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ABSTRACT 
We have proposed a knowledge-based system for the 

recognition of t ime varying vi tal signals, such as 
electrocardiograms. This paper discusses its causal 
model approach. 

A prototype system exhibits the efficacy of the 
method of knowledge base stratif ication, where each 
knowledge base (KB) represents a distinct perspective to 
the phenomenon, such as the observable waveform 
knowledge and the causal knowledge of the physiological 
entity. Projection links in our frame representation 
relate corresponding concepts in different KBs, e.g., 
abnormalities in shape or temporality are mapped into 
abnormalities in physiological causality. The role of 
projections in the recognition process is to transduce 
established waveform hypotheses into corresponding 
event hypotheses and to form more global hypotheses 
using the causal model of entity. 

Several types of one-shot causal links have been 
introduced to represent causal relationships among 
underlying physiological events. A causal l ink includes 
the existential dependency and the impl ic i t temporal 
constraints between the effect and the cause events. 

Using the causal knowledge with event statistics, the 
recognition system makes expectations for unseen 
events in relation to already-observed events when 
part ial input information is given. Statistical information 
defined coherently through metaclasses of the PSN 
language supports a default reasoning process. The 
overall recognition framework is based on the 
hypothesize-and-test paradigm and the specialization-
and-aggregation of hypotheses using similarity links in 
IS-A hierarchies and causal links in PART-OF hierarchies. 

1 Introduction 
The knowledge based systems approach has been 

applied to the recognition problem of t ime-varying vi ta l 
signals such as electrocardiograms (ECGs). The 
developed recognition system uses a causal model of the 
physiological enti ty so that observed abnormalities of the 
temporal i ty or morphology of the signal are explained by 
referr ing to the corresponding abnormalities of causal 
events and relationships in the entity model. 

In the domain of electrocardiology, this causal 
reasoning process is especially important because the 
domain involves causal and temporal knowledge about 
the cardiac conduction system, with which cardiologists 
analyze clinical observations (ECGs) and thereby provide 

diagnostic interpretations of abnormal events in the 
underlying physiological mechanism of the heart. The 
recognition problem of ECG rhythm disorders, above all , 
is interesting because the overall performance of 
existing ECG programs (e.g., IBM Bonner's program) is at 
most 80% reliable for abnormal ECGs [Hagan79] and we 
believe a basic reason for this unrel iabi l i ty is that 
current systems lack underlying physiological knowledge 
to handle the complexity inherent in cardiac rhythms. 
The ECG wave identif ication is much complicated by its 
"antenna" nature of receiving only the aggregated of the 
electrical activity of the heart, i.e., there is no simple 
correspondence between signal features and individual 
electrical discharges in the heart. 

Our approach to the problem of building such a 
system is to construct a knowledge base strat i f ied by 
several distinct knowledge bases (KBs) f rom different 
perspectives of the domain. Its control structure, 
therefore, supports a guiding mechanism between 
corresponding concepts in different KBs as well as 
another guiding mechanism between causally related 
concepts in each KB. In our representational terms, the 
former is called projection links and the lat ter is causal 
links, and these links together contribute to the 
generation of hypotheses and the decision of overall 
interpretations in the recognition of ECG signals. This 
approach also integrates several established AI 
techniques. The system inherited the basic control 
framework f rom the ALVEN system [Tsotso8B0,Tsotsos85] 
such as the attention mechanism for specialization and 
aggregation, which is supported by the implementation of 
similar i ty links [Minsky75] and the exception handling 
mechanism. The hypothesize-and-test paradigm is used 
as in ALVEN and other systems like PIP [Szoiovits78] and 
HEARSAY-II [Mostow78]. The knowledge organizational 
method is based on the IS-A, PART-OF. and INSTANCE-OF 
hierarchies as used in the PSN (Procedural Semantic 
Network) formalism [Mylopoulos83]. 

