
EXPLAINABLE (AND MAINTAINABLE) EXPERT SYSTEMS1 

Robert Neches 
William R. Swartout 

Johanna Moore 

USC / Information Sciences Institute 
4676 Admiralty Way 

Marina del Rey, CA 90292 

ABSTRACT 

Principled development techniques could greatly enhance 
the understandability of expert systems for both users and system 
developers. Current systems have limited explanatory capabilities 
and present maintenance problems because of a failure to 
explicitly represent the knowledge and reasoning that went into 
their design. This paper describes a paradigm for constructing 
expert systems which attempts to identify that tacit knowledge, 
provide means for capturing it in the knowledge bases of expert 
systems, and apply it towards more perspicuous machine-
generated explanations and more consistent and maintainable 
system organization. 

1. Introduction 
Swartout's XPLAIN system [Swartout 83] demonstrated the 

feasibility of producing expert systems with enhanced capabilities 
for generating explanations and justifications of their behavior. 
XPLAIN was based on two key principles: explicitly distinguishing 
different forms of domain knowledge present in the knowledge 
base, and formal recording of the system development process. 
We will argue that these principles are vital both for explaining and 
for maintaining expert systems. This paper will propose a new 
paradigm for building expert systems, and consider the 
paradigms implications for providing automated assistance in two 
tasks commonly encountered in the course of developing and 
using expert systems: 

•Generating explanations to clarify or justify the 
behavior and conclusions of the system; 

• Extending or modifying the system's knowledge base 
or capabilities; 
The paradigm we are proposing, which we call the 

Explainable Expert Systems approach, calls for shifting the 
emphasis of knowledge engineers' efforts from procedural 
encoding to declarative knowledge representation. In this 
approach, development and use take place in an integrated 
support environment. Knowledge engineers and domain experts 
collaborate to produce a rich semantic model of the declarative 
and procedural knowledge of the domain. Their efforts produce a 
knowledge base which, augmented by advice about 
implementation considerations, is used to guide an automatic 
program writer through generation of the actual code for the 
expert system. The program writer maintains a record of its 
choice points and decisions, which constitutes the system's 
development history. The code is executed by an interpreter that 
maintains a record of the system's execution history. 

The research described in this paper was supported under DARPA Grant 
#MDA 903-81-C-0336. We would like to thank Bob Baker, Jeck Mostow, and 
Dave Wile for their comments on previous drafts We would also like to thank Neil 
Goldman, Tom Lipkis, Norm Sondheimer, Don Voreck, and Dave Wile for helpful 
input on other occasions. 

All together, the knowledge base, the development history, 
the code, and the execution history, provide the basis for 
question-answering routines that allow developers and users to 
obtain information about the origins and rationales behind the 
system's code, as well as to the code itself. The availability of this 
extra information provides domain experts with more power to 
critique the system, to identify deficiencies, and to find those 
points in the system conception or implementation responsible for 
a deficiency. The availability of this extra information also 
provides end-users greater power to understand the abilities and 
limitations of the system. Thus, although the EES paradigm does 
increase initial development costs, we expect that those costs will 
be repaid in greater acceptance by users, easier maintenance, 
and a greater degree of reusability that will smooth the 
development of related systems later on. To support this claim, let 
us briefly consider what the availability of extra knowledge means 
for the tasks mentioned earlier: explanation and maintenance. 

1.1. Explanation 
As we will elaborate in section 4, the availability of 

information from a domain knowledge base, a development 
history, and an execution trace yields the opportunity to provide 
richer explanations of the system than are available in 
conventional approaches. Conventional expert systems, lacking 
these added knowledge sources, are restricted to explanations 
composed from canned text or by paraphrasing the system code. 
These suffer from a number of flaws. Canned text cannot 
anticipate, or adapt to, all possible needs. Since its maintenance 
is a separate and additional task from code maintenance, the 
text can quickly become invalid with respect to the true state of 
the system code. On the other hand, code paraphrasing is limited 
by the information that is represented in the code - and even 
more limited by the information that is not represented. 
Explanation by code paraphrasing can describe actions in fairly 
low-level terms but it cannot, for example, describe high-level 
principles motivating those actions or explain why those actions 
instantiate some high-level principle. For example, in MYCIN, the 
general principle that the type of an infection may be determined 
using a weight-of-evidence scheme is encoded in several dozen 
rules, specific to particular types of infections [Szolovits 63]. The 
general heuristic itself is never explicitly represented, and hence is 
not available for explanation. 

