
Judgemental reasoning f o r expert systems

Dr Tim N i b l e t t

The Turing I n s t i t u t e
George House

36 North Hanover Street
GLASGOW G1 2AD

Abstract

We present a new system for plausible reasoning in
expert systems. It is an extension of the Horn clause
subset of first order logic, and is distinguished by its use
of non-numeric certainties and the assignment of cer­
tainties to logical formulae rather than events. Model
theoretic and ftxpoint semantics are sketched for this
language. An implementation in the logic programming
language Prolog is described and the advantages of the
system are discussed.
Key words- Plausible reasoning, probability, expert sys­
tems, logic programming

1. Introduction
Some kind of judgemental or probabilistic reasoning

forms an essential part of many expert systems. The
need for such reasoning arises whenever knowledge is
incomplete or data uncertain. This is the case in many
of the problem domains to which expert systems are
applied. In this paper we present a system for judge­
mental reasoning which differs in two respects from the
more usual approaches. It uses a non-numeric represen­
tation for belief, and assigns certainties to logical formu­
lae rather than events. It is an extension to the work
described in (Shapiro 1983).

We shall argue that this system meets the following
criteria which should be fulfilled by any system of plausi­
ble reasoning used in expert systems.
(1) Clear semantic*

We should be able to provide a clear semantics for
our reasoning system. Both the knowledge engineer
building an expert system and the end user of the
system should know what certainties are and the
run-time behaviour of the system should reflect
these meanings in a well denned manner. If this
requirement is not met it is difficult to develop gen­
eral purpose debugging and maintenance tools for
knowledge bases.

(2) Ease of explanation.
A determining feature of an expert system is its
ability to explain its reasoning on demand. We
require that the derivation of certainties be easily
explainable. This entails that the mechanism by
which certainties are combined be itself capable of
explanation.

(3) Expressive power
The system should be powerful enough to express
an expert's knowledge about uncertainty flexibly
and naturally.
We distinguish two sources of uncertainty. Firstly,

uncertainty about observations (or facts) in the applica­
tion domain. Secondly, uncertain rules (or heuristics)
which express an expert's general knowledge about the
domain. Our system, following the approach of Shapiro
(Shapiro 1963) uses an extension of the Horn clause sub­

set of first order logic. Facts ore represented by atomic
formulae (atoms), rules by non-unit clauses.

The fundamental idea is to extend the the range of
t ru th values assigned to atoms from the set [false ,true }
to certainties. Certainties are lattices and have opera­
tions of least upper bound and greatest lower bound

denned on them. We are relaxing the restriction
that certainties be totally ordered, and specifying that
they are partially ordered. This permits the use of non-
numeric certainties to express knowledge about uncer­
tainty. The defined operations allow us to combine cer­
tainties duing the inference process. The rules used by
the system are of the form where is a
Horn clause and / is a certainty function specifying how
the certainties of the atoms in B are combined to pro­
vide a certainty for A. The ability to specify a combina­
tion function for each rule provides flexibility, although
in practice we find that most rules use a general combi­
nation function.

In the next section we describe the formal
apparatus underlying our system. Both a model
theoretic and fixpoint semantics are provided in the
manner of (van Emden & Kowalski 1976V This provides
evidence that we can satisfy criteria (1) and (2) above.
We then describe a simple application of the system,
which has been implemented in Prolog as part of a com­
plete expert system shell. This provides evidence that
we can satisfy criterion (3) above.

2. The formal apparatus
2.1. Basic definitions

Definition
A certainty space C is a complete lattice. This is a par­
tially ordered (under <) set C, with operations and
(least upper bound and greatest lower bound respec­
tively) defined for every subset of C.

Definition
We extend £ to sequences over C by defining:

Definition
A function f from sequences of certainties to certainties
in some certainty space C is monotone iff for all
sequences sx and s2 of length n over implies

Definition
A logic program with uncertainties is a finite (non-
empty) set P of pairs of the form where is
a definite (or Horn) clause, and t is a monotone function
from sequences of certainties to certainties.

2.2. Semantics
We can now define the semantics of logic programs

316 T. Niblett

with uncertainties as an extension of that given by van
Emden and Kowalski (van Emden and Kowalski 1976) for
definite clause programs without uncertainties.