To prove the efficacy of our methods, a prototype 
system called CAA (Causal Arrhythmia Analysis system) 
has been designed and implemented using a frame-input 
PSN system on Franz LISP (and UCI LISP) [Shibahara83]. 
The prototype with a Limited size of knowledge base is 
being tested and yielding so far satisfactory results. 
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2 Causality 

2.1 Representation of Causal Connections 
Causality may be viewed f rom its various facets. 

Rieger and Grinberg discerned the one-shot causality 
where the cause event(s) is required only at the start of 
the effect event(s) f rom the continuous causality where 
the continuous presence of the cause is required to 
sustain the effect. [Rieger76] 

CAA causal links are based on two features of causal 
connections: f i rst , they specify the existential 
dependency of an affected event on its causative 
event(s); second, they impose temporal constraints 
between causative and affected events. Thus, the affected 
events cannot occur without the occurrence of the 
corresponding causative events, wi th effects temporally 
following their causes. Interested in representing the 
dependencies of causal connections among events more 
precisely, we look at causality f rom the viewpoint of 
whether a causal influence is internal to a subject or it 
influences other distinct subject(s). One-shot causal 
l inks, therefore, are specialized into the following: 
(1) Transfer: the subject of the event normally completes 

the current event and proceeds to the following 
event. 

(2) Transition: the subject is forced to terminate its 
current event and proceed to a new event. 

(3) Initiation: the causative event, due to a given subject, 
tr iggers a new event of another subject. 

(4) Interrupt: the causative event, due to a given subject, 
interrupts and forces the terminat ion of an event by 
another subject. 

(5) Causal-block: the causative event of a subject, fails to 
influence an event of another subject due to a 
blockage of the causal flow. 

The above CAA causal links include impl ic i t temporal 
constraints; thus, causal structures are described more 
qualitatively without specifying t ime coordinate values. 

Causal events are aggregated at several levels 
involving arb i t rary numbers of causal l inks. However, 
causal links themselves remain atomic lest the semantics 
of causal connections become ambiguous. 

2.2 Use of Causal links 
To interpret real ECG signals, the knowledge base 

must contain the causal knowledge about normal and 
abnormal connections among cellular events, which 
produce part icular ECG tracings in the observable signal 
domain. We represent such causal activit ies using CAA 
causal l inks. Fig. 1 i l lustrates a typical ECG tracing for a 
normal cardiac cycle in (a), its electr ical conduction path 
in an anatomical diagram in (b), and the corresponding 
causal conduction model w i th causal l inks in (c). In this 
causal model, short symbols l ike EOa are used to denote 
one of four basic events (phases) in a small port ion of the 
cardiac conduction system; these phases are 
"depolarization" [wi th symbol a], "under-repolarization" 
[wi th symbol b], "part ia l - r rpolar izat ion" [wi th symbol c], 
and "ful l-repolarizat ion" [wi th symbol d]. Such basic 

phase events are successively aggregated into "cycle", 
"activity", "beat", and "beat-pattern" events in the 
physiological event KB to describe more global and 
complex causal structures. 
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Note that causal links across beat events (not shown) 
are TRANSITIONS and INTERRUPTS except pace-making 
parts (normally, the SA-Node) because the overall 
oscillation of the conduction system is controlled (or 
triggered) by such self-oscillating cells. Also, since the 
current model is rather devoted to supraventricular 
arrhythmias, the bundle branches are included in the 
ventricles. 

2.3 Recent Work on Causali ty 
ABEL and CADUCEUS systems are recent medical 

expert systems that use causal notions. The ABEL system 
provides mult iple levels of descriptions of medical 
hypotheses and hierarchically organizes disease 
structure [Patil81]. In the CADUCEUS system, analyzing 
differential diagnoses and causal graphs of diseases, 
Pople proposed sophisticated control links for efficient 
decision making [Pople82]. In spite of the sophistication 
in expressing causal mechanisms in ABEL and CADUCEUS, 
these systems do not seem to provide a means to 
construct a recognition system of t ime-varying signals 
due to the weakness in the representation of precise 
t iming contexts among events. 