More sophisticated explanations require that design 
knowledge behind the system be explicitly represented, which is 
one of the roles served by a richer domain knowledge base and a 
development history. Our approach to explanation depends on a 
taxonomy of information goals, with explanation strategies 
associated with each information goal. An explanation strategy 
tells the system how to inspect the knowledge base in order to 
obtain information relevant to a particular goal. Question 
answering involves inferring information goals from questions, 
then applying the appropriate strategy. 



R. Neches et al. 383 

1.2. Maintenance 
As we will elaborate in section 3.2, the use of an automatic 

program writer to derive code from more abstract specifications 
presents an opportunity to simplify the maintenance process. The 
need to modify a system's code generally arises for one of three 
reasons: 

• there is an invalid assumption or principle upon which 
the code was based; 

- an assumption or principle was valid, but the code 
failed to correctly instantiate it; 

- additional concerns, such as ease of implementation 
or efficiency considerations, make an alternative 
method of achieving some goal preferable. 

In all of these cases, the primary tasks of a maintainor are to 
diagnose the cause of dissatisfaction with the current system, and 
to locate and modify all of the relevant code. In conventional 
systems, since the linkage between code and higher-level 
principles is not explicitly represented, there can be difficulties 
with both tasks. When the basis for some segment of code is 
either invalid or inappropriately realized, it may be very hard to 
reconstruct from the code alone what that basis should have 
been. When code is rewritten or superseded, it may be very 
difficult to determine what other code is affected. Consider the 
same example mentioned above of MYCIN'S weight-of-evidence 
scheme for determining infection types. If one wished to change 
this principle, dozens of rules would have to be located and 
modified. In the absence of any kind of pointers to those rules, it 
is easy to imagine some of those rules being missed, requiring 
multiple iterations of modification and testing to accomplish the 
modification. 

Similar issues arise when the goal is to extend a system. 
Say one wanted to add knowledge about a new infection type to 
MYCIN. Obviously, the many rules pertaining to existing infection 
types could be used as examples to indicate the form of the new 
rules that would have to be added. Again, though, in the absence 
of pointers into the code, one has no easy way of making sure that 
all the relevant rules are located. Thus, one has no assistance in 
ensuring that all the necessary new rules are added, much less 
that they are correctly stated. 

Our approach is to provide support for the diagnosis phase 
of maintenance through the extended explanation capabilities, 
and for the code modification phase through the automatic 
program writer. As sections 3.1 and 3.2 will show, the approach 
calls for the system builders to provide a knowledge base 
containing descriptive knowledge of how the domain works, and 
abstract problem-solving methods that apply to classes of 
problems. A classifier [Schmolze 83] identifies all instances of 
domain concepts for which a problem-solving method must be 
instantiated, and the automatic program writer generates code by 
integrating descriptive domain knowledge and problem-solving 
methods. Thus, for example, MYCIN'S weight-of-evidence scheme 
for infection types would be handled by specifying methods 
applicable to instances of infection types, the known infection 
types, and (possibly) a method for integrating the results of the 
method instances that will be generated. The program writer 
would use this information to generate the appropriate specific 
rules for each particular infection type. Changing the principle or 
adding a new infection type both would be a matter of changing a 
small number of assertions in the knowledge base and then re
running the program writer. 

