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Abstract 

A good part of medical diagnosis can be modeled as 
classification problem solver producing a "dif ferential", working in 
conjunction with an abductive component that performs 
differential diagnosis by synthesising a "best" composite 
hypothesis out of the hypotheses in the differential list. 
Classification problem solving itself can be viewed as having a 
control component which selects hypotheses to consider, and a 
decision component associated with each selected hypothesis In 
this paper we study the family of control regimes that are useful 
in classificatory problem solving. We start with MDX, a 
classification system organized as a hierarchical collection of 
hypothesis specialists, critique its control behavior, and by 
considering a set of situations involving multiple diseases, show 
how elements can be added to the control regime in a modular 
way to handle a large variety of situations. 

1. Introduct ion 
As the field of knowledge-based systems is maturing, a clear 

movement is taking place from relatively flat and uniform 
representation systems and associated inference regimes, to an 
appreciation of the multipl icity of knowledge structures and 
problem solving types that typically play a role in complex real 
world tasks [4, 6]. There is also an increasing awareness that the 
problem solving behavior of knowledge-based reasoning systems is 
best understood at what Marr [13] has called the information 
processing /eve/, or the knowledge level as it has recently been 
called by Newell [15]. E.g., at the implementation language level 
MYCIN'S diagnostic action can be thought of as backward-
chaining, while at the information processing level its activity is 
best understood as a form of classification. In our group we 
have persistently emphasized the information - processing level 
analysis of knowledge-based tasks: in [ 10], we identified certain 
aspects of medical diagnosis with classification problem solving, 
and in [4] we propose a taxonomy of knowledge-based reasoning 
tasks at the information processing level. Clancey [7| has 
recently taken a similar perspective and shown that a number of 
knowledge based systems which appear to be doing different kinds 
of things at the implementation language level, can be in fact 
seen to be performing variants of the classificatory task. 

Medical diagnostic reasoning is a complex activity, and can be 
decomposed into a number of different types of problem solving, 
each with specific kinds of knowledge structures and control 
regimes. Depending upon the subdomain, the basic task may 
differ considerably: a knowledge-level statement of the tasks 
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faced by CASNET/Glaucoma [12] or ABEL [16] (viz., put 
together a "causal" story) is bound to be different from those 
describing tasks faced by Mycin, Internist or MDX. As a general 
statement, however, one may say that medical diagnosis is an 
abductive process. Peirce [17], and,following him, Pople [18] have 
viewed the abductive enterprise as the generation of hypotheses, 
which, if true, would explain some collection of observed facts. 

In medicine the diagnostician is presented with a patient who 
has a set of signs and symptoms (collection of observed facts), 
and proceeds to reason toward a set of diseases that can account 
for the observed signs and symptoms (a set of hypotheses that 
explain the observed facts) 

If a given abductive reasoning task involved the selection of 
hypotheses from a small set of candidates, then it would be 
reasonable to directly compare all of the candidates But since 
the number of potential medical hypotheses is enormous, the 
medical diagnostic process is observed to consist of two 
components: 

1. the selection of a limited number of candidate diseases, and 

2. a decision on which members of the candidate set are 
required to account for patient signs and symptoms. 

The work of Feltovich et al [8] supports such a distinction, and 
goes on to suggest that much of the difference between novice 
and expert diagnostic behavior is due to a difference in how the 
limited set of possibilities is formed (Factor 1 above). In medical 
terminology, Step 1 is often called forming the differential while 
Step 2 is called differential diagnosis. 

Classification problem solving is useful in forming the 
differential. The M D X system [ l , 5] can in this sense be thought 
of as forming a differential, since it produces a list of disease 
classes into which the signs and symptoms of the case can be 
classified. NEOMYCIN uses classification explicitly, and a large 
part of Mycin's work in diagnosis can also be viewed as 
implicit ly classificatory. 

