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ABSTRACT

We have proposed a knowledge-based system for the
recognition of time varying vital signals, such as
electrocardiograms. This paper discusses its causal
model approach.

A prototype system exhibits the efficacy of the
method of knowledge base stratification, where each
knowledge base (KB) represents a distinct perspective to
the phenomenon, such as the observable waveform
knowledge and the causal knowledge of the physiological
entity. Projection links in our frame representation
relate corresponding concepts in different KBs, e.g,
abnormalities in shape or temporality are mapped into
abnormalities in physiological causality. The role of
projections in the recognition process is to transduce
established waveform hypotheses into corresponding
event hypotheses and to form more global hypotheses
using the causal model of entity.

Several types of one-shot causal links have been
introduced to represent causal relationships among
underlying physiological events. A causal link includes
the existential dependency and the implicit temporal
constraints between the effect and the cause events.

Using the causal knowledge with event statistics, the
recognition system makes expectations for unseen
events in relation to already-observed events when
partial input information is given. Statistical information
defined coherently through metaclasses of the PSN
language supports a default reasoning process. The
overall recognition framework is based on the
hypothesize-and-test paradigm and the specialization-
and-aggregation of hypotheses using similarity links in
IS-A hierarchies and causal links in PART-OF hierarchies.

1 Introduction

The knowledge based systems approach has been
applied to the recognition problem of time-varying vital
signals such as electrocardiograms (ECGs). The
developed recognition system uses a causal model of the
physiological entity so that observed abnormalities of the
temporality or morphology of the signal are explained by
referring to the corresponding abnormalities of causal
events and relationships in the entity model.

In the domain of electrocardiology, this causal
reasoning process is especially important because the
domain involves causal and temporal knowledge about
the cardiac conduction system, with which cardiologists
analyze clinical observations (ECGs) and thereby provide

diagnostic interpretations of abnormal events in the
underlying physiological mechanism of the heart. The
recognition problem of ECG rhythm disorders, above all,
is interesting because the overall performance of
existing ECG programs (e.g., IBM Bonner's program) is at
most 80% reliable for abnormal ECGs [Hagan79] and we
believe a basic reason for this unreliability is that
current systems lack underlying physiological knowledge
to handle the complexity inherent in cardiac rhythms.
The ECG wave identification is much complicated by its
"antenna" nature of receiving only the aggregated of the
electrical activity of the heart, i.e., there is no simple
correspondence between signal features and individual
electrical discharges in the heart.

Our approach to the problem of building such a
system is to construct a knowledge base stratified by
several distinct knowledge bases (KBs) from different
perspectives of the domain. Its control structure,
therefore, supports a guiding mechanism between
corresponding concepts in different KBs as well as
another guiding mechanism between causally related
concepts in each KB. In our representational terms, the
former is called projection links and the latter is causal
links, and these links together contribute to the
generation of hypotheses and the decision of overall
interpretations in the recognition of ECG signals. This
approach also integrates several established Al
techniques. The system inherited the basic control
framework from the ALVEN system [Tsotso8B0,Tsotsos85]
such as the attention mechanism for specialization and
aggregation, which is supported by the implementation of
similarity links [Minsky75] and the exception handling
mechanism. The hypothesize-and-test paradigm is used
as in ALVEN and other systems like PIP [Szoiovits78] and
HEARSAY-Il [Mostow78]. The knowledge organizational
method is based on the IS-A, PART-OF. and INSTANCE-OF
hierarchies as used in the PSN (Procedural Semantic
Network) formalism [Mylopoulos83].

To prove the efficacy of our methods, a prototype
system called CAA (Causal Arrhythmia Analysis system)
has been designed and implemented using a frame-input
PSN system on Franz LISP (and UCI LISP) [Shibahara83].
The prototype with a Limited size of knowledge base is
being tested and yielding so far satisfactory results.
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2 Causality

2.1 Representation of Causal Connections
Causality may be viewed from its various facets.

Rieger and Grinberg discerned the one-shot causality

where the cause event(s) is required only at the start of

the effect event(s) from the continuous causality where
the continuous presence of the cause is required to
sustain the effect. [Rieger76]

CAA causal links are based on two features of causal
connections:  first, they specify the existential
dependency of an affected event on its causative
event(s); second, they impose temporal constraints
between causative and affected events. Thus, the affected
events cannot occur without the occurrence of the
corresponding causative events, with effects temporally
following their causes. Interested in representing the
dependencies of causal connections among events more
precisely, we look at causality from the viewpoint of
whether a causal influence is internal to a subject or it
influences other distinct subject(s). One-shot causal
links, therefore, are specialized into the following:

(1) Transfer: the subject of the event normally completes
the current event and proceeds to the following
event.