2. XPLAIN: the precursor of the EES 
paradigm 

The XPLAIN system recognized two forms of domain 
knowledge (factual information vs. problem solving methods) and 
one kind of development (refinement by a hierarchical planner). 
For example, when XPLAIN was used to generate a digitalis drug 
dosage advisor, its tactual knowledge (or "domain model") 
included assertions such as: 

-High serum calcium levels can cause increased 
automaticity. 

• Low serum potassium levels can cause increased 
automaticity. 

- High digitalis doses can cause increased automaticity. 

- Increased automaticity can cause ventricular 
fibrillation. 

• Ventricular fibrillation is a highly dangerous condition. 

This factual knowledge was augmented by problem solving 
methods (or "domain principles"), such as, 

- In adjusting the drug dosage recommendation, check 
for factors which can cause dangerous conditions 
that also can be caused by administering the drug. 

Applying this principle (and, of course, others) to the factual 
knowledge led XPLAIN to generate procedures for adjusting 
dosage recommendations to account for serum calcium and 
serum potassium levels. As it generated that implementation from 
the two forms of knowledge, XPLAIN recorded the steps it had 
taken. 

Recording the derivation of the actual low-level procedures 
from the domain principles enabled XPLAIN-generated systems to 
give more principled answers to "why" questions. XPLAIN's 
digitalis drug dosage advisor, for example, was capable of 
explaining that it was asking about the patient's serum calcium 
level as part of adjusting the recommended dosage, and that this 
was important because too high a dosage of digitalis could 
interact with the effects of serum calcium level to produce the 
dangerous condition of ventricular fibrillation. That is, the 
XPLAIN-generated system could justify its request for a patient 
parameter both by paraphrasing the program code, and by 
constructing a justification for the parameter's significance based 
on an abstract model of the domain. 

The separation of knowledge in XPLAIN also seemed to hold 
promise for easing the process of extending the system. 
Knowledge was modularized into (a) situations where patient 
factors could have undesirable interactions with the digitalis 
dosage; and, (b) problem solving knowledge governing checking 
for such factors and adjusting the dosage accordingly. Since 
XPLAIN took responsibility for applying the problem solving rules 
to whatever factual knowledge was given to it, programming the 
system to handle a new situation and generate suitable 
explanations for its new behaviors would require making only a 
few assertions to describe the added factors, rather than writing 
large amounts of new code that bore great similarities to existing 
code. 



384 R. Neches et al. 

In moving beyond XPLAIN, we have identified a number of 
additional forms of knowledge and methods of development which 
are important to represent explicitly. Three forms of knowledge 
seem particularly important: 

Trade-offs define dimensions along which the 
relative success or utility of a problem-solving method 
should be measured, along with criteria for evaluating 
that success or failure, and knowledge about the likely 
effects of each problem-solving method along those 
dimensions. Although the term might be taken in 
other ways, we mean it is a list of the strengths and 
weaknesses of a method with respect to general goals 
(rather than, say, in direct comparison to other 
methods). 

Preferences are context-sensitive rules for ranking 
and selecting from alternative operators at a given 
choice point on the basis of their trade-offs. 

Terminology refers to mappings between abstract 
concepts of a domain and their more concrete 
manifestations. 

3. The EES Framework 
A broad view of the EES system is shown in Figure 3.1. 

The knowledge base is the foundation stone of the EES 
system. The domain model describes how the domain works. It 
contains, among other things, typological and causal linkages. 
While the domain model describes how the domain works, it does 
not indicate how problem solving should be done. Domain 
principles represent problem-solving strategies and are used by 
the program writer to drive the refinement process. Tradeoffs are 
associated with domain principles to indicate the beneficial and 
harmful effects of selecting a particular strategy to achieve a goal. 
Preferences are associated with goals and are used to set 
priorities based on tradeoffs. Mappings between abstract terms 
and the concepts that realize them (which had been included as 
part of domain principles in XPLAIN), are broken out as a separate 
type of knowledge to allow terminology to be shared across 
domain principles. Integration knowledge is used to resolve 
potential conflicts among knowledge sources. Optimization 
knowledge represents ways of efficiently controlling the execution 
of the derived expert system. 

