reorganization of the placement of a struc­
ture. The decision between these two alternatives is, 
according to Schank, based upon the degree of overall 
success that we have had w i t h this structure in the 
past. If it has in general worked well then we keep it 
and reorganize; if it has not worked well then we w i l l 
replace i t . Here we see a first appearance of a 
'confidence' measure associated w i t h the learning pro­
cess, other studies elaborate on this aspect of the gen­
eral mechanism. 

Notice also that expectation failure is the cue for 
modifying expectations, no mention is made of modify­
ing the perceptual mechanisms. In the language of a 
study discussed below, the input and expectation 
disagree — perhaps we misperceived the input? Schank 
doesn't seem to address this possibility. 

It is true that in typical Schankian contexts (i.e., 
restaurants) it is difficult to believe tha t you could 
"perceive" that you paid before the food arrived when 
actually you paid as normal, after eating and jus t 
before leaving. But in other contexts (e.g. natural 
language communication) gross perceptual errors are 
quite possible. The possibility for error in the process­
ing and interpretat ion of sensory informat ion adds 
more complexity to the problem of expectation fai lure 
and subsequent learning. 

Schank's term "expectation fa i lure" proclaims this 
asymmetry - when sensory information and expecta­
t ion don' t agree, it is the expectation that is deemed to 
have failed. In order to emphasize that there are two 
sides to this lack of agreement (as in all quarrels) I 
prefer the term " input-expectat ion (i - e) 
discrepancy." 

To the extent that expectations may also drive 
top-down perceptual processing, misperception may 
also be expectation fai lure. There are two points here: 
first, by no means is all perception top-down. Second, 
it may st i l l be useful to maintain a separation between 
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the processing of sensory informat ion and the subse­
quent comparison w i th memory structures. 

The extent to which i - e discrepancy is due to 
the perceived input (I take i ' 's to be interpretations of 
raw data — in the head or system rather than the 
world) rather than the expectation being wrong wi l l 
depend, in general, upon both the unfami l iar i ty of the 
perceiver w i th a part icular context, and the extent to 
which the context is assumed to be strange. Thus per­
ceptual errors w i l l be most l ikely when the perceiver is 
confident that he is in a famil iar context when in fact 
he isn't . 

A l i terary work that always makes this point forci­
bly to me is the Alexandria Quartet by Lawrence 
Durre l l . The first three volumes treat the same general 
sequence of events f rom the perspectives of three 
different people. Each of the three perceives the 
sequence of events in a self-consistent, quite believable 
manner (given Durrel l 's penchant for the fantastic), but 
each perceives certain crit ical events total ly differently 
and therefore has a radically different explanation of 
what they witnessed. In fact what we are treated to in 
these books is expectation confirmation, there was no 
f - e discrepancy despite the fact that there were 
three very different e 's and only one i on a number of 
occasions. The point is of course, there were also three 
different i 's after perceptual processing, and what is 
more, each individual 's expectations influenced the i 's 
that they perceived. 

Inputs and expectations are not, in general, 
independent of each other and the dependence works 
both ways. A last point is tha t because of this inter­
dependence the occurrence of an expectation failure or 
an i - t discrepancy depends upon some higher level 
control : we can refuse to admit that discrepancies 
exist, or insist on their existence as dictated by some 
higher level goals. 

Thus to borrow Schank's favorite s i tuat ion, the 
restaurant: if I eat at a part icular ly expensive restau­
rant and the food is poor, I might well resist ack­
nowledging the failure of my expectation that the food 
w i l l be good because I wish to preserve my general 
belief that I always spend money wisely. This view of 
i - e discrepancy takes us in to the realm of "disso­
nance theory" (see Aronson, 1078) and falls in to the 
category of inconsistencies between one cognition and a 
more general, more encompassing cognit ion. Disso­
nance theory suggests that individuals wi l l strive to 
reduce such dissonance, for example, by refusing to 
acknowledge the poor qual i ty of the expensive food. 

Rumelhart and Ortony (1977) do emphasize top-
down processing which leads " f rom conceptual expecta­
tions towards the data in the input where satisfaction 
of these expectations might be found." They suggest 
that finding a good fit between expectations and input 
(i.e., minimiz ing i - e discrepancy) is a crit ical part of 
the strategy for selection of appropriate memory struc­
tures (schemata) f rom the enormous number of possible 
schemata — a context-directed selection process. 