Causality has been recently approached f rom the 
standpoint of "qualitative reasoning". In this regard, 
Long's work must be noted [Long83]. He introduced 
qualitative times to describe the causal relations that 
might or must have taken place. He interestingly 
proposed four causal templates that give an extension of 
"continuous causality" while our causal links are 
specialized in "one-shot causality". We have taken a 
different approach because original signals are given to 
the system as real-valued data and the use of some 
quantitative analysis is inevitable at the measurement 
level so that unnecessary ambiguity is avoided, as Kunz 
noticed in his AI/MM system [KunzB3]. 

Based on the methods of mult ivariate analysis Blum 
approached the problem statistically [BlumB2]. However, 
our domain includes mostly exact causal relationships. 
Therefore, we l imi t the use of statistical standards to the 
estimation of inherently spontaneous variables such as 
event durations. 

3 Representation of Domain Knowledge 

3.1 Frame Representation and Classes 
Our knowledge representation is based on semantic 

networks, in part icular, the PSN language, with IS-A, 
PART-OF, and INSTANCE-OF organizational relations. In 
our part icular formalism, concepts such as events and 
waveforms are described by frames and called class-
frames or classes. Fig. 2 exemplifies the use of a frame 
and causal links. (The dot "." notation is used to specify 
the component of the referred slot.) This normal act ivi ty 
of the ventricles is decomposed into three cycle events, 
i.e., bundle-of-his-cycie-event, r ight-ventricle-cycle-
event, and left-ventricie-cycle-event. Two INITIATE links 
represent the conductions f rom the bundle of His to the 
left and the r ight ventricles, respectively. Note that the 
information related to the class itself, in this case, the 
subject part name and the activation type, is given as the 

instantiation of a metaclass ACTIVITY-CONCEPT. 

3.2 IS-A and PART- OF Hierarchies in Knowledge Base 
Let us examine how the IS-A and the PART-OF 

principles contribute to the organization of the CAA 
knowledge base. We take a look at the QRS and QRST 
waveforms in the ECG waveform KB as examples. 

First, the QRST waveform consists of the QRS complex 
and the T wave; thus, the corresponding class QRST-
COMPOSITE-WAVE-SHAPE has the generic PART-OF 
structure with major components shown in Fig. 3-(a). This 
generic QRST waveform is specialized into several QRST 
waveforms in Fig. 3-(b), along its IS-A hierarchy. Let us 
pick up one component f rom the STANDARD-QRST-
COMPOSITE-SHAPE. NORMAL-QRS-COMPLEX is such a 
component and this class is itself included in the IS-A 
hierarchy of the QRS waveforms as in Fig. 3-(c). The 
orthogonality of IS-A and PART-OF hierarchies is shown in 
Fig. 3-(d) since STANDARD-R-WAVE-SHAPE is a component 
of STANDARD-QRS-COMPLEX-SHAPE and, at the same t ime, 
it is included in a local IS-A hierarchy of R-WAVE-SHAPE. 

Similarly, various IS-A and PART-OF hierarchies are 
defined in the physiological KB. Such organizational 
hierarchies not only contribute to the clarif ication of the 
inter-dependency among domain concepts but also 
provide guiding knowledge for the recognition process as 
discussed later. 

classVENT-ALL-MATURE-FORWARD-ACTJVITY 
is-a VENT-ACTIVITY 
instance-of ACTIVITY-CONCEPT instantiated-with 

subject: VENTRICLE; 
activation: FORWARD;; 

with components 
bundle-of-his-cycie-event: BHIS-MATURE-CELL-CYCLE; 
right-ventricle-cycle-event: RV-MATURE-CELL-CYCLE; 
left-ventricle-cycle-event: LV-MATURE-CELL-CYCLE; 
bhis-rv-delay:NUMBER-WITH-TOLERANCES 

calculate := /* delay set-up expression • / ; 
bhis-lv-delay:NUMBER-WITH-TOLERANCES 

calculate := /* delay set-up expression • / ; 
causal-links 
bhis-rv-propagation: INITIATE 
causative-starting-event: 
bundle-of-his-cycle-event.depolarization-phase-event; 

initiate d- event: 
right-ventricle-cycle-event.depolarization-phase-event; 
delay: bhis-rv-delay;; 

bhis-lv-propagation: INITIATE 
c ausative-starting-event: 
bundle-of-his-cycle-event.depolarization-phase-event; 