The remainder of this section will illustrate the concepts 
introduced thus far by considering the development of a portion of 
a Program Enhancement Advisor. The Program Enhancement 
Advisor (PEA) is an expert system that critiques LISP programs, 
offering advice and assistance on stylistic improvements. The 
portion we will be considering seeks to improve the readability and 
maintainability of programs by recoding conditional expressions 
which use Lisp's COND into expressions that use alternative 
constructs like the IF-THEN-ELSE available in InterLisp's 
"Conversational LISP" package [Interlisp 83]. 

3 . 1 . The Knowledge Base 
The system's knowledge base is represented in NIKL [Moser 

83]. NIKL is a refinement of KL-ONE [Brachman 78], a semantic 
network based representational formalism. The semantics of NIKL 
have been worked out sufficiently that automatic 
classification [Schmolze 83] is possible Given an existing 
network and a new concept, the NIKL classifier automatically 
determines the appropriate place for the new concept in the 
subsumption hierarchy of the network, based solely on the 
structure of that concept. 

The knowledge base contains several different kinds of 
knowledge, which are integrated together by the program writer to 
produce a working expert system. In the Program Enhancement 
Advisor domain, the domain knowledge or descriptive knowledge 
of how the domain works, is the knowledge of program 
transformations: what their applicability criteria are and what 
effect they will have. A simplified portion of the NIKL 
representation describing the transformation of a COND 
statement into a CLISP IF-THEN-ELSE statement is shown in 
Figure 3-2. Space limitations preclude explaining the NIKL 
representation's details, but the gist follows. The COND to 
IF-THEN-ELSE transformation classifies as a readability 
enhancing transformation because its result classifies as an easy 
to read construct. This latter classification holds because 
IF-THEN-ELSE is a keyword-marked construct which, in turn, is 
an easy-to-read construct because its parts are explicitly identified 
by keywords. In short, IF-THEN-ELSE is easy to read because 
each of its parts is explicitly identified by a keyword. (In section 4 
we will consider how the system might mechanically create an 
explanation justifying the desirability of this transformation.) 

Figure 3-1 : Global View of the EES Framework Figure 3-2: Simplified NIKL Representation 
of IF-THEN-ELSE Transform 



R. Neches et al. 3 8 5 

PEA's problem-solving knowledge tells the system how to 
use its transformations to enhance a program. In particular, this 
includes strategies for scanning a program file to find places 
where transformations might be applied, for resolving conflicts 
among those possible transformation applications, and for finally 
applying the transformations. Plans and goals are represented in 
NIKL and are organized into a hierarchy by the NIKL classifier. 
Associated with each plan is a capability description which 
describes what the plan can do. This description is used by the 
system to find plans that can achieve goals. 

The explicit representation of terminological knowledge, or 
the knowledge of how terms are defined and differentiated, is 
considerably facilitated by our use of NIKL, because it is exactly 
the kind of knowledge that has to be represented for the NIKL 
classifier to do its job. For example, in Figure 3-2, a keyword-
marked construct is defined as an abstract construct whose 
concrete syntax has keywords that identify parts of the concrete 
syntax as components of the abstract construct, This structural 
description is used by the classifier (and the program writer as 
described below) to find particular instances of keyword-marked 
constructs.2 

3.2. The Ref inement Process 
The first pass program writer creates the expert system in a 

top-down fashion, in this case, starting from the high level goal 
ENHANCE PROGRAM. As the writer implements goals, subgoals may 
be raised which in turn require implementation. The writer 
iteratively implements goals until the level of system primitives is 
reached. There are several means available to the system for 
finding implementations for goals: 

Goal/Subgoal Refinement This is the familiar form 
of refinement by breaking a goal down into subgoals. 
This occurs whenever the system can find a plan that 
implements a goal. The system locates plans by 
searching up the classification hierarchy starting from 
the goal until it finds a plan whose capability 
description subsumes the goal. 

