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ABSTRACT 

The paper presents a novel expert system architecture 
which supports explicit representation and effective use of 
both declarative and procedural knowledge. These two types 
of expert knowledge are represented by means of produc­
tion rules and event-graphs respectively, and they are pro­
cessed by a unified inference engine. Communication 
between the rule level and the event-graph level is based on 
a full visibility of each level on the internal state of the 
other, and it is structured in such a way as to allow each 
level to exert control on the other. 
This structure offers several advantages over more tradi­
tional architectures. Knowledge representation is more 
natural and transparent; knowledge acquisition turns out to 
be easier as pieces of knowledge can be immediately 
represented without the need of complex transformation 
and restructuring; inference is more effective due to 
reduced non-determinism resulting from explicit represen­
tation of fragments of procedural knowledge in event-
graphs; finally, explanations are more natural and under­
standable. 
The proposed architecture has been adopted for the design 
of PROP, an expert system for on-line monitoring of the 
cycle water pollution in a thermal power plant. PROP is run­
ning on a SUN-2 workstation and has been tested on a sam­
ple of real cases. 

INTRODUCTION 
The artificial intelligence community has been success­

fully applying, since the mid-seventies, new powerful rule-
based techniques to applications that could not be faced 
with more traditional approaches. In fact, the complexity of 
any classical solution was so evident as to discourage their 
use from the beginning. 
Rule-based system technology (Hayes-Roth, Waterman, and 
Lenat, 1983) has offered a basic advantage over traditional 
programming: it has enabled the programmer to tackle 
problem solving at a higher level of abstraction and in a 
more flexible and natural way. The usual activities of prob­
lem analysis, invention of a solution algorithm, and pro­
gramming are replaced in the expert system approach by 
the representation of knowledge about the application 
domain (including available resources, constraints, and 
problem solving skills), of the specific problem to be solved, 
and of the goal to be achieved. Responsibility about how to 
use knowledge in order to solve the problem is left to the 
system, and the programmer only has to represent what is 
known about the problem and is likely to be relevant to its 
solution. The new concept of knowledge-based problem 
solving appears, therefore, as another way of programming, 
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suitable to large classes of challenging application domains, 
where, on the other hand, usual programming methods fail. 

A major reason for the success of expert system tech­
nology is the way knowledge on the problem domain can be 
represented to the system. This offers in fact several highly 
desirable features, such as: 

ability to represent knowledge in a highly declarative 
way, without bothering about its use; 
possibility of describing fragmentary, ill-structured, 
approximate, uncertain, heuristic knowledge, that is 
often of crucial importance in applications; 
possibility of incrementally creating, debugging, and 
updating very large knowledge bases. 
These features have made rule-based systems a real 

success In all those application domains where knowledge 
involved is mainly declarative and fragmentary in nature 
(Buchanan and Duda, 1983). 
The wave of such successes, as well as increasing interest in 
the industrial world, has led artificial intelligence research­
ers to tackle new classes of problems where, in addition to 
declarative and fragmentary knowledge, a lot of well struc­
tured chunks of procedural knowledge is naturally available 
and has to be represented and used (Friedland, 1981). Con­
sider, for example, such areas as decision making, fault 
detection and diagnosis of complex systems, sensory data 
Interpretation, monitoring of industrial processes, etc. 
In these cases, it would be foolish to disperse the available 
procedural knowledge Into a flat declarative representation. 
In fact, this would be costly and heavy with respect to 
knowledge acquisition, as It implies complex fragmentation 
and coding of knowledge. Moreover, It would cause a serious 
overload of the inference mechanism with the additional 
task of reconstructing, through a heavy non-deterministic 
search process, the correct procedural constraints between 
scattered fragments of knowledge. Finally, it would make 
the explanation mechanism of the inference engine very 
oompiex, quite unnatural, and practically useless. 

It is evident that, for a number of applications where 
the classical rule-based system paradigm is not fully ade­
quate, a new mechanism is needed, which can combine the 
structured coding of procedural knowledge proper of tradi­
tional programming with the declarative representation 
typical of a pure rule-based system. 