(2) Transition: the subject is forced to terminate its
current event and proceed to a new event.

(3) Initiation: the causative event, due to a given subject,

triggers a new event of another subject.

Interrupt: the causative event, due to a given subject,

interrupts and forces the termination of an event by

another subject.

(5) Causal-block: the causative event of a subject, fails to
influence an event of another subject due to a
blockage of the causal flow.

(4

-

The above CAA causal links include implicit temporal
constraints; thus, causal structures are described more
qualitatively without specifying time coordinate values.

Causal events are aggregated at several levels
involving arbitrary numbers of causal links. However,
causal links themselves remain atomic lest the semantics
of causal connections become ambiguous.

2.2 Use of Causal links

To interpret real ECG signals, the knowledge base
must contain the causal knowledge about normal and
abnormal connections among cellular events, which
produce particular ECG tracings in the observable signal
domain. We represent such causal activities using CAA
causal links. Fig. 1 illustrates a typical ECG tracing for a
normal cardiac cycle in (a), its electrical conduction path
in an anatomical diagram in (b), and the corresponding
causal conduction model with causal links in (c). In this
causal model, short symbols like EOa are used to denote
one of four basic events (phases) in a small portion of the
cardiac  conduction system; these phases are
"depolarization" [with symbol a], "under-repolarization"
[with symbol b], "partial-rrpolarization" [with symbol c],
and "full-repolarization" [with symbol d]. Such basic

phase events are successively aggregated into "cycle",
"activity", "beat", and "beat-pattern" events in the
physiological event KB to describe more global and
complex causal structures.
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Note that causal links across beat events (not shown)
are TRANSITIONS and INTERRUPTS except pace-making
parts (normally, the SA-Node) because the overall
oscillation of the conduction system is controlled (or
triggered) by such self-oscillating cells. Also, since the
current model is rather devoted to supraventricular
arrhythmias, the bundle branches are included in the
ventricles.

2.3 Recent Work on Causality

ABEL and CADUCEUS systems are recent medical
expert systems that use causal notions. The ABEL system
provides multiple levels of descriptions of medical
hypotheses and hierarchically organizes disease
structure [Patil81]. In the CADUCEUS system, analyzing
differential diagnoses and causal graphs of diseases,
Pople proposed sophisticated control links for efficient
decision making [Pople82]. In spite of the sophistication
in expressing causal mechanisms in ABEL and CADUCEUS,
these systems do not seem to provide a means to
construct a recognition system of time-varying signals
due to the weakness in the representation of precise
timing contexts among events.

Causality has been recently approached from the
standpoint of "qualitative reasoning". In this regard,
Long's work must be noted [Long83]. He introduced
qualitative times to describe the causal relations that
might or must have taken place. He interestingly
proposed four causal templates that give an extension of
"continuous causality" while our causal links are
specialized in "one-shot causality". We have taken a
different approach because original signals are given to
the system as real-valued data and the use of some
quantitative analysis is inevitable at the measurement
level so that unnecessary ambiguity is avoided, as Kunz
noticed in his AI/MM system [KunzB3].

Based on the methods of multivariate analysis Blum
approached the problem statistically [BlumB2]. However,
our domain includes mostly exact causal relationships.
Therefore, we limit the use of statistical standards to the
estimation of inherently spontaneous variables such as
event durations.

3 Representation of Domain Knowledge

3.1 Frame Representation and Classes

Our knowledge representation is based on semantic
networks, in particular, the PSN language, with IS-A,
PART-OF, and INSTANCE-OF organizational relations. In
our particular formalism, concepts such as events and
waveforms are described by frames and called class-
frames or classes. Fig. 2 exemplifies the use of a frame
and causal links. (The dot "." notation is used to specify
the component of the referred slot.) This normal activity
of the ventricles is decomposed into three cycle events,
ie., bundle-of-his-cycie-event, right-ventricle-cycle-
event, and left-ventricie-cycle-event. Two INITIATE links
represent the conductions from the bundle of His to the
left and the right ventricles, respectively. Note that the
information related to the class itself, in this case, the
subject part name and the activation type, is given as the
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instantiation of a metaclass ACTIVITY-CONCEPT.