Goal Reformulation into Cases When the system is 
unable to find a plan that implements a goal, it may 
reformulate that goal into several goals that can be 
implemented and together cover the possibilities 
presented by the original goal. Below, we will 
illustrate several uses of this kind of reformulation in 
the Program Enhancement Advisor. With the 
capability of reformulation into cases comes the need 
to be able to recombine the results of individual cases 
into an overall result for the general goal. This is 
where the system's integration knowledge comes into 
play. An example of its use in the Program 
Enhancement Advisor is given below. 

User Directed Refinement Most current expert 
systems do not accept much direction from the user. 
Yet as expert systems move into domains where the 

It is worth pointing out that in the XPLAIN system, because its knowledge base 
did not support definition of terms and classification, terminological Knowledge 
was represented implicitly in the domain rationale, as part of the domain principles 
We now feel that this mixing of terminology with problem-solving knowledge was 
inappropriate. Terminology should be defined separately so that it can be 
consistent across domain principles. 

goals are less clear cut, it becomes more important to 
allow the user to further specify goals. For example, 
in the Program Enhancement Advisor, the top-level 
goal of enhancing a program is underspecified. It 
could be that to enhance a program means to make it 
more readable, or it could mean to make it more 
efficient or maintainable. Exactly what is appropriate 
depends on knowledge that is outside the scope of 
the Program Enhancement Advisor, so it makes sense 
to get advice from the user to further specify such 
goals. However, the system must constrain the user's 
ability to refine goals lest he push the system beyond 
its capabilities. We illustrate our approach to 
providing the user with a constrained ability to specify 
goals in the example below. 

From the standpoint of explanation, it is important to 
distinguish each of these means for implementing goals, and to 
record their use. Goal/Subgoal refinements indicate to the 
explanation facility how a low-level goal fits into the overall 
strategy expressed by a higher level goal. Modelling goal 
reformulation into cases explicitly is important because 
knowing that a particular goal was created due to implementation 
concerns usually means that that goal is unlikely to be interesting 
to users (but possibly quite important to system designers). 
Finally, the explicit modelling of user preferences afforded by 
user directed refinement allows the system to tailor Its 
explanations based on known user desires. 

3.3. An Example 
This section outlines a portion of the steps the program 

writer goes through in generating the Program Enhancement 
Advisor. Starting from the abstract goal of enhancing a program 
we will show how the system moves toward generating code to 
scan for specific transformation opportunities. Figure 3-3 shows 
the development history that results from the implementation 
steps described below. 

The system starts with the goal ENHANCE PROGRAM. The 
system finds a 4 step plan for performing this goal: 

1. Find all applicable enhancement transformations; 

2. Resolve any conflicts between candidate 
transformations; 

3. Present recommendations to the user and ask for 
confirmation; 

4. Act on the recommendations approved by the user. 

In the development history, the writer records the 
implementation of the ENHANCE PROGRAM goal as a goal/subgoal 

refinement (see Figure 3-3). 

When the system starts refining the first step of the plan, it 
encounters an instance of a user-directed refinement. The 
"dynamic-refinement" associated with the step SCAN FOR 
TRANSFORMATION OPPORTUNITIES specifies to the program writer 

that code should be created to allow the user to specify at 
run-time what kinds of enhancements should be scanned for. 
Since the program writer cannot predict which kinds the user will 
request, it will plan code to cover ail kinds present in the 



386 R. Neches et al. 

knowledge base. Suppose it finds two kinds of enhancements, 
those for enhancing efficiency and those for enhancing 
readability. The writer would post the goals SCAN FOR EFFICIENCY-
ENHANCING TRANSFORMATIONS and SCAN FOR READABILITY-
ENHANCING TRANSFORMATIONS as goals to be implemented. It 
would also create code for interrogating the user and invoking 
either or both of the subgoals based on the users desires. The 
system would then use its integration knowledge to combine the 
results of the subgoals. In this case, since the two subgoals return 
lists, the system uses a default strategy of appending the two lists 
together. 