The issue of representing and using procedural 
knowledge in rule-based systems has been widely addressed 
in recent years in the frame of the studies about meta­
knowledge (Davis, 1980a, 1980b; Georgeff, 1982; Genesereth, 
1983; D'Angeio, Guida, Pighin, and Tasso, 1985). But the 
focus of attention is here more on the procedural aspect of 
control knowledge rather than on a fusion of procedural and 
declarative representations both at meta-level and domain 
level. 
This topic has been only recently addressed in a neat way in 
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(Georgeff and Bonollo, 1983). Their approach combines 
explicit representation of fragments of procedural 
knowledge with a mechanism for pattern-directed invoca­
tion (both goal-directed and data-driven). This approach 
allows effective solution of a class of practical problems, 
specially of consultation type, and discloses the challenging 
issue of heterogeneous knowledge representation in the 
design of expert system architectures. 

The purpose of the work reported in this paper is the 
development and experimentation of a new approach to the 
integration of rule-based mechanism and computation 
according to procedural knowledge, that can meet the fol­
lowing goals: 

effective and natural representation of pieces of pro­
cedural knowledge by means of a powerful and general 
language; 
use of production rules for representing declarative 
knowledge; 
integration of the two components into a unitary infer­
ence mechanism. 
This research effort yielded to the proposal of a novel 

expert system architecture that has been tested in the 
design and implementation of PROP, an expert system for 
malfunction diagnosis and process surveillance concerning 
on-line monitoring of water pollution in a thermal power 
plant. 

The purpose of this paper is to introduce and discuss 
the main features of the new proposed architecture and to 
illustrate the results obtained in a practical application. 
The general organization of the proposed expert system 
paradigm is first introduced and compared to related 
works. Afterwards, the application addressed is briefly 
described, and the specific architecture of the implemented 
expert system is illustrated. Examples of PROP operations 
are presented. Finally, research results are critically 
evaluated and possible extensions of the proposed approach 
are outlined. 

PRODUCTION RULES AND EVENT GRAPHS 
The general architecture of the novel expert system 

paradigm we have developed is shown in Figure 1. 
It comprises two knowledge bases, namely a rule base and 
an event-graph, base. The former is used to contain declara­
tive knowledge expressed by means of usual production 
rules, while the latter embodies procedural knowledge 
represented through event-graphs. 

The notion of event-graph shares several features with 
the Petri net formalism (Reisig, 1982). 
We disregard here the formal definition of an event-graph 
and only focus on its basic expressive features. 
An event-graph (EG) is a directed graph with two types of 
nodes, namely places and events, and a marking concept. 
Nodes termed places are graphically represented as circles 
and nodes termed events are graphically represented as 
boxes. Directed arcs can only connect nodes of different 
type. Events are labeled with two expressions, specifying a 
condition and an action respectively. A sample EG is shown 
in Figure 2. 

Figure 1 - Basic system architecture 

Figure 2 - A sample event-graph 

A place can contain a mark; an EG can have an arbitrary 
number of marks: the set of all marked plaoes defines the 
current marking of the EG. For example, the current mark­
ing of the EG in Figure 2 is {P1, P4}. An initial marking is 
defined for each EG. 

An event is enabled if all its ancestor places, called the 
input places, are marked. An event can fire, i.e. it is active, 
if it is enabled and its condition is true. 
We define as current conditions of an EG the set of condi­
tions labeling the enabled events. For example, the current 
conditions of the EG in Figure 2 is {c1}. An EG is active, 
(resp., enabled ) if at least one of its events is active (resp., 
enabled). Firing an event means unmarking its input places 
and marking all its successor places, called the output 
places. Firing an event also causes the execution of the 
action specified in the event. Current marking thus evolves 
by means of event firing. 
We stress that the concept of event-graph embodies a static 
and a dynamic part. The static part, i.e. the definition of 
places, arcs, and events with conditions and actions (plus 
the initial marking), represents the code of a chunk of pro­
cedural knowledge. The dynamic behaviour of an event-
graph is represented by the sequence of current markings 
that the event-graph goes through as a consequence of suc­
cessive event firing. Thus, the static part of an event-graph 
may be aotivated in different contexts and produce several 
Images corresponding to different current markings, similar 
to a re-entrant procedure which can be executed several 
times in parallel with different parameters. 