The MDX approach, while concentrating on the classificatory 
part, envisaged a component called the Overview Critic for 
performing Step 2 above. As a result of recent investigation by 
Josephson, et al. [ l l ] of our group, we now have a first cut 
theory of how this component should work. The differential 
diagnosis process is viewed as the process of assembling a 
composite hypothesis from the list of classificatory hypotheses 
produced by the classificatory component, such that the composite 
hypothesis "best explains" all the data. This theory is presented 
in detail in [11]. 

The purpose of this paper is to discuss the control issues in the 
classificatory component of diagnostic reasoning. We wi l l briefly 
review the MDX approach, discuss the essential aspects of its 
current control strategy, some of the difficulties faced by i t , and 
discuss extensions to the MDX viewpoint by systematically 
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considering examples of increasing difficulty, especially examples 
involving multiple diseases. 

2. The MDX Approach 
The hallmarks of the MDX approach to date have been 

• a cognitively plausible, hierarchical decomposition of 
diagnostic domain knowledge into a number of cooperating, 
classificatory specialists, each representing a diagnostic 
hypothesis, [2| 

• a reliance on the individual specialist's ability to determine 
on a local basis the applicability of the diagnostic 
hypothesis (represented by the specialist) to the current case 

[3, 19], and 

• an overall control regime ca l l es tab l i sh / re f i ne in which 
classification is begun at the top of the classification 
hierarchy, and at each step establishes a specialist before 
going on to refine the specialist by examining less general 
subordinate specialists [10]. 

Figure 1 shows a fragmentary high level level decomposition of 
medical knowledge. 

F igu re 1: Sample MDX Specialist Hierarchy 

Suppose that a patient problem consisting of cholestatic liver 
disease is presented to the MDX-s ty le system in Figure 1. The 
control of the system wil l proceed in a top down fashion: 
I n t e r n i s t wi l l first establish, then refine itself. The establish step 
consists of I n t e r n i s t utilizing locally available domain knowledge 
to determine if the patient is sick at all. The refine step consists 
in I n t e r n i s t sending to its subordinate specialists (Hear t , L iver , 
...) the composite message "establish/refine". For the hypothesised 
case, only L i ve r wi l l be established. Hence all subordinates to 
Hea r t , ... wi l l not be considered. The L iver specialist, in 
contrast, wi l l establish and subsequently refine itself. Finally, 
Cholestasis wi l l receive an establish/refine message and establish 
itself. Note that when a hypothesis is rejected, all its successors 
are also rejected: this is the pruning power of hierarchical 
classification. Also, typically, many hypotheses may be 
"suspended"; i.e., may not have enough data to positively 
establish them or rule them out. It wi l l be in general 
combinatorially prohibitive to explore all of them further. 

2.1. Two Sets of Control Issues in Classification 
Systems 

In classification problem solving in the style of MDX, we can 
see two distinct kinds of control activity: 

1. invocation of different classificatory hypotheses for 
evaluation. (Control issue: What are the potential paths of 
invocation, and what are the potential tasks that may be 
requested?) We shall refer to this type of control activity 
as classificatory control. 

2. once a hypothesis is invoked, making decisions about the 
relevance or applicability of the hypothesis to the case at 

hand, e.g., reject, establish, decide what data it can account 
for, etc. (Control issue: What knowledge sources can help in 
this, and how and when to invoke them?) 

For 2 above, the current version of M D X uses a fairly 
straightforward pattern-matching mechanism using "compi led" 
knowledge to map from a subset of patient data to qualitative 
decisions about the hypothesis. But there is no reason why this 
task cannot use other kinds of knowledge and problem solving 
such as causal reasoning, or table look up, or resolution theorem 
proving for that matter. (In fact, the DART system of 
Genesereth et al. [9]does precisely that: its higher level 
architecture is classificatory, closely following the design 
component/subcomponent hierarchy, while the presence of a 
component fault is determined by a theorem prover working wi th 
the test values and the axioms that define the component.) 
Thus, how a decision is made within a hypothesis, so to speak, is 
irrelevant from the point of view of classificatory control, as long 
as the information that is needed is available after an invoked 
hypothesis has completed its action. 