classVENT-ALL-MATURE-FORWARD-ACTJVITY
is-a VENT-ACTIVITY

instance-of  ACTIVITY-CONCEPT

subject: VENTRICLE;
activation: FORWARD;;
with components
bundle-of-his-cycie-event: BHIS-MATURE-CELL-CYCLE;
right-ventricle-cycle-event: RV-MATURE-CELL-CYCLE;
left-ventricle-cycle-event: LV-MATURE-CELL-CYCLE;
bhis-rv-delay:NUMBER-WITH-TOLERANCES
calculate := /[* delay set-up expression ¢/;
bhis-lv-delay:NUMBER-WITH-TOLERANCES
calculate := [* delay set-up expression ¢/;

causal-links

bhis-rv-propagation: INITIATE

causative-starting-event:
bundle-of-his-cycle-event.depolarization-phase-event;
initiate d- event:
right-ventricle-cycle-event.depolarization-phase-event;
delay: bhis-rv-delay;;

bhis-lv-propagation: INITIATE

c ausative-starting-event.
bundle-of-his-cycle-event.depolarization-phase-event;
initiated-event:
Icft-ventricle-cycle-event.depolarization-phase-event;
delay: bhis-lv-delay;;

end

instantiated-with

Fig. 2 Class Frame for Normal Activity of the Ventricles

3.2 IS-A and PART- OF Hierarchies in Knowledge Base

Let us examine how the IS-A and the PART-OF
principles contribute to the organization of the CAA
knowledge base. We take a look at the QRS and QRST
waveforms in the ECG waveform KB as examples.

First, the QRST waveform consists of the QRS complex
and the T wave; thus, the corresponding class QRST-
COMPOSITE-WAVE-SHAPE has the generic PART-OF
structure with major components shown in Fig. 3-(a). This
generic QRST waveform is specialized into several QRST
waveforms in Fig. 3-(b), along its IS-A hierarchy. Let us
pick up one component from the STANDARD-QRST-
COMPOSITE-SHAPE. NORMAL-QRS-COMPLEX is such a
component and this class is itself included in the IS-A
hierarchy of the QRS waveforms as in Fig. 3-(c). The
orthogonality of IS-A and PART-OF hierarchies is shown in
Fig. 3-(d) since STANDARD-R-WAVE-SHAPE is a component
of STANDARD-QRS-COMPLEX-SHAPE and, at the same time,
it is included in a local IS-A hierarchy of R-WAVE-SHAPE.

Similarly, various IS-A and PART-OF hierarchies are
defined in the physiological KB. Such organizational
hierarchies not only contribute to the clarification of the
inter-dependency among domain concepts but also
provide guiding knowledge for the recognition process as
discussed later.
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3.3 Metaclasses and Statistical Standards

Statistical information, so commonly used in medical
reasoning systems, has particular importance when
insufficient information is available about the disease
status of a patient [Szolovits78]. In our case, the
recognition system uses statistical standards to make
expectations for unknown attributes of events and to
estimate consistencies (goodness-of-fit) of hypotheses.
Since statistical standards about a class are not the
attributes of any particular instance of the class but the
attributes of the class itself, such standards could be
defined in appropriate metaclasses and instantiated as
properties of the class itself. In other words, event
statistics are good examples of meta-knowledge or
"knowledge 'about knowledge" and such knowledge is
organized along the INSTANCE-OF axis. In fact, to provide
"mean" and "standard-deviation" values to all the
physiological phase events, CAA has a metadata CELL-
PHASE-CONCEPT as shown in Fig. 4.

metaclass CELL-PHASE-CONCEPT
with  components
subject: HEART-PORTION;
maturity: DEGREE-OF-MATURITY;
phase: PHASE-NAME;
mean: EXPRESSION default MEANFUNC;
deviation: EXPRESSION default DEVFUNC;
end