Two data bases, DB1 and DBS, are available to the sys­
tem to be used by EGs and rules. They contain knowledge 
on the current state of the inference process and also con­
stitute the link between the system and the external world 
(user, environment, etc.). as they can accept input data and 
produce output messages. Data bases DB1 and DB2 are first 



M. Gallanti et al. 347 

initialized with information coming from outside (initial 
problem description). A modified recognize-act cycle is then 
entered, which is controlled by the achievement of a goal 
condition. This cycle comprises two phases, (see Figure 3} 
[ 1 ] event-graph level phase: 

EGs are first matched with the content of DBl. The set 
of enabled EGs is determined and conflict resolution is 
performed. The current conditions of selected 
(enabled) events of EGs are then matched with the con­
tent of DBl and the set of active EGs is determined. 
Conflict resolution is performed again. All selected 
(active) events are eventually fired in parallel, and the 
corresponding actions are executed on DBl and DB2; 

[2] rule level phase: 
rules are first matched with the content of DB2. The set 
of active rules is then determined and conflict resolu­
tion is performed. Selected rule/s is/are eventually 
executed on DB2 and DBl. 

initialize VB1 and VB2 

repeat 

<event-gn.aph level pha6e> 

match. event-graph base with VB1 and deter-
mine enabled event gnaphs 

resolve conflict 

match selected event-graphs with VB1 and 
determine active, event-graphs 

re*olve conflict 

f i r e all active events and exacute relevant 
ac t ions on DBl and DB2 

<rule level pha*e> 

match rule ba*e with DB2 and determine 
conflict set 

resolve conflict 

execute selected r u l e / s on VB2 and VB1 

until goal condition 

Figure 3 - Basic mode of operation of the inference engine 

The architecture above sketched is very general. Both 
levels can contain representation of domain knowledge and 
meta-knowledge, and both DBl and DB2 can embody 
knowledge on the problem and control knowledge on the 
problem solving strategy. The rule base can be organized 
according to any of the usual structuring techniques, such 
as partitioning, meta-rules, etc. Also the event-graph base 
can be given arbitrarily complex structure by defining rela­
tions among EGs. 
Both the event-graph and rule levels maintain in their own 
data base (DBl and DB2 respectively) the information 
needed for their operation (computation and deduction 
respectively). Whenever some information has to be shared 
by the two levels it must be duplicated in the two data 
bases. 
Each of the two levels can exert control on the other: rules 
can influence the operations of event-graphs by forcing, 

conditioning, or suspending their activation through 
modifications of the current markings stored in DBl; on the 
other hand, EGs actions can change the conditions for 
matching rules by modifying the content of DB2. 

The novel expert system paradigm above introduced 
embodies the features of usual rule-based paradigm as well 
as the ones proper of imperative programming languages. 
The most relevant contribution of our approach is the 
definition of an environment where these two components 
can naturally cooperate in a problem solving task. In this 
respect, it shares some characteristics with the work of 
Georgeff and Bonollo (1963), but it also includes several new 
points: 

the visibility of the system on pieces of procedural 
knowledge is not limited to input/output information 
(procedural abstraction); specific mechanisms are pro­
vided to access the internal state and influence the 
dynamic behaviour of EGs; 
the design of the right dimension of pieces of pro­
cedural knowledge is not a critical point as intermedi­
ate results of partial EG computations can be accessed 
and used (note that generally too small fragments tend 
to reduce the advantages of having explicit representa­
tion of procedural knowledge, while too large chunks 
imply the possibility of long, useless computations, as 
once a procedural area is entered its interruption 
causes the loss of all intermediate results); 
representation and use of declarative knowledge is not 
limited to the invocation part of a knowledge area. 

PROBLEM ANALYSTS AND SYSTEM SPECIFICATIONS 
In this section we focus on the problem of on-line mon­

itoring of water pollution in a thermal power plant that has 
been used as a testbed for the new expert system architec­
ture introduced in the previous section. 