Thus the control issues in 1 above are issues intrinsic to 
classification problem solving, while control issues in decisions 
within each hypothesis are issues for a different type of problem 
solving. Our concern in this paper is with the former. We call 
this set of issues classificatory control issues. 

2.2. Classificatory Control in MDX 
It is convenient to study control in distributed systems such as 

MDX, which are implemented as a community of specialists 
which coordinate their work by exchanging messages, by 
examining the constraints on message channels and the contents 
of the message types. There is no implication that classificatory 
problem solving need necessarily be implemented in this way, or 
that our discussion of control is relevant only for classificatory 
problem solvers implemented in this way. The message language 
is merely a convenient device to talk about which hypothesis can 
invoke which others, requesting or providing which information. 

Classificatory control in MDX was provided by the following 
elements: 

1. The hypothesis hierarchy sets invocation paths, or message 
channels, as between parents and children. A hypothesis 
may invoke its children in order that the corresponding 
hypotheses may be evaluated for their presence or absence 

(message types : (establ ish) and ( re f ine) ) 

or it may invoke its parent reporting on the results of its 
activity 

(message t ype : (estab l ishedAt <confidence level>)) . 

2. Each hypothesis, after its establishment, may use any 
knowledge it has to order its successors for invocation. 
This ordering may be based on likelihood, risk, etc. 

3. A hypothesis may also have knowledge corresponding to 
which hypothesis, one or more levels below its immediate 
successor, may be considered at that time in order to 

Although the control issues of classification may be viewed 
independently of the message passing paradigm, at the level of 
cogni t ive o rgan isa t ion it is very useful to understand a c o m -
plex cognitive agent in terms of the interactions of many simpler 
agents via well constrained message types and communication 
channels; but this is another issue. 
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increase problem solving efficiency, i.e., it may use context-
dependent suggestion rules. These provide economy of effort 
by suggesting hypotheses which are highly plausible, but 
which would not be immediately considered within the 
purely hierarchical regime. 

(message t ype : 
( ref ine (suggest <subordinate specialis>))). 

The introduction of suggestion rules can potentially cause 
difficulties in control if improperly used. In the hierarchical 
control regime, when a hypothesis is invoked for the purpose of 
establishing i t , it can be assumed that its parent has been 
established. This provides a context for its establishment 
activity. But the suggestion rule mechanism wil l typically result 
in the invocation of hypotheses whose parents have not been 
established, and it is possible that without this context, the 
establishment activity of the invoked hypothesis wil l be erroneous. 
Thus the use of the suggestion rule mechanism wi l l need to be 
restricted to hypotheses that are able to arrive at decisions 
without significant dependence on the context provided by the 
parent. 

2.3. Limitat ions of the M D X Control Regime 

Three kinds of limitations are worth mentioning at this point. 
1 As a classification problem solver, MDX outputs a simple 

list of disease hypotheses which are considered to be likely 
As mentioned earlier, the MDX approach is currently being 
extended to provide a differential diagnosis component, 
which assembles the best composite hypothesis out of the 
output list from the classifier using information about what 
those hypotheses can explain The availability of this 
abduction component can contribute to better classification 
problem solving by providing the following control 
possibilities: 

As mentioned in the section on how MDX works, it is often 
the case that many hypotheses are suspended; i.e., there is 
not enough data to establish or reject them. Typically it 
wi l l be quite prohibitive to "expand" all of the suspended 
hypotheses by considering their successors in the hopes that 
they may be able to find data to reject or establish 
themselves. However, after the assembler has put together 
a composite hypothesis based on the current output list 
from the classifier, it can produce a list of manifestations 
that stil l remain to be explained. (For how this is done, 
see [11].) If this list is empty, the problem is "done". If 
not, a selection can be made of the suspended hypotheses, 
on the basis of which of them can potentially explain the 
remaining unexplained findings, and only this subset need 
now be further explored. Thus the abduction assembly 
machine and the classifier can work in close collaboration, 
and the former can provide focus to the classification 
problem solver. 