Fig. 4 Metaclass Definitionfor Statistical Information

In Fig. 4. default functions MEANFUNC and DEVFUNC
are generic functions that are supposed to generate mean
and standard deviation about durations of phase events.
Such statistical standards about phases are function
procedures of "subject", "maturity", "phase", and a state
variable HR$ (heart rate). Therefore, such a standard, for
example, a mean value is given by the expression "(mean
subject maturity phase HR$)" in a particular phase event
class. In the evaluation of this expression, the slot-names
such as "mean" and "subject" are replaced by real
properties of the class, such as "MEANFUNC" and "SA-
NODE". This is considered as the tailoring process of the
general "mean" expression to the definitional context of
this event; i.e.. such statistics may change to fit into each
event hypothesis. On the other hand, HRS$ is a global
variable that reflects the current state of the model,
where hypotheses are being instantiated; in other words,
such global variables are used to make statistical
standards sensitive to the current recognition context.
Heart rate, blood pressure and breathing rate are
examples of dynamic or time varying global variables
while age-group, sex, race, and types of medications are
static global variables. Obviously, default functions,
MEANFUNC and DEVFUNC, may be replaced by any ad-hoc
functions if necessary.

3.4 Knowledge-base Stratification and Projection Links

Due to our causal model approach, we at least
distinguish two subdomains, i.e., the ECG morphological
(shape) domain and the electrophysiological domain.
Therefore, the system's knowledge base is stratified by
the ECG waveform KB and the physiological event KB. Our
idea of stratifying a knowledge base resembles Rich's
"overlays" since it provides different perspectives to the
problem [Rich81]. In our method, however, the linking
mechanism between different KBs is biased to
recognition purposes.

Projection links have been introduced into the CAA
system to relate corresponding concepts in distinct
domain KBs. In our model based approach such links are

essential since they relate temporal and/or
morphological abnormalities in waveforms to
corresponding abnormalities in physiological causal

structures.

The diagram in Fig. 5 illustrates a projection link that
defines the correspondence between the corner point
information of a normal QRST waveform and the timings
of a normal activity event of the ventricles. This
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projection link must be defined in the class frame of the
normal QRST waveform.

For recognition, the most important aspect of
projection links is that they provide guiding paths to map
concepts across differently organized KBs and support
the synchronization of recognition activities in different
domains. In our system, projections from established
waveform hypotheses result in the basic data set
(hypotheses) in the underlying event domain, on which
the recognition of causal events works.

4 Recognition Strategies and Control System

4,1 Outline of Recognition Flow
Signals are processed by three functional modules in

the following order:

(1) The peak-detection module extracts wave segments
and slopes from sampled ECG input signals and emits
peak tokens with the measured parameters. This
module uses the syntactic method given by Horowitz
[Horowitz75] based on piecewise linearization and
parsing techniques using a context-free grammar.

(2) The waveform analyst module, for each cardiac cycle,
forms waveform hypotheses on the peak tokens and
refines the hypotheses to describe the given set of
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tokens best. Once established, such hypotheses are

projected into the physiological event domain to form

their corresponding event hypotheses.

(3) The errant analysis modulle accepts projected events
as a starting data set and generates rhythm event
hypotheses in a more global context of time to
elucidate rhythm abnormalities in the underlying
cardiac conduction system. Since most  of
physiological events do not have observable
counterparts (waveforms), the event analysis module
makes expectations on the attributes of unseen
events using the causal knowledge of the conduction
system and statistical standards of events. If the
system encounters lack of information because of
missing waves, it may request the peak-detection
module to search for such missing tokens based on
the expectation of such waves.

4.2  Specialization and  Aggregation for  Hypothesis

Generation
Our recognition strategy is based on the

hypothesize-and-test paradigm, in particular, the
attention mechanisms of the ALVEN system. The focus-
of-attention mechanism makes recognition (hypothesis
formation) proceed from the generic to the specific along
IS-A class hierarchies downward. When a ciaBS hypothesis
succeeds, a focusing action is taken by choosing and
hypothesizing an arbitrary specialized class of the
succeeded class. When a current hypothesis failed, the
change-of-attention mechanism chooses alternative
hypotheses through similarity links, examining the
similarity and the difference between classes.