The usefulness of artificial intelligence techniques for 
assisting and advising the operator of a power plant in case 
of accidents has already been stressed in (Nelson 1982) and 
(Underwood 19B2). Our problem, even if it is not concerned 
with plant safety, lies in this application area. The aim of the 
system is to avoid damages to critical subsystems of the 
power plant and to l imit plant unavailability caused by 
chemical agents, by means of early fault detection and diag­
nosis, and appropriate intervention. 

A simplified schema of a thermal power plant is given in 
Figure 4. In order to ensure the correct operation of the 
plant and to preserve the materials constituting some cr i t i ­
cal subparts, the cycle water must be kept as pure as possi­
ble. In fact, possible pollutants dissolved in the cycle water 

Figure 4 - Semplifled schema of a thermal power plant 
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may react with the plant in different ways, mainly at high 
temperature, giving both oxidation products and acids that 
can damage the tubes, the walls of the boiler, and the rotat­
ing parts of the turbine. 

Therefore a chemical treatment subsystem (CTS) is 
included in the plant and is used by a human operator to 
clean the cycle water whenever it is affected by some pollu­
tant. The CTS includes two different kinds of filters: 

the mixed bed, containing ion exchange resins, that 
operates a chemical filtering; 
the pre filter and the powdex, containing cellulose and 
pulverized resin respectively, that remove oxides 
through a physical filtering. 

The insertion level of the filters is regulated by the operator 
depending on the nature and quantity of the pollutants in 
the water. 
Pollutants of different kinds can enter into the cycle: 

marine or river water carrying salts and sand (through 
the condenser); 
air (in particular, oxygen and carbonic dioxide); 
cellulose and resins released by the CTS itself. 
Pollution phenomena are controlled by continuous 

measuring of several chemical parameters (total conduc­
tivity, acid conductivity, oxygen concentration, etc.) at 
several points of the cycle (see Figure 4). 

The control equipment currently installed in the plant 
can automatically open the valves that by-pass the crit ical 
subsystems (e.g., boiler or turbine) when one of the above 
mentioned chemical parameters at a single measurement 
point increase beyond a fixed threshold level, in order to 
avoid immediate damage. The task of the operator is to 
prevent the pollution reaching this l imit situation by prop­
erly activating the CTS as soon as some sensors show abnor­
mal values. In fact, when a l imit situation occurs, some 
components of the plant may have already been damaged, 
and, in any case, the by-pass of a crit ical subsystem causes 
a significant loss of power. 
During working time the chemical staff can advise the 
operator on the most appropriate actions to be taken to 
control an incipient pollution phenomenon; during the 
night, week-end, and holidays the operator must follow the 
instructions in a handbook. 

The operative procedure above described has often 
proved to be unsatisfactory for several reasons: 

The operator usually guesses that a pollution 
phenomenon is occurring only when the sensors show 
highly abnormal values, so that the corrective action is 
not as timely as it should be. 
Sometimes, the presence of a pollutant can be 
detected only by correlating the temporal trends of 
different parameters. These correlations require 
expertise not available to the operator. 
The operator is inclined to reason in terms of short 
time effects. Therefore, he often underestimates slight 
pollutions that, however, can generate long term dam­
age. 
When the operator has to manage situations without 
the advice of the chemical staff, he is often in trouble 
as the procedures specified in the handbook are too 
simple and schematic and turn out to be be useless in 
complex cases. 
In order to face these problems, we have investigated 

the possibility of using a computer-based system that can 
acquire chemical parameters from the sensors on the plant 
and give advice to the operator. A preliminary analysis of 
the knowledge required to recognize abnormal situations, 
identify the kind of pollutant, and suggest the proper 

intervention has shown that expert system methodology can 
be more advantageous than traditional approaches. 

This led to the design and implementation of PROP, a 
real time expert system that can assist the CTS operator. 
PROP directly acquires data from the plant through sensors 
at a fixed time rate. These measurements concern general 
information on the plant (e.g., flow rate, etc.), chemical 
parameters (e.g., acid conductivity, oxygen concentration, 
etc.), and states of some subsystems (e.g., mixed bed inser­
tion, de-aerator valve position, etc.). Moreover, through the 
keyboard, the operator can introduce further information 
that cannot be directly acquired by sensors (e.g., results of 
off-line chemical analyses, etc.). 
As soon as an anomaly is detected, PROP displays a set of 
hypotheses on the operator console, that can explain the 
malfunctioning. Afterwards, the system keeps the evolving 
situation under control, tries to focus on the most plausible 
hypothesis, and suggests proper interventions. 
After the situation has been brought to normality, PROP 
closes the diagnosis/intervention session, informs the 
operator as to the success of the undertaken interventions, 
and resumes normal monitoring activity. 