F rom this perspective, expectation failure (or more 
accurately, i - e discrepancy) is not the cue for learn­
ing, but for el iminat ing the schemata responsible for 
the failed expectations from the set of potential ly 
appropriate schemata for comprehension of the current 
s i tuat ion. This is, of course, not the funct ion of expec­
ta t ion failure in Schank's model at al l . 

I am not suggesting that these two theories are 

contradictory, only that their advocates are emphasiz­
ing different aspects of a very complex process. Human 
informat ion processing is a non-tr iv ial combination of 
top-down and bottom-up mechanisms, and recognition 
and understanding are not separate processes. 

Rumelhart and Ortony summarize the processes: 
" in fo rmat ion (including both the stimulus and the con­
text) enters the system and directly suggests certain 
plausible candidate schemata to account for i t . At the 
same t ime as this data driven processing is going on, 
such postulated schemata activate their dominating 
schemata, which in tu rn look for other as yet 
unsuspected aspects of the situation... A schema is said 
to provide a good account of (aspects of) the input 
si tuat ion when it can find good evidence for i tself." 

The above theorizing falls into the class of the 
" theory development methodology" in cognitive science 
(Mil ler, 1978). A sufficient explanation of cognitive 
phenomena is being sought wi thout undue concern for 
the existence of empirical consequences of the theory. 

C . L e x i c a l Dec is ions , R T a n d M i s m a t c h Detec­
t o r s , e tc . 

The second class of investigation of an i - e 
discrepancy reduction mechanism favors the term 
'mismatch detector' and epitomizes the alternative to 
the " theory development methodology" -- it is " theory 
demonstration methodology." This approach to theor­
izing demands empirical testabil i ty of a proposed 
theory, and consequently, the theorizing is l imi ted to 
highly controlled and thus somewhat artif icial 
phenomena. 

The evidence for mismatch detectors has been 
sought in experimental paradigms that involve word 
comprehension. Lexical decision tasks, such as word or 
nonword discriminations applied to a target str ing of 
letters, constitute one source of empirical evidence for 
and against theories of language understanding. 

The "veri f icat ion model" (Becker, Schvanevcldt, 
and Gomez, 1973, and Becker, 1980) attempts to 
account for the context effects observed in lexical deci­
sion tasks (word or nonword response to a target 
st imulus that follows a cue stimulus). This model pos­
tulates mechanisms that generate two sets of expecta­
tions: the sensory set (generated on the basis of sen­
sory features extracted from the target stimulus — i.e., 
structural or 'syntactic' s imi lar i ty) , and the semantic 
set (generated on the basis of a semantic simi lar i ty to 
the cue stimulus). The semantic set is searched first 
dur ing the verif ication process which attempts to effect 
recognition of the target st imulus. 

Becker (1980) postulates a "p red ic t ion" strategy 
(when there is a small semantic set size due to the cue-
target pairs being highly related), which we can view as 
involving a focused expectation, and an "expectancy" 
strategy (when semantic set size is large), which gen­
erates a broader, unfocused expectation. This class of 
research emphasizes the use of mismatch or i - e 
discrepancy as a guide to the selection of correct per­
ceptions in the style of Rumelhart and Or tony, and in 
sharp contrast to Schank — learning behavior is 
neglected. 

Becker (1980) states that it is a common assump­
t ion (although not one that goes unchallenged) that the 
processes isolated in word recognition are the same as 
those involved in fluent reading skills. His final sugges-
t ion is tha t the types of strategies he describes are 
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indeed general strategies and thus we should detect 
their operation in tasks involving, say, the perception 
of pictures. An event may be divided into a sequence 
of snapshots. We might then take a pair of snapshots 
and present them as a cue-target pair. Thus in the 
context of a restaurant, a pair like "order meal/eat 
mea l " might lead to the use of the "pred ic t ion" stra­
tegy, and "order meal/pay for meal " might yield 
"expectancy" strategy effects. 

Now the word recognition task paradigm has 
clearly been stretched up into Schank's domain, in 
more than one sense. Bu t we are, in general, on the 
way down seeking the more reductionists uses of i - c 
discrepancy. Staying w i t h approximately this level of 
phenomena (i.e., word recognition and more generally, 
reading) we can leave the jungle of RTs and %-correct, 
and examine empirical data that is directly t ied to the 
observable mechanisms of the brain. 