Let us examine how the above specialization and
aggregation process works for QRST waveforms (see Fig.
3). After all peaks are detected and measured, the
waveform analysis module chooses groups of consecutive
prominent peaks with high amplitude and steep slope as
anchoring  shapes. These anchoring shapes are
candidates for QRST-COMPOSITE-SHAPE. The wave
analysis for an anchoring shape starts with hypothesizing
the class QRST-COMPOSITE-SHAPE on the prepared set of
basic peak tokens, as the first step. This class is most
generic for all the shapes composed of Q, R, S, and T
waves and only requires the existenoe of any QRS
complex wave as the sole component; thus, this
component class, which is again the most generic class
for QRS complex waves, is hypothesized and its
instantiation follows using the prepared Q, R, and/or S
wave tokens. If there is none of Q, R. or S wave tokens, the
hypothesis of QRS-COMPLEX-SHAPE fails and so does
QRST-COMPOSITE-SHAPE, too. As the second step, one of
specialized QRST composite wave classes under QRST-
COMPOSITE-SHAPE is hypothesized and all its attributes
are tested, i.e., the slot tokens are tried to be
instantiated. Since all the specialized classes are
connected by similarity links, using exceptions raised by
test results the system may choose the next appropriate
hypothesis and finally reach the valid hypothesis for the
given anohoring shape. The test procedure for each
attribute slot, however, triggers an independent process
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to recognize the token of the slot. For example, class
STANDARD-QRST-COMPOSITE-SHAPE has a slot named
grs-complex and this slot is defined by class NORMAL-
QRS-COMPLEX which is an IS-A parent class to classes.
STANDARD-QRS-COMPLEX-SHAPE, STANDARD-QR-
COMPLEX-SHAPE.  STANDARD-RS-COMPLEX-SHAPE  and
STANDARD-R-ONLY-COMPLEX-SHAPE; thus, the previous
QRS wave slot token of the generic QRST-COMPOSITE-
SHAPE must be specialized along the IS-A hierarchy of
QRS-COMFLEX-SHAPE, and this process also uses the same
procedure in order to reach the most refined QRS
complex shape hypothesis. With such a specialized QRS
wave token and a separately specialized T wave token, the
second step decides the most appropriate hypothesis
among QRST composite shapes for the given set of wave
tokens.

Similarly but independently, in the physiological
event domain, the specialization and aggregation process
starts with the most generic beat pattern and eventually
provides several specialized patterns as probable overall
interpretations.

4.3 Projection Mechanism and Expectation Mechanism

The recognition starts with establishing hypotheses in
the waveform domain. The projection mechanism maps
such established hypotheses into the event domain,
preparing a set of basic event hypotheses, which are
treated like data in the event recognition process.

A beat pattern (rhythm) is a complex time-varying
event aggregated from more local events such as beats,
activities, cycles, and phases. Causal links in such an
aggregated event imply connections among its
component events. Thus, once projections are made to
some of these components, the system can produce
expectations of unknown components from the known
components. Therefore, when the system hypothesizes
such an aggregated event, it looks ahead or looks back for
its component events which are causally linked to
"already-established" component events. Most
frequently, causal links are used to locate the temporal
positions of "to-be-expected" events by their inherent
temporal constraints. This expectation is made by the
following basic equality implicitly imposed over starting
or ending times of participating events:

<effect-time> = <cause-time> + <delay-period>.

Let us look at the above mechanisms in a clear small
case where a QRST composite wave is seen but the P wave
has not been recognized for the current wave group.

Fig. 6 Expected Areas of the P wave

Fig. 6 illustrates the case and the interval "Area #1" is the

probable area where a P wave would appear if the beat is

a normal sinus-pacing beat. To estimate such an area

under a particular beat hypothesis is important since the

peak-detection module may search for a P wave
intensively in this area, again.

The area is estimated using the projection and the
expectation mechanisms in the following fashion:

(0) A hypothesis of NORMAL-QRST-COMPOSITE-SHAPE is

established.

(1) A projection to a normal ventricle activity event (Fig.

5):

(a) The onset and offset times of the QRS complex are
bound to the starting and ending times of the
depolarization phase of the left ventricle. The off-
time of the T wave is bound to the ending time of the
partial-repolarization phase. These phase events are
generated immediately and two other phase events
are expected by three TRANSFER causal links and
event statistics. Thus, the left ventricle (LV) cycle
event is generated.

(b) By the INITIATE causal link to the Bundle of His
(BH1S) and subsequent TRANSFER links, the BHIS
cycle event is generated. Also, by the INITIATE link
from the BHIS to the right ventricle (RV). the RV cycle
event is generated.

(c) With the above three cycle events, the projection
to the normal ventricle activity event is completed.

(2) Expectation of the AV-Node activity, the Atrium

activity, and the SA-Node activity under a hypothesis of

the normal sinus-pacing beat (Fig 1-(c)):

(a) The INITIATE link C7 is invoked to expect the phase
E8a. then E6b. E6¢c, and E6d phases are expected by
three TRANSFER links, and finally, the lower AV-Node
cycle event is generated. Similarly, using C8 and C5
INITIATE links, the middle and the upper AV-Node
activity events are generated. Thus, the AV-Node
activity event is formed with these component cycle
events.