2. Lack of Establish Knowledge for Some Hypotheses: In some 
domains, the only way to establish or reject a classificatory 

It may be possible to to tag that p a r t of the establishing 
knowledge that is needed for context setting of underlying 
specialists and test it before considering the suggested specialist. 
In the original MDX implementation [14], all the specialists in 
the path towards the suggested specialist were required to 
establish. 

hypothesis, call it H, is by invoking its successors to see if 
any of them can be established, or whether all of them can 
be rejected. This might be either because there simply is 
no domain knowledge available about H, or because data at 
the level of H are not available in the case at hand. In 
the former case, this fact can be explicitly made available in 
H, which can then be made to invoke its successors 
(ordering them if information for that is available). In the 
case where data are not available for the case at hand, the 
hypothesis in question would have been suspended, and the 
approach in 1 above could be useful. 

3. Limitations of hierarchical invocation for multiple diseases: 
Selective communication/invocation outside the hierarchical 
channels is often needed in the case of multiple diseases, 
where the decision status of one classificatory hypothesis 
may be needed for making decisions about another 
hypothesis. Problems of this sort wi l l be discussed in the 
next sections. They provide some of the most interesting 
challenges in the control of classification problem solving 

3. Cases Of Mul t ip le Patient Diseases 
For purposes of il lustration, in this section we wil l present 

examples of medical situations in which multiple disease 
hypotheses are required to fully account for patient data. 
Successful solutions for cases involving multiple disease hypotheses 
have been difficult to achieve in most medical AI diagnostic 
systems. 

3.1. Mul t ip le Independent Diseases 
Referring to Figure 1, suppose that a patient has both valvular 

disease and cholestasis. The output list from MDX of possible 
patient diseases would contain both va lvu larDisease and 
cholestasis, each typically accounting for different findings. 
Thus the control component of MDX responsible for differential 
formation is adequate for this task. 

3.2. When One Hypothesis Needs The Establishing 
Status Of Another - Example: "Secondary T o " 
Diseases 

Consider two classificatory specialists, Spl and Sp2. Many times 
in order for Spl to establish itself, it is useful for the establishing 
status of Sp2 to be available. Note that given this situation, it is 
no t necessary for Spl to know the detailed problem solving that 
Sp2 used to determine its establishing status; i.e., h o w Sp2 
determined its establishing status. 

In medicine an example of the control problem posed in the 
above paragraph takes place when two disease hypotheses stand 
in a secondary to relation. At a pathophysiological level, there 
is often an expression of medical knowledge that one disease can 
either 

1. be caused by another via some disease process, or 

2. is temporally preceded by another statistically. 

In compiled diagnostic knowledge, such a relation between two 
diseases is called the secondary to relation. Although at the 
compiled level, there wi l l not be any knowledge about how the 
one disease causes the other, or why there is a statistically 
significant temporal ordering, sti l l the knowledge that the one is 
secondary to the other can be useful in diagnosis. In most 
instances, if A is secondary to B, then knowing that A is 
established or rejected can directly contribute to a determination 
of A. 

In Figure 2 we have expanded the diagnostic hierarchy of 
Figure 1 to include one disease hypothesis (Card iacCl r rhos is ) 
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that is secondary to another (Tr icuspid lnsuf f ic iency) .* Suppose 
that the original exploration path in a given case was as follows. 

I n t e r n i s t -> L ive r 
-> Ci r rhos is 
-> Cardiac Ci r rhos is 

The hypothesis Card iacCi r rhos is cannot establish unless the 
hypothesis it is secondary to, Tr icusp id lnsuf f ic iency, can first 
establish. 

F igure 2: Example Of "Secondary T o " Hypothesis 

The inverse relation to secondary to is can have complication. 
For example, 

T r i cusp id lnsu f f i c iency canHave Complication Card iacCi r rhos is . 

Suppose the exploration path of the diagnostic system of Figure 2 
was 

I n te rn i s t -> H e a r t 
-> Valvu larDisease 
-> T r i cusp id lnsu f f i c iency . 

In this example, the establishing values of either tricuspid 
insufficiency or of cardiac cirrhosis can have direct bearing on the 
establishment of the other. 