D . A l o n g C o m e B r a i n W a v e s 
The use of computer analysis has enabled the iso­

lat ion of stimulus-locked segments of the electrical 
act iv i ty of the brain. The electrical act iv i ty recorded 
during and short ly after the presentation or expected 
presentation of a stimulus is called an event related 
potential (ERP). Extensive research has shown that 
certain components of the ERP are sensitive to a 
person's expectations. In particular, unexpected or 
novel s t imul i are typical ly followed after some 300 
msec, by a positive ERP component known as the P3, 
which has also been shown to be well-correlated w i th 
other indices of orienting (e.g. pupil di lat ion). 

The subjective probabi l i ty (or confidence in the 
expectation) of a stimulus and the value, u t i l i t y , or 
relevance or a stimulus are two classes of variables that 
appear to affect the amplitude of the P3 component. 
In general, P3 amplitude increases w i th both the unex­
pectedness and the value of a stimulus (Johnston, 
1979). P3 has been shown to be influenced by a 
number of other variables. 

For my current purposes, P3 appears to be an 
electrophysiological indication of i - e discrepancy or 
expectation fai lure. Despite the wealth of ERP 
experiments it is only recently that l inguistic material 
has been used in ERP tasks. Kutas and Hi l lyard (1980) 
have investigated ERPs in the context of a sentence 
reading task. They state that the language comprehen­
sion task has often been characterized as a continuous 
testing and updating of hypotheses about the words 
that are l ikely to occur next in a text or conversation. 
They found that semantically inappropriate words (i.e., 
"He spread the warm bread w i t h socks.") elicited a late 
negative wave (N400). This wave may be, they argue, 
an electrophysiological sign of the "reprocessing" of 
semantically anomalous information — the result of an 
i - e discrepancy, in this case, expectation failure. 
Fainsilber, Mi l ler , and Ortony (1984) examined 
N200/400 to assess whether the detection of anomaly is 
an integral part of understanding metaphor, and con­
cluded that "understanding a metaphorical comparison 
appears to involve the registration of a mismatch, 
whereas understanding of a l i teral comparison does 
no t . " 

Holcomb (1983) notes that the N400 findings fit 
well w i t h Becker's verif ication model: the "N400 com­
ponent in many ways appears to resemble a semantic 
mismatch detector. N400 is large when the probabi l i ty 

of another word occurring is great, but only if the 
expectation was based on semantic information. In the 
present f ramework, an ERP model of semantic context 
effects, N400 is proposed to represent the activi ty of an 
automatic semantic mismatch detector." 

E . D o w n t o t h e N e u r o n s 
Moving on down to a more reductionist view of 

t - e discrepancy, Partr idge, Johnston, and Lopez 
(Johnston et al . , 1983, Partridge et al., 1984), have 
theorized, modelled, and presented results of a detailed 
physiological mechanism for generating expectations 
and modifying memory structures as a result of expec­
tat ion fai lure. 

The theorizing was based on a number of sources: 
Sokolov (1963) suggested that neural 'models' of our 
expectations are constructed and modified as a result of 
the "impulses of discrepancy" encountered (an early 
parallel of Schank's suggestions, one that is tied to rela­
t ively concrete representational structures but lacks the 
depth of Schank theories); cell assembly theory (ori­
ginated by Hebb, 1949) gives us physiologically-based 
units for distr ibut ing and maintaining 'act iv i ty ' in a 
neural network; and the existence of empirical data 
relating the magnitude of the orienting response (OR) 
to variables underlying unexpected st imul i . 

In addit ion, the basic learning behaviors accounted 
for (described below) are sufficiently low-level and ubi­
quitous in the animal wor ld that we can postulate why 
they might exist in terms of evolution theory and sur­
v iva l . Expectation failure or i - e discrepancy from 
this biological perspective can be viewed as a specific 
class of more general mechanisms: a genetically deter­
mined mot ivat ion to satisfy pr imary drives (or goals') — 
such as find food and avoid pain. Stated somewhat 
simplistically, the importance of satisfying these goals 
is that they are a basis for survival, and survival is a 
key idea in the theory of evolution. Hence we might 
reasonably expect the products of evolution to be 
genetically preprogrammed w i th efficient mechanisms 
for satisfying these goals. 