Definition
The Herbrand Universe U(P) is defined recursively as,
(1) The set of constant symbols in P (or the constant

symbol a if there are none).
(2) All atoms of the form where the ti are

in U(P).
Definition
The Herbrand base H(P) of a logic program P is the set
of all ground atoms formed by using predicate symbols
from P with ground terms from the Herbrand Universe
U(P).

Definition
An interpretation of a logic program with uncertainties
P is a function from H(P) to a certainty space C.

Definition
An interpretation I1 is an interpretation fe iff

Definition
A model M of P is an interpretation of P satisfying the
following condition:
For any clause in P and any ground instance

the clause, then

2.2.1 Model theoretic semantics

Definition
Given two models M1 and M2 for P we define the intersec­
tion of the two models pointwise as

Proposition
Given two models M and M' for P. the intersection of the
two models is a model.

Proof
(omitted)

Theorem
exists and is the least model of P.

Proof
The proof is straightforward.

The meaning of the logic program P is defined to be the
least model H(P) of P

2.2.2 Fixpoint semantics
We now provide a constructive definition of M(P) by show­
ing it to be the least fixpoint of a function Tp from
interpretations to interpretations.

Definition
Let Tp(/) be defined pointwise on an interpretation 1 as
follows:

Proposition
Tp is monotone over the lattice of interpretations, and
moreover the lattice of interpretations (with po <) is

complete.

Proposition
Tp has a least fixpoint.

Proof
Since Tp is a monotone function on a complete lattice, Tp
has a complete lattice of fixpoints and therefore a least
fixpoint.
We can elaborate on this result by proving that TP is con­
tinuous as well as monotone if the underlying certainty
functions we use are continuous.

Definition
A certainty function f from sequences of certainties to
certainties i s continuous iff : f o r all

chains X.

Proposition
If the underlying certainty functions f are continuous
then the corresponding functions fx are continuous

Proposition
If the underlying certainty functions f are continuous
then is a continuous function, that is:

for all chains of

interpretations.

Proof
(omitted)

Proofs omitted above can be obtained from the author
on request.

This completes our discussion of the semantics of logic
programs with uncertainties, and shows that the mean­
ing of a logic program with uncertainties can be approxi­
mated computationally The certainty computed at run­
t ime is a lower bound on the true certainty.

3. An example
To illustrate the practical application of the above

we shall describe an implementation in current use at
the Turing Institute. This is only one possible application
of the system, experience with alternative implementa­
tions would be very useful.

Certainties
A certainty is a basic certainty or an ordered tuple

of certainties, A basic certainty is a pair ArJ where A is
an atom and J is its justification, or the empty certainty
[] . A justification is a conjunction of literals. It is con­
venient to represent a certainty as an ordered tuple of
trees where the leaves of the trees are basic certainties.
An example is shown in Figure 1 where an english "trans-
lation" of the certainty is provided. In the following we
shall refer to this certainty or its translation
indifferently. The application domain is that of claiming
travel expenses for trips by car for someone employed in
Holland.

The certainty illustrated is the certainty of the
atom entitled to (john, 120) and can be regarded as a
structure of assumptions that are necessary to establish
the t ruth of the assertion. These assumptions are:
(1) The tr ip was in Holland.

justified by the fact that John travelled Less
than 300km.

(2) John did not travel by boat (unjustified)
(3) It would cost less to travel by car than by plane

This assumption rests in turn on the assumption

T.Niblett 317

that the trip was in Holland (see (1) above), and the
assumption that it costs less to travel by car in Hol­
land than by plane.

John is entitled to 120 guilders
subject to:
The tr ip was in Holland

justified by
the distance was less than 300km

John didnt travel by boat
(default assumption)

It cost more to travel by car than plane
justified by
The trip was in Holland

(see above,..)
The plane costs more in Holland

(default assumption)

The English translation of a certainty
f igure 1

This example has been chosen to illustrate both the
general nature of certainties and that our system can be
applied to domains where a numerical measure of cer­
tainty would be inappropriate. We now turn our atten­
tion to the combination of certainties, and the possibility
of interaction between certainties.

