
NEAT EXPLANATION OF PROOF TREES

Agneta Eriksson and Anna-Lena Johansson

UPMAIL, Uppsala University
P.O. Box 2050, S - 750 02 Uppsala

Sweden

A B S T R A C T

It is essential that the reasoning of an expert system can be ex­
plained and justified. In the paper simple ideas for providing com­
prehensive explanations of deductions are presented. The method is
to transform the proof tree to a more comprehensive proof tree from
which a neat explanation directly can be extracted.

The transformation of proof trees is a way to view the problem
of explaining the reasoning of an expert system. The ideas presented
in this paper are easy to implement. Furthermore, the transformation
for reducing chains of specifications of a concept seems to be applica­
ble in general. The transformation for introducing a new name for a
compilation of concepts depends on the problem domain.

I I N T R O D U C T I O N

A fundamental part of an expert system design is its ability to ex­
plain and justify a line of reasoning (Parsaye, 1983), (Swartout, 1981),
(Walker, 1983), (Wallis and Shortliffe, 1984). In this paper we outline
some principles for providing comprehensible explanations of deduc­
tions, i.e. why a fact is derived. The interesting problem of explaining
why a fact cannot be derived is not the subject of this paper.

We will focus on expert systems designed and implemented in a
logic programming environment. The domain knowledge is expressed
as an axiom set in the form of Horn-clauses. A program clause either
describes a sentence that is unconditionally true, such as "The color of
grass is green"

Color(Grass,Green) <-

or a conditional sentence, "x and y are playmates if both x and y are
children and live at the same place"

In a logic programming language such as Prolog (Pereira et a/,
1977), (Carlsson and Kahn, 1984) answers to questions are deduced
from the set of axioms by resolution (Robinson, 1979).

I I P R O O F T R E E S

We illustrate the ideas with easy and comprehensible relations.

Two persons x and y are related if they have an ancestor in com­
mon.

Anyone who is either a father or a mother is a parent.

In order to draw conclusions about family-relations concerning spe­
cific individuals we need some basic facts about the fathers and moth­
ers. We state that: the father of Ada is John, . . . , the mother of T im
is Pia.

Let us study an AND-tree constructed for the proof of the formula
Rdated(Ada,Tom). The root of the proof tree is Related(Ada,Tom).
When both Ancestor(Ada,z) and Ancestor(Tom,z) are deduced we can
apply rule (1) to obtain Related(Ada,Tom). In Figure 1 below, the
complete proof tree is shown.

(1)

The individual y is an ancestor of x if the parent of x is y or if y is
an ancestor of the parent of x.

(2)
(3)

This work is supported by the National Swedish Board for Technical
Development (STU)

I I I T R A N S F O R M A T I O N O F P R O O F T R E E S

Let us try to formulate rules for transforming proof trees.

When we interpret the rules as "definitional" in the sense that the
precondition is a restatement of the conclusion, then in a rule of the
form

(12)
Q is a specification of the concept P; Q is more precise than P. If we find

3 8 0 A. Eriksson and A.-L Johansson

an application of a specification rule in the proof tree, we can compact
the tree by eliminating the consequence of the rule. Formally we can
justify the transformation by the following reasoning: the two rules

(15)

implies the rule

(15)

An application of the two former rules (13) and (14) can be re­
placed by an application of the new rule (15). The new rule is re­
dundant, it does not add to the derivable set of theorems but the rule
provides us with a neater explanation of the proof tree. However, we
do not want to increase the number of eligible rules. The rules derived
from the original axiom set are used only as rewrite rules of the proof
trees. A l l nodes in a proof tree except the root and the leaves can be
eliminated by deriving and applying deduced rules. Rules of the type
(12) give an example of nodes that can be eliminated without loss as
long as the chain has a limited length. Since the depth of an hierarchy
of definitions tends to be shallow (Amsler, 1080) the transformation
seems to be useful. However, it is essential that nodes important to
the understanding of the solution are kept in the proof tree. If the
rules are of the type "cause-effect", where the conclusion follows from
the preconditions by some mechanism, the chain of reasoning can be
much longer. In order to distinguish rules illustrating a principal idea
in the domain, rules could be augmented with a measure of importance
in the manner suggested by (Wallis and Shortliffe, 1984). The use of
importance metrics wil l then inhibit the elimination of concepts Pj if
the importence measure exceeds a certain l imit.