The final major hypothesis is that the efficient 
selection and assimilation of useful information is also a 
fundamental survival goal analogous to the more con­
ventional ones. The key to the selection mechanism is 
the unexpectedness or novelty of the information. 
Given the uncertainty of the empirical world and an 
organism that attempts to predict its future (the better 
predictors wi l l be the survivors), the predictions wi l l 
sometimes, and to some extent, fail — this mismatch, 
failure, or discrepancy is the key to the selection 
mechanism. Thus we postulate a novelty drive 
mechanism, which is just another way of saying 
mismatch detector or expectation failure mechanism, 
except that it implies that the mechanism wi l l be 
analogous to the other basic drive mechanisms such as 
hunger drive. Hence, theories and data pertaining to 
these conventional drive mechanisms should provide 
insight in to the mechanism of t - e discrepancy reduc­
t ion and human learning. So we find yet another 
potential source of information for elucidating human 
learning mechanisms. 

Rescorla and Holland (1976) divided basic 
learning behaviors into three categories: 

(a) single stimulus presentations; 
(b) exposure to relations among st imul i ; and 
(c) exposure to relations between responses and 
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st imul i . 
Johnston, Partr idge, and Lopez (1983) modelled 

the novelty drive theory and demonstrated that i t 
accounted for a wide range of empirical data on human 
learning in categories (a) and (b) above. 

A cell assembly network generates an expectation 
of the next st imulus input that i t w i l l encounter. Any 
i - e discrepancy ( that exceeds certain thresholds -
exact matches are not a feature of reality) is inter­
preted as an expectation failure (the environment is 
scanned and an internal representation of the input 
st imulus is generated but there was no provision for 
questioning the t 'perceived'). 

It is argued (Johnston et al. , 1983, Partr idge et al . , 
1984), that the novelty or unexpectedness of an input 
w i t h respect to an expectation is: 

/ (quali tat ive difference between i and c ; 

quant i tat ive difference between i and e ) 

and that OR is: 

/ ' (novelty; i - e magnitude) 

where t - e magnitude is some "add i t i ve " funct ion of 
magnitude of the expected stimulus and magnitude of 
the actual input st imulus. 

Apar t f rom suggesting and allowing the explora­
t ion of such details of the mechanism, the study also 
demonstrated that the hypothesis that the i - t 
discrepancy reduction mechanism can be structured as 
a conventional drive mechanism (i.e., novelty drive) is a 
viable one. An impl icat ion of this hypothesis is that 
the unexpectedness of a st imulus is a pr imary drive 
reducing quali ty just l ike several others, such as food, 
sex, and pain. Whereas Schank, for example, states 
that " W h e n we see something that in no way surprises 
us, it is also l ikely that it in no way interests us 
either."' However, the importance of an input st imulus 
is not just i ts unexpectedness, but more fundamental ly, 
the importance is the potential for reducing a pr imary 
drive. In Al terms, this importance is the potential for 
achieving some basic goal, such as a need for novelty 
when bored, a need for food when hungry, etc. As 
mentioned earlier some ERP data is supportive of this 
view — the magnitude of the OR appears to be a func­
t ion of bo th unexpectedness and u t i l i t y (i.e., food is an 
arousing st imulus even if expected when we are 
hungry). 

The basic learning behavior — habituat ion (learn­
ing not to respond), may sound fair ly t r iv ia l to the Al 
researcher, but it is in fact crucial at all levels of 
behavior. An organism must ignore most of the infor­
mat ion that bombards its sensory organs - it is an 
apparent efficiency measure that the real wor ld pro­
motes to one of necessity. 

Consider the Al paradigm of rule-learning but in 
the empirical wor ld rather than an abstracted context 
characterized by drastically pruned descriptions. The 
act of describing removes most (perhaps all) of the 
potent ial ly relevant, bu t actually irrelevant, attr ibutes 
of each event before the learning algori thm sets to work 
— it is fed predigested real i ty, hence no need to learn 
when and what to ignore. The child that is always fed 
filleted fish is not very impressed by a technique for 
avoiding bones. 

Next I shall describe a mainstream Al application 
that makes impor tant use of the i - t discrepancy 
reduction mechanism and can be used to i l lustrate 

many of the specific biases inherent in each of the 
above-described approaches to this mechanism. 