Combination of certainties
Our default combination function for certainties is

concatenation. Given certainties
the combination function combines these

to give This reflects a default assumption
that there' is no interaction between different assump­
tions, similar in some ways to the assumptions of condi­
tional independence of events made by Prospector
(Gaschnig 1980). It is possible for different assumptions
to interact and our system provides an elegant mechan­
ism for describing such interaction. We illustrate with
an example based on Figure 1. Let us assume that we
wish to combine that certainty with the following one

The trip was abroad justified by ths length of ths trip
was mors than 3 days

These certainties are incompatible, since a tr ip cannot
both be in Holland and abroad (by definition). The cer­
tainty function can be set up to provide the combined
certainty with value false. In our current implementa­
tion this can be done in a general way by specifying via a
meta-logical assertion that the values holland and
abroad are exclusive for the predicate location. In gen­
eral our implementation allows a threshold to be esta­
blished for certainties, and the proof mechanism rejects
all solutions which fall below the threshold.

We wish to emphasise that the plausible reasoning
mechanism can handle interactions or constraints
between certainties in a knowledge based way. Con­
straints can be explicitly represented and reasoned with,
and suitable explanations supplied to the user. This is
not possible with a system using numeric certainties.

4. Implementation
The mechanism described above has been imple­

mented as part of an expert system shell, called YAPES,
written in Prolog.YAPES is an interpreter for logic pro­
grams, either in normal Horn clause logic or in Horn
clause logic extended with the judgemental reasoning
mechanism. The shell contains all the normal facilities
for explanation and justification, implemented via meta-
logical predicates. In addition the YAPES interpreter
can call the underlying Prolog interpreter if desired.

We should note finally that the use of numeric cer­
tainty factors is not ruled out in our system. The interval
CO, 1] (a lattice whose order is total) used by Shapiro
(Shapiro 1963) is an obvious candidate. More interesting
perhaps is a combination of numeric and non-numeric
certainties. This is the idea advocated by Keynes
(Keynes 1921 pp 20-40) in his Treatise on Probability,
where he asserted that some though not all probabilities
were inherently non-comparable.

5. Conclusion
We have presented a system for plausible reasoning

which is a conservative extension of the Horn clause sub­
set of first order logic. We have argued that this system
can provide the clear semantics, ease of explanation and
expressive power necessary in expert systems.

Our approach embeds the plausible reasoning
mechanism within logic, and in particular logic program­
ming systems. This has the advantage that all the nor­
mal debugging tools can be used immediately, and pro­
vides a smooth interface between "normal" programs
and programs with uncertainties. This work can be seen
as an extension of the work of Shapiro (Shapiro 1963) in
three ways
(1) Certainties can be non-numeric but also amenable

to combination and comparison.
(2) The scope of certainty functions has been extended

to ordered sequences of certainties rather than
multisets. This allows the certainty function to dis­
tinguish between literals in a clause.

(3) A fixpoint semantics has been presented for con­
tinuous certainty functions, This provides a compu­
tational characterisation of the behaviour of the
system.
The system can be considered as performing a con-

densation of a proof. In Horn clause logic the condensa­
tion is either true or false; using numeric certainties
extends this to the set (0.1]. With a lattice as our cer­
tainty structure the condensation can be as large as the
proof itself, although normally we are concerned with
the assumptions that made during the proof.

From this perspective the system can be seen as
performing a top-down version oftruth maintenance
(Doyle 1979). We are currently investigating the exten­
sion of the allowable certainty functions to provide com­
bination functions for procedures rather than individual
clauses. This will allow for proof condensation at the level
of all proofs for a goal, rather than for single proofs. In
this way meta-level statements such as "if this goal can
be proved in these two ways then..." can be represented.

6. References

[1] Doyle, J." A t ruth maintenance system." Artificial
Intelligence 12 (1979) 231-272.

[2] van Emden, M.H. and R.A.Kowalski, "The semantics of
predicate logic as a programming
language." JACM 23:4 (Oct) (1976) 733-742

[31 Gaschnig, J. "Development of uranium exploration
models for the Prospector consultant sys­
tem," Final Report, SRI International, Menlo
Park.California, March 1980.

[4] Keynes, J.M. A Treatise on Probability. London, Eng­
land: MacMillan,1921.

[5] Shaplro.E.Y." Logic programs with uncertainties" In
Proc. WCAI-83. Karlsruhe, West Germany,
August, 1983, pp. 529-532.