KNOWLEDGE REPRESENTATION 
Expert knowledge involved in the problem illustrated in 

the previous section can be organized at three different lev­
els. The human expert uses, in fact, three kinds of 
knowledge: each of them is Involved in a particular class of 
activities. 
Data interpretation level 

It comprises the techniques that make the expert able to 
collect and analyze information about the behaviour of a 
large number of chemical and state parameters and to 
derive a representation of the state of the plant from the 
point of view of cycle water pollution. In other words, it 
contains knowledge about how to observe the plant in 
order to translate parameter values and trends into sym­
bolic, higher level conceptual representation. 
A data interpretation activity is, for example, the early 
perception of an alarm condition detected by correlat­
ing a fast power decrease with a smooth rise, after a 
definite time interval, of the acid conductivity measured 
before the de-aerator. 
Such reasoning can be carried out only by paying atten­
tion to a restricted set of the available signals and 
parameters, with a precise concept of what one is looking 
for. The human expert is able to carry out a rather large 
number of different data interpretation activities and to 
choose the right one taking into account the current 
state of his hypotheses and expectations. 

Diagnosis /intervention level 

It comprises the techniques currently utilized for fault 
diagnosis, i.e. for recognizing one or more of the possible 
pollution causes and for performing appropriate recovery 
actions. Each diagnosis/intervention activity describes 
the hypotheses, expectations, and actions that relate to 
a specific pollution situation. It specifies which data 
interpretation activities have to be started, and how their 
results have to be evaluated in order to validate (or 
reject) a certain diagnosis. 
The confirmation of a suspected condenser leakage and 
the control of the leakage propagation along the plant 
are, for example, the tasks of two diagnosis /intervention 
activities. 

Control level 
When an abnormal situation is detected in the plant, the 
expert formulates a number of hypothetical diagnoses. 
Each of them can be validated or rejected by means of a 
diagnosis/intervention activity, and all of these tasks 
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must be carried on in parallel. In a given instant the 
state of each diagnosis /intervention activity and the 
results, though partial, of each related data interpreta­
tion activity give an image of the state of the plant from 
the point of view of a hypothetical diagnosis. 
Before a single diagnosis is definitely ascertained or when 
concurrent pollutions take place, the expert has to 
manage relationships and conflicts among all the active 
diagnosis/intervention activities. Moreover, successful 
results achieved by a specific diagnosis/intervention 
activity are often detrimental to other ones. In general, 
in dealing with complex situations, chunks of information 
concerning the state of several diagnosis/intervention 
activities are to be compared. 
For example, a diagnosis/intervention activity which is 
concerned with propagation of a condenser leakage must 
inhibit consideration of all the diagnosis/intervention 
activities that assume a fault in a subsystem that is 
located further down the condenser in the cycle (e.g., 
powdex, de-aerator, etc.). 
The human expert carries out this crucial control task by 
means of strategic knowledge, that makes him able to 
activate, deactivate, privilege, and influence the 
diagnosis/intervention activities necessary to globally 
diagnose and control the behaviour of the plant. 

Data interpretation and diagnosis/intervention activities 
can be easily expressed in a procedural language. They can, 
in fact, be naturally seen as pieces of procedural knowledge: 

data interpretation activities are procedures that 
specify a sequence (with selections and iterations) of 
elementary observations of the plant; 
diagnosis /intervention activities are higher-level pro­
cedures that comprise as elementary steps the invoca­
tions and consultations of a number of data interpreta­
tion activities. 

A main point is that the dynamic behaviour of such pro­
cedures must be easily observed and influenced from out­
side. Procedures are important here not only for the 
results they can compute, but specially for the intermedi­
ate computations they perform. The diagnosis/intervention 
level works on the behaviour of the data interpretation 
activities, and the control level must exert its influence on 
both diagnosis/intervention and data interpretation activi­
ties. 