F . A C o g n i t i v e I n d u s t r i a l R o b o t 
High level control mechanisms for industr ial robot­

ics applications have been designed, implemented, and 
part ia l ly tested (Partr idge, Burleson, and Lopez, 1985) 
— the hand-eve robot learns and reasons (hence a "cog­
n i t i ve " robot) about a general task plan w i th respect to 
a specific task setup and attempts to optimize its per­
formance. The mechanism behind the attempted 
opt imizat ion is to learn the constancies in a flexibly 
fixtured environment (e.g. that a certain target object 
tends to be situated in a certain position). This learned 
knowledge is then used predictively to optimize task 
execution in the current environmental setup. 

The context of industr ial robotics provides a con­
strained and thus potential ly tractable micro-world but 
one that also contains much potential for the effective 
application of fundamental AI techniques. There is 
potential for developing a r ich knowledge structure 
(certainly richer than the cell assembly model but not 
as rich as that of Schank's theories) w i th in a set of con­
straints that both promise t ractabi l i ty , and yet sti l l 
offer a realistic and thus potential ly testable context (in 
contrast to both Schank's theories which are not 
currently very testable, and the RT paradigms which 
are testable but highly art i f icial). A cognitive indus­
t r ia l robot can fill a real need and offers some hope of 
comparison w i t h the human performance of similar 
tasks. 

Of major importance for the current discussion is 
the implementat ion of the i - c discrepancy reduction 
mechanism w i th in this project. Having learned that 
some significant object (a target object w i th respect to 
this sub-task), say object A , has tended to be situated 
at position whenever it was required, the robot 
might predict the future occurrence of A at 
The expectation (in the context of this part icular sub-
task) that A w i l l be at can be used to drive a 
top-down pattern recognition process — i.e., the process 
just checks that A is at rather than analyzing 
the input image bot tom-up to find A . When A is at 

the robot confirms its expectations quickly and 
proceeds to deal w i th object A as dictated by the 
current sub-task (e.g. i t might pick it up). 

Bu t when the input and the expectation don' t 
agree (object A does not appear to be at then 
the roDOt needs to learn something — the big question 
is: what? 

According to Schank's theory the expectation that 
object A would be at fai led, and it needs to 
change its memory structures. On f irst failure i t just 
indexes the general expectations w i t h the exceptional 

ossibil i ty that object A may alternatively be at 
i — the posit ion where it was eventually found 

as a result of bot tom-up recognition. On subsequent 
failures of this expectation, the robot should learn tha t 
i ts general expectation of A at no longer holds 
and should be abandoned. It should be replaced by the 
expectation of A at if this h i therto exceptional 
possibil ity has been repeatedly encountered. Al terna­
t ively, the general expectation that A w i l l be situated 
in any part icular posit ion may be completely dropped if 
the failures were due to seemingly arbi t rary sequences 
of positionings of object A - an environmental con­
stancy has disappeared, or was erroneously learned in 
the first place, in either case it can no longer be 



D. Partridge 271 

exploited. 
A second possibility once we have decided that 

expectation failure is the source of the i - e 
discrepancy is that the expectation itself may be 
correct but the context that it was generated from was 
wrong. This is perhaps just to say that the subsequent 
learning should be at a higher level, i.e., the structure 
that selects the context of the current st imul i should be 
altered so that in the future it w i l l select the correct 
context. Schank does raise this type of question, that 
of level of learning, and he sketches out some answers. 

Bu t as mentioned earlier, Rumelhart and Ortony 
suggest that such expectation failure may be a crucial 
factor in the correct selection of an appropriate context 
and not a learning situation at all. They offer the view 
that minimizing i' - e discrepancy is the route to 
efficient selection of an appropriate context. The 
verif ication model also uses expectation failure as a 
selection mechanism. 

Similarly, the cognitive robot may use this best fit 
between input and expectation to efficiently select the 
appropriate context after a discontinuity in task execu­
t ion due to the occurrence of an error condit ion. As 
part of the analysis of the error condition it might need 
to choose between, say, an expectation of A at (x, y) 
or B at (x 1 y1). 

But in this robotics context, an i - e discrepancy 
can be due to a problem w i th the i component. First , 
the input image may be of poor quality due to 'noisy' 
conditions, in which case it might be appropriate to 
question the raw input data and our interpretat ion of it 
that yielded the i that was discrepant. 