(b) Starting with the INITIATE link C4, the atrium
activity event is expected in the same as above, and,
next, the SA-Node cycle event is expected.

(c) A hypothesis of the normal sinus-pacing beat is
completed.

Under this hypothesis, the on-time and the off-time of the

P wave correspond to the starting time of the upper-

atrium cycle and the ending time of the lower-atrium

cycle, respectively. Therefore, the search area for a

probable P wave is given as the interval between theses

times [e.g.,, from 110 £16ms to 40 +15ms before the QRS
complex]. The request of the search for the P wave is fed
back to the peak-detection module to repeat the
detection with different sensitivity parameters.

The above CAA expectation mechanism is
characterized by the following features:

(1) The expectation is made from the known to the
unknown, forward or backward in time, and upward or
downward in a PART-OF class structure.

(2) The expectation proliferates to make a closure of



temporal and/or structural dependencies and
complete the PART-OF structure of the hypothesis.

Projections are made in the following fashion:
Projections may be made between differently

structured classes as seenin Fig. 5.

(2) To eliminate unnecessary instantiations of
projections, any projected class is instantiated only
when a current global hypothesis requests the class
as a component.

(1

~

4.4 Beat-pattern Analysis

To recognize a periodic or successive arrhythmia, its
repetitive behavior is defined by the recursive definition
of beat-pattern frames. By such a frame, recognition
may proceed one beat to the next along the time axis
instantiating successive beats to form the beat-pattern.

In the process of forming beat-patterns, causal links
between adjacent beats allow the system to verify the
causal relationship that govern the pace-making
mechanism on a beat-to-beat basis. The overall
consistency of a beat-pattern is calculated based on the
consistencies of these causal links and beat components.

As well as the causal consistency among beats, overall
characteristics and tendencies are observed and used to
recognize individual arrhythmias. For this purpose, most
beat-pattern classes include a component that monitors
the changes of variables from one beat to another. A
typical example is to monitor the change of the RR
interval or the P-R interval.

In arrhythmia beat-patterns, similarity links must
also be defined to relate beat-patterns that have some
features in common and handle situations where one or
more matching exceptions have been raised. Fig. 7 shows
ECG wave configurations that correspond to three
different AV-Block arrhythmia patterns and the matching
exceptions used by similarity links. Such similarity links
between repetitive beat-patterns enable the system to
switch beat-pattern hypotheses from one pattern to its
alternatives according to the matching exceptions. For
example, the class definition of Mobitz-1 second degree
AV-Block contains a similarity link toward the Mobitz-2
second degree AV-Block and the first degree AV-Block for
the situation where no progressive prolongation is seen in
the atrium-ventricle-interval.

To recognize particular arrhythmia patterns, the
specialization-and-aggregation process must be initiated
with the most generic class for repetitive arrhythmias.
The final interpretation, therefore, is given by a set of all
survived beat-patterns with overall consistency factors.
The consistency is is calculated using event statistics and
a test-score function, which is similar to a fuzzy
constraint in [Zadeh83].
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5 Concluding Remarks

We have discussed a recognition system guided by a
causal model of the underlying physiological entity. We
think a definite advantage of such a recognition system is
the use of the causal knowledge and appropriate
statistical knowledge about underlying events, enabling
the system to make "expectations" of the event structure
of the entity even when partial information is given. This
approach is applicable in other medical applications
because the ultimate purpose of recognition of vital
signals is normally the elucidation of such causal
abnormalities in the physiology, rather than merely the
recognition of contour deformation or interval changes.

Our recognition system is effectively supported by
various link constructs such as causal links, similarity
links, and projection links, which are regarded as the
distributed control knowledge. In fact, causal links
support the expectation of unknown events using PART-OF
hierarchies, similarity links guide the recognition in
focusing or changing attentions using IS-A hierarchies,
and projection links help hypothesis transduction across
different KBs.

Our recognition method may not be successful when
key waveforms are missing and no expected waves can be
uncovered in spite of intensive search in the area of
expectation. Therefore, we are designing the system that
will interact with diagnostic interventions when the
system faces lack of information. The purpose of such
interventions is to perturb a patient's physiological state
so that the state could move to a disease specific state.
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