initiated-event: 
lcft-ventricle-cycle-event.depolarization-phase-event; 
delay: bhis-lv-delay;; 

end 

Fig. 2 Class Frame for Normal Activity of the Ventricles 
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3.3 Metaclasses and Statistical Standards 
Statistical information, so commonly used in medical 

reasoning systems, has particular importance when 
insufficient information is available about the disease 
status of a patient [Szolovits78]. In our case, the 
recognit ion system uses statist ical standards to make 
expectations for unknown attr ibutes of events and to 
estimate consistencies (goodness-of-fit) of hypotheses. 
Since stat ist ical standards about a class are not the 
attr ibutes of any part icular instance of the class but the 
attr ibutes of the class itself, such standards could be 
defined in appropriate metaclasses and instantiated as 
properties of the class itself. In other words, event 
statistics are good examples of meta-knowledge or 
"knowledge 'about knowledge" and such knowledge is 
organized along the INSTANCE-OF axis. In fact, to provide 
"mean" and "standard-deviation" values to all the 
physiological phase events, CAA has a metadata CELL-
PHASE-CONCEPT as shown in Fig. 4. 

metaclass CELL-PHASE-CONCEPT 
with components 

subject: HEART-PORTION; 
matur i ty: DEGREE-OF-MATURITY; 
phase: PHASE-NAME; 
mean: EXPRESSION default MEANFUNC; 
deviation: EXPRESSION default DEVFUNC; 

end 

Fig. 4 Metaclass Definition for Statistical Information 

In Fig. 4. default functions MEANFUNC and DEVFUNC 
are generic functions that are supposed to generate mean 
and standard deviation about durations of phase events. 
Such statist ical standards about phases are function 
procedures of "subject", "maturi ty", "phase", and a state 
variable HR$ (heart rate). Therefore, such a standard, for 
example, a mean value is given by the expression "(mean 
subject matur i ty phase HR$)" in a part icular phase event 
class. In the evaluation of this expression, the slot-names 
such as "mean" and "subject" are replaced by real 
properties of the class, such as "MEANFUNC" and "SA-
NODE". This is considered as the tai loring process of the 
general "mean" expression to the definit ional context of 
this event; i.e.. such statistics may change to f i t into each 
event hypothesis. On the other hand, HR$ is a global 
variable that reflects the current state of the model, 
where hypotheses are being instantiated; in other words, 
such global variables are used to make statist ical 
standards sensitive to the current recognition context. 
Heart rate, blood pressure and breathing rate are 
examples of dynamic or t ime varying global variables 
while age-group, sex, race, and types of medications are 
static global variables. Obviously, default functions, 
MEANFUNC and DEVFUNC, may be replaced by any ad-hoc 
functions if necessary. 

3.4 Knowledge-base Stratification and Projection Links 
Due to our causal model approach, we at least 

distinguish two subdomains, i.e., the ECG morphological 
(shape) domain and the electrophysiological domain. 
Therefore, the system's knowledge base is strat i f ied by 
the ECG waveform KB and the physiological event KB. Our 
idea of strat i fying a knowledge base resembles Rich's 
"overlays" since it provides different perspectives to the 
problem [Rich81]. In our method, however, the l inking 
mechanism between different KBs is biased to 
recognition purposes. 

Projection links have been introduced into the CAA 
system to relate corresponding concepts in distinct 
domain KBs. In our model based approach such links are 
essential since they relate temporal and/or 
morphological abnormalities in waveforms to 
corresponding abnormalities in physiological causal 
structures. 

The diagram in Fig. 5 i l lustrates a projection l ink that 
defines the correspondence between the corner point 
information of a normal QRST waveform and the timings 
of a normal act iv i ty event of the ventricles. This 
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projection l ink must be defined in the class frame of the 
normal QRST waveform. 

For recognition, the most important aspect of 
projection links is that they provide guiding paths to map 
concepts across differently organized KBs and support 
the synchronization of recognition activit ies in different 
domains. In our system, projections f rom established 
waveform hypotheses result in the basic data set 
(hypotheses) in the underlying event domain, on which 
the recognition of causal events works. 