For the cognitive robot expecting object A at 
position (x, y ), a subsequent i - e discrepancy may be 
due to the fact that although A was indeed at (x, y) 
the input pattern was so degraded by 'noise' that the 
cursory top-down recognition algorithm failed to 
confirm its expected presence. A subsequent, more 
exhaustive, bottom-up analysis might well find A at 
(x, y) w i t h a sufficiently high confidence (it might for 
instance have the information that A is definitely 
somewhere in the image, and it might determine that 
the patterns at all other positions resemble object A 
even less that the pattern at (x, y)). 

The problem w i t h the i component may be due to 
the interpretation of the raw data rather than the qual­
i t y of the data itself. This possibility then leads us into 
the murky wor ld of i - e interdependencies: interpre­
tat ion of the raw data depends upon expectancies, and 
expectancies depend upon interpretations of the data. 

The lexical decision tasks described earlier have 
been used to probe the complexities of this i - e inter­
dependence. Schvaneveldt and McDonald (1981) report 
on a series of six such experiments that were designed 
to investigate the role of semantic context in the per­
ceptual process. Their results support the view that 
there are two modes of processing sensory informat ion. 

One mode involves the in i t ia l analysis of sensory 
informat ion (such as features of the stimulus or such 
holistic properties as word shape) and is not directly 
affected by semantic context. The second mode is 
characterized as a "second look" at the stimulus 
(remember the N400 component of the ERP?). They 
view this secondary analysis as "basically a memory-
driven process in which 'hypotheses' about the ident i ty 
of the st imulus are tested by comparing actual stimulus 
characteristics w i t h those predicted by the hypothesis. 

The hypotheses are generated by a combination of sen­
sory information (from the first mode of processing) 
and contextual in format ion." Thus an in i t ia l , part ial t 
is generated independent of any e , this t is then com­
bined w i t h contextual information to yield e 's that 
guide the final step in the recognition process. 

In terms of the popular general theory that the 
analysis of sensory information is compounded of a suc­
cession of processes which depend to varying degrees on 
bottom-up and top-down modes of organization, 
Schvaneveldt and McDonald suggest that the in i t ia l 
process is independent of expectations while the later 
ones are directed by expectations. They also suggest 
that the top-down process may enhance perception of 
discrepancies rather than induce a perceptual or deci­
sion bias in favor of expected st imul i . 

Subsequently, Paap, Newsome, McDonald and 
Schvaneveldt (1982) described a development of the 
verif ication model, called the "act ivat ion-ver i f icat ion" 
model. Their goal is to specify the nature and interac­
t ion of bottom-up and top-down information-processing 
activities in recognition. The solution provides an 
independent top-down process (verification) that 
involves comparing stimulus information to prototypes 
stored in memory. 

The suggestion that a top-down process may 
enhance perception of discrepancies raises again the 
basic problem of whether or not an i - e discrepancy 
exists in any particular si tuat ion. Discrepancies may be 
perceived or unperceived dependent upon both the gen­
eral level and the detailed focus of an i - e com­
parison. A high-level comparison wi l l eliminate low-
level discrepancies which may well be appropriate in 
the empirical wor ld where repetit ion is never exact. On 
the other hand, some details of a stimulus are l ikely to 
be important while others are not, hence the % - e 
comparison needs to be focused on the significant 
details only. (Also a fundamental problem in machine 
learning: how are the significant features in a series of 
events selected?) 

There are two general classes of misinterpretation 
of the input stimulus: 

(1) misinterpretation due to erroneous recognition 
of input data, e.g. an input pattern generated 
by object A may be erroneously recognized as 
object B; and 

(2) misinterpretation due to erroneous selection 
from the input data, e.g. a pattern generated 
by noise is recognized as object A whi lst the 
pattern generated by object A is dismissed as 
noise. 

In the cognitive industrial robot such misinterpretations 
are more l ikely when recognition is top-down 
(hypothesis or expectation driven), and when the sys­
tem is 'confident' in its expectation. 

This raises the last feature of the i - e 
discrepancy reduction mechanism: confidence. 
Confidences in both the i 's and the t 's obtained 
interact w i t h general contextual confidences to 
influence the fol lowing: 

(a) whether or not we perceive an i - e 
discrepancy; and 

(b) how to analyze a perceived discrepancy. 
Problem (b) has largely been dealt w i t h above except to 
note that analysis of the cause of an i - e discrepancy 
can be guided by the confidence that the system has in 
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the correctness of the structures and processes that are 
applied. The obvious strategy is to suspect that the 
element in which we have least confidence is the most 
likely cause of the discrepancy perceived. 