Using the described technique we can derive a redundant rule

(16)

from the two rules (2) and (4). Consequently, in a proof tree, all sub­
trees to the left in the figure below can be replaced by the subtree to
the right.

Another way to transform a proof tree is to introduce a new con­
cept that is a specification of an earlier concept and a compilation of
other concepts already present. In our example we can introduce the
rewrite rules

(21)
(22)

Grandfather is a specification of a certain type of ancestorship, we
can break up the recursive chain of ancestors by introducing grandpar­
ents. By adding the rule (21) we are able to eliminate the ancestor
node in situations where the rule (22) is applicable.

We can derive the rules

Ancestor(x,y) <- Mother(x,z), Grandfather) z,y) (23)
Grandfather(x,y) <- Father(x,z), Father(z,y) (24)

The proof tree in Figure 2 can be reduced to the more comprehen­
sible tree where the occurrence of node Ancestor(Eva,John) is replaced
by the node Grandfather!Eva,John).

The resulting proof tree depends on the rewrite rules that are
provided. Each user can in these rules express their own view. When
there are competing rewrite rules a selection mechanism has to be used.

I V P R E S E N T A T I O N O F P R O O F T R E E S

A. Stepwise presentat ion

When we have a non trivial proof tree it is essential to make the
explanation sufficiently abstract. We make use of the tree structure for
a stepwise presention of the proof tree. The first step of the explanation
includes the root and its sons. The next step focus on some of the sons.
This also offers the user possibilities to direct the presentation according
to the her interests.

We look at a transformed tree for the proof of Related(Pia,Tom).
In this tree both a new rule and a new fact appear

Let us try to make the proof tree presented in Figure 1 easier to
grasp by deducing further redundant rules. The rule

Related(x,y) - Father(x,z), Ancestor(y,z) (17)

can be derived from rules (1) and (16). The rules

Ancestor(x,y)<- Father (x,z), Ancestor(z,y) (18)
Ancestor(x,y) - M other (x,z), Ancestor(z,y) (19)

can be derived from rale (3) together with (4) and (5) respectively.
From (18) and (16) we can derive

Ance$tor(x,y)<- Father(x,z), Father(z,y) (20)

The proof tree for a proof that John is an ancestor of Ada is a
subtree of the tree in Figure 1. Applying the derived rules, (16) - (20)
we get the following tree

Figure 3. A proof tree for the formula Related(PlaTom)

In the presentation we start to explain why Pia and Tom are re­
lated in terms of the information in the nodes at the underlying level
in the tree.

Rdated(Pia, Tom) <- Slster(Pia,Eva), Mother(Tom,Eva)

We can continue the presentation with explaining why Tom's mother
is a sister of Pia.

Sister(Pia,Eva) <- Father(Pla,Per), Father (Eva, Per), Woman(Eva)

In order to make the explanation easier to read we present a clause
using expressionforms connected to the predicates. For example the
predicate Father(x,y) has the form "The father of x is y" . In a corre­
sponding way we write Ancestor(x,y) and Related(x,y) as "An ancestor
of x is y" and "x and y are related".

A. Eriksson and A.-L Johansson 3 8 1

AN instance of a rule, i. e. a node with its directly underlying
nodes, we express "A since B" if the rule is A <- B. For example,

we express as "An ancestor of Ada is John since the father of Ada is
John".

B. F i l t e r i ng un in terest ing values

In a proof tree, the arguments of the predicates have been in*
stantiated to values that satisfy the formula in the root node. In an
explanation we are not interested in all of the values. To present all of
them is inconvenient.

A conjunction where two parts share values can be expressed in a
form where the shared values are eliminated. To explain why Ada and
Tom are related, see Figure 2, by naming every person in the tree is
more unclear than if we rewrite the expression omitting some names.
The presentation " Ada and Tom are related since the father of Ada is
John and a grandfather of Eva is John and the mother of Tom is Eva"
is less clear than "Ada and Tom are related since the father of Ada is
a grandfather of the mother of Tom".