In [10], the problem of a given classificatory specialist needing 
to know the establishing value of a second specialist is solved by 
positing a blackboard in which the decision status of hypotheses 
are written as soon as they are available. The solution also 
involved parallel invocation of successors of a hypothesis that has 
been established. Thus both of the exploration paths above, viz., 
from In te rn i s t to Card iacCi r rhos is and from In te rn i s t to 
T r i cusp id Insuf f ic iency would be performed in parallel if the 
patient had both the diseases. But since Tr icuspid lnsufTic iency 
can be established independent of Card iacCi r rhos is , it wi l l not 
need to refer to the status of the latter. However the latter 
hypothesis can obtain from the blackboard the information 
regarding the status of Tr icusp id lnsuf f l c iency . If, say, in a 
particular case heart is ruled out, the rejection of its grandchild, 
Tr icuspid lnsufT ic iency, can also be inferred on the blackboard. 

In a serial implementation, there wi l l be some problems that 
would need special attention. If the I n te rn i s t to 
Card iacC i r rhos is path had been preferentially pursued, either 

* Medically, cardiac cirrhosis can be secondary to a number of 
diagnostic alternatives under the heart category. For simplicity 
here, we wi l l discuss only tricuspid insufficiency. 

because of a suggestion rule or because L ive r had a higher 
ordering than heart as more likely, there would be a need for the 
other line of exploration to be activated. There are some 
straightforward ways this can be done, and we forego further 
discussion of it here. 

It is also possible to solve this version of the multiple disease 
situation by explicitly providing an invocation path from 
Card iacCi r rhos is to Tr icuspid lnsufTic iency; i.e., when the 
former hypothesis is invoked it checks the status of the latter by 
directly invoking it, with the message Establish. However, this 
solution requires additional work, since, as in our earlier 
discussion on suggestion rules, Tr icuspid lnsufT ic iency cannot in 
general use its decision knowledge without knowing that its 
parent has been established. Eventually at some point the 
Hear t specialist's establishment status wi l l need to be known. It 
is fairly straightforward to come up with additional message types 
to invoke the appropriate chain. 

To reiterate, although we have motivated this section by 
explicating the control capabilities necessary to handle the 
secondary to example, these same elements of control wi l l be 
needed to cope with any situation in which one diagnostic 
specialist needs knowledge of the establishing values of other 
specialists in order to undertake its own establishment. 

3.3. When Reconsideration Is Called For - Example: 
Mult ip le Diseases W i th Addit ive Symptoms 

In this section, we wi l l consider patient situations that can be 
successfully explained only by hypothesizing two diseases, each 
associated with the same patient sign being higher than the 
normal range or lower than the normal range. For example, again 
referring to Figure 2, suppose that a patient has both cardiac 
cirrhosis and cholestasis. Also assume that cardiac cirrhosis can 
typically account for an elevation of up to 3 mg/d l of bil irubin 
in the blood, and that the presence of cholestasis can account 
for bilirubin in excess of 5 mg/dl . Finally, suppose that a blood 
test of the patient shows 9 mg/dl of bil irubin. 

A physic ian 's unders tand ing of this case might be captured 
in outline by: 

1. Relying on relevant patient signs and symptoms, it appears 
likely that the patient has cholestasis. 

2. It also appears likely that the patient has cardiac cirrhosis, 
although only part of the bilirubin is explainable by the 
hypothesis of cardiac cirrhosis alone. The problem with not 
accounting for the total observed bilirubin reduces the 
overall confidence in this hypothesis somewhat. 

3. But a coherent understanding of the current patient state is 
that she has both cardiac cirrhosis and cholestasis. By 
deciding that the patient state is best characterized by these 
multiple diseases: 

a. the total bilirubin elevation is explained as the sum of 
contributions associated with cardiac cirrhosis (3 
mg/dl) and cholestasis (6 mg/dl) , and 

b. the confidence that the patient has cardiac cirrhosis is 
restored. 