Expert knowledge that deals with time, which is of cru­
cial importance in on-line applications, has an explicit role 
in our application at the data interpretation level only. In 
fact, experts explicitly refer to time relations only when 
they describe the procedures they use for observing the 
behaviour of the plant. The procedural nature of data 
interpretation level knowledge makes it easy to represent 
such temporal statements explicitly as time interval meas­
urements. 

Control knowledge is more declarative and fragmentary 
in nature. It can be represented by means of production 
rules to be used in a non-deterministic way. 

The knowledge analysis above developed can be usefully 
compared to the approaches of Nii, Feigenbaum, Anton, and 
Rockmore (1982) on HASP/SIAP, of Kahn (1982) on MUD, and 
of Hudlicka and Lesser (1984) on FDD. 

We believe that the model above introduced for the 
analysis of knowledge involved in the diagnosis of cycle 
water pollution of a thermal power plant embodies several 
features of general significance. It could easily be applied 
to a large class of tasks concerning real-time fault detec­
tion, diagnosis, and intervention in complex systems. 

PROP ARCHITECTURE 
Now we can merge the knowledge analysis above 

developed with the general architecture proposed. 
The procedural knowledge of the data interpretation 

and diagnosis/intervention levels can be properly 
represented in the event graph-base as a collection of 
independent EGs. Though data interpretation and 
diagnosis /intervention EGs have the same syntactic 
representation, their events are labeled with expressions of 
two different languages: 

Expressions appearing in data interpretation EGs must 
be evaluated with respect to chemical and state param­
eters acquired from the sensors (stored in DBl). or 
with respect to time intervals. A condition referring to 
a time interval starts a counter the first time it is 
evaluated and it remains false until the time interval 
has expired. 
Expressions of diagnosis/intervention EGs, on the other 
hand, refer to the markings of data interpretation EGs. 

Current markings of EGs are represented in DBl and dupli­
cated in DB2 inuch a way as to be explicitly and directly 
accessible by the rule level .too. The evaluation of a condi­
tion bound to an event of a diagnosis /intervention EG that 
refers to a not yet enabled data interpretation EG causes its 
enabling, i.e. the places in its initial marking are marked. 
Therefore, a data interpretation EG has a current marking 
for each diagnosis /intervention EG that uses it. This 
represents the capability of the system to exploit, in an 
independent way, a single data Interpretation procedure in 
different contexts. 
Both EG base and DBl are naturally partitioned. In fact, it 
must be possible to distinguish data interpretation EGs 
from diagnosis /intervention ones in the EG base and each of 
the independent markings of the data interpretation EGs in 
DBl. 

Control level knowledge fits in the rule base. It is 
represented by production rules whose conditions and 
actions refer to markings of both data interpretation and 
diagnosis/intervention EGs. 
Moreover, a credibility value is defined for each active 
diagnosis/intervention EG. It represents the promise for the 
EG to be most appropriate, up to the moment, for explain­
ing the ongoing phenomenon and for suggesting the right 
actions on the plant. The maintenance of the credibility 
values is provided by the control level. They are used in 
conflict resolution activities. 

As EG markings and credibility values seem to be the 
only information required by the control level in our partic­
ular applicatioa we have merged in the implementation DBl 
and DB2 into a single data base. This simplifies and speeds 
up system operation without loss of power, In fact, as 
pointed out above, in our application declarative knowledge 
has a controlling role only. 

AN EXAMPLE 
PROP has been implemented in Franz Lsp on a SUN-2 

workstation at CISE laboratories and it has been tested on 
recorded patterns comprising a wide variety of different 
operating situations. A pilot on-site installation of PROP is 
presently being developed. 

This section illustrates a few examples of PROP opera­
tion. For easier understanding the examples are reported 
in a simplified way. 