We can eliminate "uninteresting" values by reformulating predi­
cates as functions and use these as values. For example, a conjunction
of two predicates sharing a value can be reformulated as one of the
predicates taking a representing function of the other as value. Anal-
ogously for conjunctions of three or more predicates. We illuminate it
by an example

Father(Ada,x), Grandfather(Eva,x)

"The father of Ada is a grandfather of Eva". In this explanation,
"a grandfather of Eva" is a representing function for the grandfather
relation and is substituted for x in the father relation.

Our approach is to avoid including instantiations that don't appear
in the current root. We want to explain the conclusion without includ­
ing values appearing only in the precondition of a rule. Our example
in previous section would become

Rdated(Pia,Tom) <- Sister(Pia,Eva), Mother(Tom,Eva)

"Pia and Tom are related since a sister of Pia is the mother of Tom",
thus suppressing the value "Eva".

Reordering of conjunctions with common values can be necessary.
A rule with a conjunction like

has to be reordered according to the common values. This rule becomes

The explanation is "Tom and Tim are cousins since the mother of Tom
is a sister of the mother of T im" .

C. Same values at corresponding places

If there is a conjunction of instantiations of the same predicate
and the common uninteresting values are corresponding arguments,
the expression will be clearer if we point out this fact. We express

Father(Ada,x), Father(Per,x)

as "the father of Ada is the same as the father of Per".

D. Customised explanat ions

An important issue for obtaining clarity of explanations is to avoid
presenting facts that already are known to the user.

General knowledge in onr domain could for example be what names

are names of women and what are names of men. If we are going to
present the following rule

we can assume that the tact that Eva is a woman is general knowledge
and suppress it. The explanation vi l l be "Eva is a sister of Pia since
the father of Eva is the same as the father of Pia".

Specific knowledge possessed by the user would also be taken care
of. It is possible that the user is not totally naive, some facts may be
well known to her and it would only be negative to repeat them.

We assume that the user is a near friend of parts of our example
family and knows that Eva is the mother of Tom. Then we present

Related(Pia, Tom) - Sister(Pia,Eva), Mother(Tom,Eva)

as "Pia and Tom are related since a sister of Pia is Eva".

V C O N C L U S I O N S

The transformation of proof trees is a way to view the problem
of explaining the reasoning of an expert system. The principal ideas
presented in this paper are fairly easy to implement. Furthermore the
transformation for reducing chains of specifications of concepts seems
to be generally applicable. The transformation for introducing a new
name for a compilation of concepts depends on the problem domain.

The solution to the problem of presenting the proof trees described
in this paper is simple. Further work to improve upon the naturalness
of the presentations lead into the area of natural language processing.

R E F E R E N C E S

[1) Arasler, R. A.: The Structure of the Merriam- Webtter Pocket Dic-
tionary, Technical Report TR-164, University of Texas, Austin,
1980.

[2] Carlsson, M. and K. M. Kahn: LM-Prolog User Manual, Upmail
Technical Report 24, Department of Computing Science, Uppsala
University, 1984.

[3| Parsaye, K.: Database Management, Knowledge Ba$e Management
and Expert System Development in PROLOG, Proc. IJCAI-83,
Karlsruhe, DDR, 1983.

[4] Pereira, F., L. Pereira, and D. Warren: DEC-10 PROLOG users
Guide, Department of Artificial Intelligence, University of Edin­
burgh, 1977.

[5] Robinson, J. A.: Logic: Form and Function, Edinburgh University
Press, Edinburgh, 1979.

|6] Swart out, W. R.: Explaining and Juttifying Expert Consulting
Program, Proc. IJCAI-81, Toronto, Canada, 1981.

|7] Walker, A.: PROLOG/EX1, An Inference Engine which Explain
Both Yet and No Answers Proc. IJCAI-83, Karlsruhe, DDR,
1983.

|8] Wallis, J. W. and H. Shortliffe: Cuttomised Explanation Using
Canal Knowledge, in Buchanan and Shortliffe, "Rule-Based Ex­
pert Systems", Addison-Wesley, 1984.