Bilirubin is a blood chemical that is cleared by the liver. 
Elevated bilirubin is associated with many liver diseases. The 
medical situation for the example shown is complicated here by 
the need to do a base line study to determine how much 
bilirubin can be accounted for by cardiac cirrhosis. For simplicity, 
we assume that the base line study shows that for this case of 
cardiac cirrhosis, 3 mg/dl is a reasonable elevation. 
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Reasoning Steps 1 and 2 can be construed as normal 
establishing behavior for disease hypotheses. In Step 1, 
cholestasis is established at +2 (likely), because the signs and 
symptoms associated with cholestasis are matched relatively well 
in the patient data. In Step2, cardiac Ci r rhos is is established 
at +1 (possible). Signs and symptoms associated with cardiac 
cirrhosis match the patient data well too, except that the 
bilirubin is too high. 

Reasoning Step 3 requires the addition of new control elements. 
Step 3a requires that a higher level specialist integrate results 
from the subordinates cholestasis and cardiac Ci r rhos is . In 
particular, those two subordinates must return information to 
l iver to enable an integration. 

If cholestasis returns to l iver the result 

[ (es tab l i shedAt +2) 
(canAccountFor 

( b i l i r u b i n 9 ) ) ] 

and card iacCir rhos is returns to c i r rhosis and subsequently to 
l iver the result 

[ (es tab l i shedAt +1) 
(canAccountFor 

( b i l i r u b i n 3 ) ) ] 

then l iver wi l l have the necessary information for understanding 
that the elevated bilirubin can be explained by hypothesising 
multiple diseases, assuming that liver knows that bilirubin levels 
combine additively. 

Step 3b is the most interesting step above. The local 
establishing knowledge of card lacCl r rhos ls yielded an 
establishing value of +1 because even though most knowledge 
" f i t " the patient data, the value of bilirubin was higher that 
would be expected in a case of cardiac cirrhosis only. But after 
reasoning Step 3a, we see that the high reading for bilirubin can 
be understood as coming from two sources. Hence, 
card iacCi r rhos is need account for only part of the elevated 
bilirubin. 

Step 3b is then a re-establishment of card iacCir rhos is with 
the assumption that only part of bilirubin value need be 
accounted for. This step requires that a new message type: 

[ r e - e s t a b l i s h 
(assume . . . ) ] . 

In the case above, we want card iacCi r rhos is and cholestasis to 
receive the messages 

to card iacCi r rhos is . 
[ r e - e s t a b l i s h (asanas ( b i l i r u b i n 3 ) ) ] . and 

to cholestasis: 
[ r e - e s t a b l i s h (assuae ( b i l i r u b i n 6 ) ) ] . 

On receiving this message, card iacCi r rhos is wi l l establish in the 
usual method, except the value of bilirubin wi l l be assumed 3. 
Sending the above message to cholestasis was crucial. We at 
least suspected that by forcing card iacCi r rhos is to assume a 
bil irubin level of 3, that its establishing value would be raised. 
But it also had to be demonstrated that by lowering the bilirubin 
value that cholestasis sees to 6, that the multiple disease 
hypothesis would remain viable. 

A partial message trace for the problem discussed in this 
section is shown in Figure 3. 

from l iver 
to card iacCir rhosis : (establish/refine) 

from card iacCir rhos is 
to l iver: [{(cardiacCirrhosis 

established-at + l ) 
(can-account-for 

(bilirubin 3))}| 

from l iver 
to cholestasis: (establish/refine) 

from cholestasis 
to l iver: [{(cholestasis 

established-at +2) 
(can-account-for 

(bilirubin 9))}| 

f rom l iver 
to card iacCir rhosis : (re-establish 

(assume bilirubin 3)) 

from card iacCir rhos is 
to l iver: [{(cardiacCirrhosis 

established-at +2) 
(can-account-for 

(bilirubin 3))}| 

from l iver 
to cholestasis: (re-establish 

(assume bilirubin 6)) 

from cholestasis 
to l iver: [{(cholestasis 

established-at +2) 
(can-account-for 

(bilirubin 6))}| 

F igure S: Message Trace For Multiple Disease 
Wi th Additive Symptoms 

Thus we have expanded the control aspects to include: 

1. message channels: a specialist may send a re-establish 
message to any subordinate specialist. 