4 Recognition Strategies and Control System 

4,1 Outline of Recognition Flow 
Signals are processed by three functional modules in 

the following order: 
(1) The peak-detection module extracts wave segments 

and slopes f rom sampled ECG input signals and emits 
peak tokens wi th the measured parameters. This 
module uses the syntactic method given by Horowitz 
[Horowitz75] based on piecewise linearization and 
parsing techniques using a context-free grammar. 

(2) The waveform analyst module, for each cardiac cycle, 
forms waveform hypotheses on the peak tokens and 
refines the hypotheses to describe the given set of 

tokens best. Once established, such hypotheses are 
projected into the physiological event domain to fo rm 
their corresponding event hypotheses. 

(3) The errant analysis modulle accepts projected events 
as a starting data set and generates rhythm event 
hypotheses in a more global context of t ime to 
elucidate rhythm abnormalities in the underlying 
cardiac conduction system. Since most of 
physiological events do not have observable 
counterparts (waveforms), the event analysis module 
makes expectations on the attributes of unseen 
events using the causal knowledge of the conduction 
system and statistical standards of events. If the 
system encounters lack of information because of 
missing waves, it may request the peak-detection 
module to search for such missing tokens based on 
the expectation of such waves. 

4.2 Specialization and Aggregation for Hypothesis 
Generation 

Our recognition strategy is based on the 
hypothesize-and-test paradigm, in particular, the 
attention mechanisms of the ALVEN system. The focus-
of-attention mechanism makes recognition (hypothesis 
formation) proceed f rom the generic to the specific along 
IS-A class hierarchies downward. When a ciaBS hypothesis 
succeeds, a focusing action is taken by choosing and 
hypothesizing an arbi trary specialized class of the 
succeeded class. When a current hypothesis failed, the 
change-of-attention mechanism chooses alternative 
hypotheses through similari ty links, examining the 
similar i ty and the difference between classes. 

Let us examine how the above specialization and 
aggregation process works for QRST waveforms (see Fig. 
3). After all peaks are detected and measured, the 
waveform analysis module chooses groups of consecutive 
prominent peaks wi th high amplitude and steep slope as 
anchoring shapes. These anchoring shapes are 
candidates for QRST-COMPOSITE-SHAPE. The wave 
analysis for an anchoring shape starts with hypothesizing 
the class QRST-COMPOSITE-SHAPE on the prepared set of 
basic peak tokens, as the f i rs t step. This class is most 
generic for all the shapes composed of Q, R, S, and T 
waves and only requires the existenoe of any QRS 
complex wave as the sole component; thus, this 
component class, which is again the most generic class 
for QRS complex waves, is hypothesized and its 
instantiation follows using the prepared Q, R, and/or S 
wave tokens. If there is none of Q, R. or S wave tokens, the 
hypothesis of QRS-COMPLEX-SHAPE fails and so does 
QRST-COMPOSITE-SHAPE, too. As the second step, one of 
specialized QRST composite wave classes under QRST-
COMPOSITE-SHAPE is hypothesized and all its attributes 
are tested, i.e., the slot tokens are tr ied to be 
instantiated. Since all the specialized classes are 
connected by simi lar i ty links, using exceptions raised by 
test results the system may choose the next appropriate 
hypothesis and finally reach the valid hypothesis for the 
given anohoring shape. The test procedure for each 
at t r ibute slot, however, triggers an independent process 
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to recognize the token of the slot. For example, class 
STANDARD-QRST-COMPOSITE-SHAPE has a slot named 
qrs-complex and this slot is defined by class NORMAL-
QRS-COMPLEX which is an IS-A parent class to classes. 
STANDARD-QRS-COMPLEX-SHAPE, STANDARD-QR-
COMPLEX-SHAPE. STANDARD-RS-COMPLEX-SHAPE and 
STANDARD-R-ONLY-COMPLEX-SHAPE; thus, the previous 
QRS wave slot token of the generic QRST-COMPOSITE-
SHAPE must be specialized along the IS-A hierarchy of 
QRS-COMFLEX-SHAPE, and this process also uses the same 
procedure in order to reach the most refined QRS 
complex shape hypothesis. With such a specialized QRS 
wave token and a separately specialized T wave token, the 
second step decides the most appropriate hypothesis 
among QRST composite shapes for the given set of wave 
tokens. 