The examples refer to the diagnosis of pollution aris­
ing in the condenser. To detect this kind of anomaly as 
soon as it occurs, the human expert must focus on the set 
of chemical parameters measured around the condenser. In 
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particular, the increase of the acid conductivity between 
the condenser inlet and outlet must be considered a 
significant event. Therefore a data Interpretation activity 
(CONDENSER-CONTROL) concerning chemical parameter 
trends in the condenser has been defined. Acid conductivity 
increase beyond the normal level is an elementary observa­
t ion included in this data interpretation activity. When such 
an event occurs, the human expert realizes that a pollution 
from the condenser is likely to take place, and he immedi­
ately defines some objectives that will support his succes­
sive observations and suggests proper corrective actions. 
The main objectives considered in this situation are 
reported below: each of them is represented in PROP by a 
diagnosis/intervention activity (mentioned in parentheses): 

control of the pollution trend in relation to the inter­
vention undertaken to remove the cause of pollution 
(CONDENSER-LEAKAGE); 
control of the pollution propagation along the plant (in 
particular towards the boiler) and reduction of the pol­
lution effects by means of insertion of CTS filters 
(CONDENSER-LEAKAGE-PROPAGATION); 
detection of the kind and source of pollution. In fact, 
pollution can be due to cooling water (COOLING-
WATER-LEAKAGE), to air contamination from conden­
sate pumps (AIR-CONTAMINATION), or to impurities of 
make-up water (POLLUTANT-FROM-MAKE-UP-WATER). 

Figure 5a illustrates the EG representing the CONDENSER-
LEAKAGE diagnosis/intervention activity. Events are 
labelled here with conditions only. The general form of a 
condition is a logical expression involving predicates of the 
type: (<DATA-INT-ACT-NAME> in <PLACE-NAME>), that is 
true if, at evaluation time, the place <PLACE-NAME> in the 
data interpretation EG <DATA-INT-ACT-NAME> is marked. 
When the CONDENSER-CONTROL data interpretation activity 
has a mark in the place LEAKAGE-DETECTION, the places in 
initial marking (FIRST-RISE) of the CONDENSER-LEAKAGE EG 
are marked. 

The evolution of the diagnosis/intervention activity accord­
ing to the CONDENSER-LEAKAGE EG depends on the following 
events: 
(1) The ratio between acid conductivities at condenser 

inlet and outlet becomes stable (STEADY). In this case 
the pollution is assumed to have reached a defined 
value. 

(2) The ratio between acid conductivities at condenser 
inlet and outlet shows a peak, i.e., the acid conductivity 
suddenly increases and then rapidly comes back to 
normal values (NORMALITY). 

(3) The acid conductivity keeps a steady value for a while 
and then decreases as a result of an appropriate inter­
vention, but without reaching a normal value (DECRE­
MENTED). 

(4) Pollution comes back to normal values (NORMALITY). 
(5) Pollution increases again (NEW-RISE). 

When the place FIRST-RISE of the CONDENSER-LEAKAGE 
EG is marked, events E1 and E2 are enabled. The data 
interpretation activities CONDENSATE-PAR-TREND and 
CONDENSATE-PAR-VALUE are started. Event El will fire 
when the CONDENSATE-PAR-TREND EG has the AC0ND1-
STEADY place marked and event E2 has not yet fired. 

In Figure 5b we show the the CONDENSATE-PAR-TREND 
EG. This EG verifies whether the acid conductivity increase 
measured at the condenser outlet has reached an abnormal 
value Moreover, it checks the oxygen concentration varia­
tion during the conductivity increase. As mentioned above, 
this data interpretation activity is used to verify the condi­
tion c1 of event El in the CONDENSER-LEAKAGE EG. Other 
information given by this EG (e.g., check of the oxygen 
increase) is used by control level rules (RULE-29 - see 
below). 

Predicates of data interpretation EGs are evaluated 
with respect to an object oriented organization of the 
acquisition buffers and of the low level numerical programs, 

Figure 5a - CONDENSATE-LEAKAGE event-graph Figure 5b - CONDENSATE-PAR-TREND event-graph 
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i.e. average and derivative calculations, etc. This choice was 
made to increase system flexibility in the interface with 
either a possible simulation environment or an operational 
one. A complete description of this representation schema 
is beyond the aim of this paper, so that a rather free predi­
cate calculus-like notation is adopted in the EG of Figure 5b. 
Most of the expressions that label events in the 
CONDENSATE-PAR-TREND EG are self-explanatory. In addi­
tion, we point out the following: 

An action (setting the local variable 'previous-acondl') 
is associated with event E1. In the other events the 
action field is empty. 
In events E2, E3, and E4, the evaluation of the predi­
cates c2, c3 and c4 involves a call to a numerical pro­
gram that computes the average slope on a specified 
time interval. 
In events E5 and E6 the predicates c5 and c6 specify 
the difference between values of a parameter in two 
different instants. 
The function "query", in event E7 means that PROP will 
ask to the human operator the values necessary to 
compute the truth value of condition c7. 