Apart from the fact that the above rule is just a 
heuristic and as such carries no guarantees (in addition 
it has not, to my knowledge, been tested in this context 
although the cognitive robot uses it). There is, in addi­
tion, no correct way to compute these confidences — 
again we must explore heuristics until we find an ade­
quate strategy. Another common AI problem: 
confidence ratings (or some similarly named attribute) 
appear to be necessary but there is no obvious and 
correct way to compute them. 

The cognitive industrial robot generates a 
confidence in its expectation that, say, object A is at 
(x, y) based upon the relative frequency of past 
occurrence of A at (x, y). It also generates a 
confidence that A is actually at (x, y). This 
confidence is based upon both the degree to which the 
actual features of the pattern found at (x, y) have 
been matched against the characteristic features of A 
(the number of features and how well they matched), 
and the degree to which recognition has been top-down 
rather than bottom-up (a cursory top-down analysis is 
more efficient but less reliable). 

Problem (a) concerns the conditions under which 
we acknowledge the presence of an i' - e discrepancy. 
Very roughly, the more confident we are that we under­
stand the situation, the less likely we are to admit that 
there is a discrepancy. 

But, you might object, either i and e match or 
they don't — there should be no question of confidence 
here. In an idealized situation this may be true, but 
the real world is far from ideal. Two aspects of reality 
suggest the necessity for confidence ratings: 

(i) Exactly the same event never occurs twice (it 
is only abstractions from the sensory data 
that exactly repeat), thus even the best i - e 
match will not be perfect; there will always be 
some discrepancy. 

(ii) Stimuli are not just given, they must be 
selected from a rich and complex continuum; 
variation in the selection of appropriate attri­
butes will result in varying discrepancies. 

As mentioned earlier, point (ii) is a well-known 
and difficult AI problem. One approach to this prob-0 
lem is through the goals of the system. Thus the cogni­
tive robot, for example, has a major goal of increasing 
task efficiency, or reducing task execution time; hence 
time is an important attribute of any subtask and one 
that it must always select. But, in general, selection of 
the significant aspects of its environment is subtask 
dependent. 

Problem (i) suggests that the mechanism is not 
founded on an i - e discrepancy itself, but on a 
discrepancy that exceeds some threshold. Compounded 
with this there is not one threshold but one for each 
significant attribute of the stimulus. Finally these 
thresholds are dynamically adjustable and a major fac­
tor in this dynamic adjustment is confidence - if 
confidence is high then the thresholds, in general, are 
raised. High confidence suggests that we will ignore 
larger discrepancies. 

G. Summary 
A range of projects has been surveyed in an 

attempt to demonstrate the potential utility to AI of 
work that lies outside the normal concerns of main-
stream AI researchers. In particular, a generic mechan­
ism that appears to underlie intelligent behavior was 
examined — the t - e discrepancy reduction mechan­
ism. This mechanism appears to play a key role in 
human learning and in control of cognition. It is thus 
expected to be of importance in AI both as a key to 
machine learning (when to learn and what to learn -
two major unsolved AI problems), and in the control of 
complex context selection. 

It was shown that a comprehensive understanding 
of this mechanism is obtained from a consideration of 
this range of approaches to it; each approach embodies 
a different set of biases. First, there are two general 
applications of the i - e discrepancy reduction 
mechanism: 

(i) as the basis for a selection mechanism — selec­
tion of 'best-fit' contexts at one level, and of 
words at another level (it is a focusing 
mechanism); and 

(ii) as the cue for a learning mechanism. 
Within the latter application the presence of an i - e 
discrepancy signals the need for learning, but different 
research has emphasized different details of interpreta­
tion of this discrepancy to guide what needs to be 
learned. Did the expectation fail? Or the interpreta­
tion of the input? Or both? Or, from a higher level 
viewpoint, was some aspect of the i - e comparison 
itself misconceived? This last possibility leads us back 
to the first general application above - points (i) and 
(ii) are not independent. 

It was further argued that i - e discrepancy 
reduction might itself be a special case of the more gen­
eral mechanism of basic goal achievement — the funda­
mental mechanisms of survival. 
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