Similarly but independently, in the physiological 
event domain, the specialization and aggregation process 
starts wi th the most generic beat pattern and eventually 
provides several specialized patterns as probable overall 
interpretations. 

4.3 Projection Mechanism and Expectation Mechanism 
The recognition starts with establishing hypotheses in 

the waveform domain. The projection mechanism maps 
such established hypotheses into the event domain, 
preparing a set of basic event hypotheses, which are 
treated like data in the event recognition process. 

A beat pattern (rhythm) is a complex time-varying 
event aggregated f rom more local events such as beats, 
activit ies, cycles, and phases. Causal links in such an 
aggregated event imply connections among its 
component events. Thus, once projections are made to 
some of these components, the system can produce 
expectations of unknown components f rom the known 
components. Therefore, when the system hypothesizes 
such an aggregated event, it looks ahead or looks back for 
i ts component events which are causally l inked to 
"already-established" component events. Most 
frequently, causal l inks are used to locate the temporal 
positions of "to-be-expected" events by their inherent 
temporal constraints. This expectation is made by the 
following basic equality impl ic i t ly imposed over start ing 
or ending times of part icipating events: 

<effect-t ime> = <cause-time> + <delay-period>. 

Let us look at the above mechanisms in a clear small 
case where a QRST composite wave is seen but the P wave 
has not been recognized for the current wave group. 

Fig. 6 i l lustrates the case and the interval "Area # 1 " is the 
probable area where a P wave would appear if the beat is 
a normal sinus-pacing beat. To estimate such an area 
under a part icular beat hypothesis is important since the 
peak-detection module may search for a P wave 
intensively in this area, again. 

The area is estimated using the projection and the 
expectation mechanisms in the following fashion: 
(0) A hypothesis of NORMAL-QRST-COMPOSITE-SHAPE is 
established. 
(1) A projection to a normal ventricle act ivi ty event (Fig. 
5): 

(a) The onset and offset times of the QRS complex are 
bound to the starting and ending times of the 
depolarization phase of the left ventricle. The off-
t ime of the T wave is bound to the ending t ime of the 
part ial-repolarization phase. These phase events are 
generated immediately and two other phase events 
are expected by three TRANSFER causal links and 
event statistics. Thus, the left ventricle (LV) cycle 
event is generated. 
(b) By the INITIATE causal l ink to the Bundle of His 
(BH1S) and subsequent TRANSFER links, the BHIS 
cycle event is generated. Also, by the INITIATE link 
f rom the BHIS to the r ight ventricle (RV). the RV cycle 
event is generated. 
(c) With the above three cycle events, the projection 
to the normal ventr icle act iv i ty event is completed. 

(2) Expectation of the AV-Node activity, the Atr ium 
activity, and the SA-Node activi ty under a hypothesis of 
the normal sinus-pacing beat (Fig 1-(c)): 

(a) The INITIATE link C7 is invoked to expect the phase 
E8a. then E6b. E6c, and E6d phases are expected by 
three TRANSFER links, and finally, the lower AV-Node 
cycle event is generated. Similarly, using C8 and C5 
INITIATE links, the middle and the upper AV-Node 
act iv i ty events are generated. Thus, the AV-Node 
activi ty event is formed with these component cycle 
events. 
(b) Starting with the INITIATE l ink C4, the atr ium 
act ivi ty event is expected in the same as above, and, 
next, the SA-Node cycle event is expected. 
(c) A hypothesis of the normal sinus-pacing beat is 
completed. 

Under this hypothesis, the on-time and the off-t ime of the 
P wave correspond to the start ing t ime of the upper-
atr ium cycle and the ending t ime of the lower-atr ium 
cycle, respectively. Therefore, the search area for a 
probable P wave is given as the interval between theses 
times [e.g., f rom 110 ±16ms to 40 ±15ms before the QRS 
complex]. The request of the search for the P wave is fed 
back to the peak-detection module to repeat the 
detection with different sensitivity parameters. 