Some examples of rules defined at the control level are 
shown in Figure 6. 
In the action side of RULE-29 the enabling of two 
diagnosis/intervention activities is defined These 
diagnosis/intervention activities are enabled in order to 
investigate the pollution source: the former (AIR-FROM-
CONDENSER) verifies whether air contamination (for exam­
ple from a condensate pump) is present, the latter 
(POLLUTANT-FROM-MAKE-UP-WATER) considers impurities 
coming from the make-up water 

RULE-29 

±1 
CODENSER-LEAKAGE in STEAVV and 

CONDENSATE-PAR-TERNDS 

invoked-by CONDENSER-LEAKAGE 

in OXYGEN-VERIFIED 

then 

enable AIR-FROM-CONDENSER 

enable POLLUTANT-FROM-MAKE-UP-WATER 

RULE-55 

ii 
CONDENSER-LEAKAGE IN ACTIVE and 

POLLUTANT-FROM-MAKE-UP-WATER in WAIT-CONFIR­

MATION and 

AIR-FROM-CONPENSER in VERIFIED 

then 

deactivate. POLLUTANT-PROM-MAKE-UP-WATER 

The premise of RULE-29 is satisfied if; 
the CONDENSER-LEAKAGE diagnosis/intervention 
aotivity has been enabled and it verifies that the pollu­
tion level has stopped increasing, that is, its EG has the 
place STEADY marked; 
the CONDENSATE-PAR-TRENDS data interpretation 
activity activated by the CONDENSER-LEAKAGE 
diagnosis /intervention activity verifies an increase of 
oxygen concentration. 

Note that the two diagnosis/intervention activities enabled 
by RULE-29 are concurrently involved in the explanation of 
the same phenomenon. The management of the results 
obtained from these two different points of view is accom­
plished by means of other control level rules, with the aim 
of definitely validating one hypothesis and rejecting the 
other. 

For example, RULE-55 disregards the hypothesis that 
the pollution is due to the make-up water (deactivate 
POLLUTANT-FROM-MAKE-UP-WATER) because, in the mean 
time, the hypothesis of air contamination from the con­
denser (AIR-FROM-CONDENSER) has been verified (its VERI­
FIED place is marked). This takes place even if the 
POLLUTANT-FROM-MAKE-UP-WATER EG cannot yet give 
definite results as it is stil l waiting for the firing of some of 
its events. 

CONCLUSIONS 
The work done with PROP has allowed definition and 

testing of a novel rule-based system architecture support­
ing heterogeneous knowledge representation. The proposed 
approach is expected to offer three major advantages: 

the knowledge representation mechanism constituted 
by the fusion of production rules and event-graphs 
makes knowledge acquisition more effective and easy 
and knowledge organization more transparent and 
natural; 
non-determinism is limited to those aspect of the prob­
lem domain which actually imply non-deterministic 
operation, and is not used extensively thus overcoming 
fictitious search problems deriving from a poor 
knowledge representation schema; 
explanation capability can closely follow the path of 
human reasoning, as a consequence both of the natur­
alness of knowledge representation and of the con­
strained non-determinism of the inference process. 
The research has disclosed several new issues to be 

considered in future work. Among these we stress the exten­
sion of the proposed architecture to include explicit 
representation of the communication net connecting 
heterogeneous knowledge chunks (Davis and Smith, 19B3), 
thus overcoming the limitations of the simple 
communication schema currently adopted. Moreover, expli­
cit temporal reasoning, credibility values computation and 
propagation, and the implications of the proposed architec­
ture on meta-level structure are going to be investigated. 
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