2. message types: 

a. can-account-for: used to indicate what the specialist 
once established can account for of the observed 
patient signs, 

b. re-establish-assume: used to force a specialist to 
assume a certain patient sign and symptom. 

3.4. When Reconsideration Is Called For - Example: 
Multiple Diseases With Canceling Symptoms 

In this section, we consider patient states which can be 
explained by multiple disease hypotheses in which the presence of 
both diseases cancel some particular patient sign or symptom. 
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Consider for example a patient who has both osteo myelitis 
secondary to a staph aureus infection, and a generalized gram 
negative sepsis. 

The osteo myelitis is typically associated with an increased 
blood platelet count, while the gram negative sepsis is associated 
with a decreased platelet count Hence the patient suffering from 
both diseases wil l typically have a normal platelet count. 

A critical point in understanding this situation is to realize that 
the establishment of any specialist will in general depend on 
many patient signs and symptoms. Thus both the hypotheses 
osteo myelitis and gram negative sepsis will be established, 
although both should "point out" that expectations for the 
patient platelet count are not realized. 

The situation here is conceptually very similar to the one 
discussed in the preceding section on multiple diseases with 
additive symptoms. There, the specialist reported how much of 
an observed anomaly could be accounted for; here the specialist 
must report that some expected sign or symptom is not observed. 
To capture this idea, we introduce the message type 

(expected-but-not -found 
. . . ) . 

For example, the specialist representing the osteo myelitis 
hypothesis should return 

[ ( es tab l i shed -a t +1) 
(expected-but-not- found 

(p la te le tCount h i g h ) ) ] , 

and the gram negative sepsis specialist should return 

[ ( es tab l i shed -a t +1) 
(expected-but-not- found 

(p la te le tCount l o w ) ) ] . 

As in the case with multiple diseases with additive symptoms, 
once a possible multiple disease hypothesis has been composed by 
a specialist above osteoMyel i t is and gramNegSepsis, then both 
wil l be forced to re-establish assuming appropriate platelet count. 
For example, in subsequent processing, osteomyeli t is and 
gramNegSepeis wil l receive the messages 

to os teoMye l i t i s : [ r e - e s t a b l i s h 
(assume (p late letCount h i g h ) ) ] , 

and 

t o gramNegSepsis: [ r e - e s t a b l i s h 
(assume (p late letCount low) ) ] 

In this section, to handle cases of multiple diseases with 
canceling symptoms, we have added to the set of message types 
the possibility 

(expected-but -not - found . . . ) 

4. Discussion 
This paper is based on identifying classif ication as a generic 

problem solving activity with a set of control issues that are 
particular to it. By considering a number of examples, we have 
shown how we can add control elements to the control structure 
of MDX, a hierarchical classification-based diagnostic system, to 
deal with situations where multiple, dependent classificatory 
hypotheses are appropriate; e.g., in medical diagnosis when a 
patient has multiple diseases. These extensions have been 
described in terms of two sets: 

• the set of possible paths by which control can go from 
consideration of one classificatory hypothesis to another, 

• the kinds of operations that can be performed on hypotheses 
and their effects on the control behavior of the problem 
solver. 

The existence of other generic tasks in our framework suggests 
that a similar analysis of the relevant control issues for them 
would also be fruitful. 

There is another aspect of the thrust of our work that is worth 
remarking on. The control problem intrinsic to classification was 
defined as that which delineates the possible invocation paths 
that wil l be available, and the requests that can be made along 
those paths. Thus the language of hypotheses as agents seemed a 
natural one since it provided the right level of analysis to capture 
the essence of classification problem solving. This approach may 
be more than a metaphor, however. It may provide a way to 
discuss the knowledge level architecture of classification, and by 
extension, other kinds of generic problem solving as well. If that 
is true, the analysis method we have utilized would be an 
alternative to Newell's proposals in [ 15], in which he is concerned 
precisely with how an agent can be described independent of 
implementation. 
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