The above CAA expectation mechanism is 
characterized by the following features: 
(1) The expectation is made f rom the known to the 

unknown, forward or backward in t ime, and upward or 
downward in a PART-OF class structure. 

(2) The expectation proliferates to make a closure of 
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temporal and/or structural dependencies and 
complete the PART-OF structure of the hypothesis. 

Projections are made in the following fashion: 
(1) Projections may be made between differently 

structured classes as seen in Fig. 5. 
(2) To eliminate unnecessary instantiations of 

projections, any projected class is instantiated only 
when a current global hypothesis requests the class 
as a component. 

4.4 Beat-pattern Analysis 
To recognize a periodic or successive arrhythmia, its 

repetit ive behavior is defined by the recursive definit ion 
of beat-pattern frames. By such a frame, recognition 
may proceed one beat to the next along the time axis 
instantiating successive beats to form the beat-pattern. 

In the process of forming beat-patterns, causal links 
between adjacent beats allow the system to veri fy the 
causal relationship that govern the pace-making 
mechanism on a beat-to-beat basis. The overall 
consistency of a beat-pattern is calculated based on the 
consistencies of these causal links and beat components. 

As well as the causal consistency among beats, overall 
characteristics and tendencies are observed and used to 
recognize individual arrhythmias. For this purpose, most 
beat-pattern classes include a component that monitors 
the changes of variables f rom one beat to another. A 
typical example is to monitor the change of the R-R 
interval or the P-R interval. 

In arrhythmia beat-patterns, simi lar i ty links must 
also be defined to relate beat-patterns that have some 
features in common and handle situations where one or 
more matching exceptions have been raised. Fig. 7 shows 
ECG wave configurations that correspond to three 
different AV-Block arrhythmia patterns and the matching 
exceptions used by simi lar i ty links. Such similar i ty links 
between repetit ive beat-patterns enable the system to 
switch beat-pattern hypotheses f rom one pattern to its 
alternatives according to the matching exceptions. For 
example, the class definit ion of Mobitz-1 second degree 
AV-Block contains a simi lar i ty l ink toward the Mobitz-2 
second degree AV-Block and the f i rs t degree AV-Block for 
the situation where no progressive prolongation is seen in 
the atr ium-ventr icle- interval. 

To recognize part icular arrhythmia patterns, the 
specialization-and-aggregation process must be ini t iated 
wi th the most generic class for repetit ive arrhythmias. 
The f inal interpretat ion, therefore, is given by a set of all 
survived beat-patterns wi th overall consistency factors. 
The consistency is is calculated using event statistics and 
a test-score function, which is similar to a fuzzy 
constraint in [Zadeh83]. 

5 Concluding Remarks 
We have discussed a recognition system guided by a 

causal model of the underlying physiological entity. We 
think a definite advantage of such a recognition system is 
the use of the causal knowledge and appropriate 
statistical knowledge about underlying events, enabling 
the system to make "expectations" of the event structure 
of the entity even when partial information is given. This 
approach is applicable in other medical applications 
because the ult imate purpose of recognition of v i ta l 
signals is normally the elucidation of such causal 
abnormalities in the physiology, rather than merely the 
recognition of contour deformation or interval changes. 

Our recognition system is effectively supported by 
various l ink constructs such as causal links, simi lar i ty 
links, and projection links, which are regarded as the 
distr ibuted control knowledge. In fact, causal links 
support the expectation of unknown events using PART-OF 
hierarchies, s imi lar i ty links guide the recognition in 
focusing or changing attentions using IS-A hierarchies, 
and projection links help hypothesis transduction across 
different KBs. 

Our recognition method may not be successful when 
key waveforms are missing and no expected waves can be 
uncovered in spite of intensive search in the area of 
expectation. Therefore, we are designing the system that 
wi l l interact wi th diagnostic interventions when the 
system faces lack of information. The purpose of such 
interventions is to perturb a patient's physiological state 
so that the state could move to a disease specific state. 
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