Let's consider how the writer might further refine the goal of 
scanning for readability enhancing transformations. There is no 
direct method for implementing this goal, so the program writer 
examines higher methods in the hierarchy. At the level of SCAN 
PROGRAM FOR TRANSFORMATION OPPORTUNITIES, the system finds 
two subconcepts that have specialized methods associated with 
them (see Figure 3-4). One of these scans for local 
transformations, that is, transformations like the COND = => 
IF-THEN ELSE transform where the applicability criteria of the 
transform can all be verified within a single s-expression. The 
other scanning method scans for what we call distributed 
transformations, where the applicability criteria require looking at 
several places in the program. An example of the second type of 
transform would be one that verifies that it is possible to use 
records to replace explicit accessor functions. By examining its 
terminological knowledge, as expressed in NIKL, the writer 
determines that together these two methods cover the space of 
possible transforms, so the single goal of scanning for readability 
enhancing transforms can be re-expressed as the two goals of 
SCAN FOR DISTRIBUTED READABILITY ENHANCING TRANSFORMS and 
SCAN FOR LOCAL READABILITY-ENHANCING TRANSFORMS. This is an 
instance of a goal being changed based on available domain 
techniques. 

The system continues on in this fashion, refining general 
goals into increasingly more specific goals, until eventually the 
level of system primitives is reached. At that point the expert 
system is complete. 

Figure 3-3: A Simplified Portion of the Development History 

3.4. Control Issues 
How would this approach be used to build expert systems 

with particular control structures, such as blackboard or 
backward-chaining architectures? We view this as a problem of 
specifying the interpreter that will execute code produced by the 
program writer. We evaluate three possible approaches below. 

Our current approach is to keep the expert system 
interpreter very simple, and explicitly express the architecture for 
the system in domain principles. The program writer compiles 
these principles into a program simple enough for the interpreter 
to handle. For example, if we wanted a system to perform 
diagnosis using backward-chaining, we would write a principle 
that would say, in essence, "To determine whether a physiological 
state exists, conclude that it does if sufficient evidence for the 
physiological state exists." The causal and associational relations 
that would determine what was evidence for what would be 
expressed as domain descriptive knowledge and integration 
knowledge would be used to integrate the results of multiple 
sources of evidence, 

Figure 3-4: A Portion of the Method Hierarchy 

This approach seems to be the most appropriate one for the 
two application domains we have considered, digitalis therapy and 
program enhancement. It allows us to cleanly and easily intermix 
different control strategies. Also, because the interpreter is very 
simple, any sophisticated features of the expert system's 
architecture have to be explicitly derived in the development 
history, so that they can be explained. The major disadvantages 
are that it may result in an enormous development history, and 
that the program writer may not be sufficiently powerful to perform 
all of the derivation steps. 

A second alternative would be to raise the level of the 
interpreter so that the system primitives captured the desired 
architecture. The program writer would create code for this 
architecture. The advantages and disadvantages of this approach 
are just the reverse of the first approach. We have not explored 
this approach; we prefer the explanatory benefits of the first 
approach. 

The most desirable (but also most difficult) alternative would 
have the program writer create both a high-level interpreter from 



R. Neches et al. 387 

simple primitives and the code to run at that high level. A higher 
level interpreter would allow the development history to be 
smaller, and because the interpreter would be explicitly derived, 
its operation would be explainable. We have not yet explored this 
approach in detail. 

4. Explanation: Procedures for Question-
Answering 

In previous sections we have described the types of 
knowledge included in the EES architecture and discussed how 
this knowledge is organized. In this section, we will describe the 
classes of questions we believe are important and discuss how the 
knowledge available within the EES framework enables us to 
provide answers to these questions. 

4 . 1 . Answering a Broader Range of Questions 
In expert systems which record only the program code, and 

not the knowledge and reasoning required to generate that code, 
explanation is necessarily limited to answering questions which 
depend only on access to that code. Among such questions are 
primarily questions about behavior, such as: 

- How does/did the system perform <action>? 

- How is/was parameter used? 

- What would be the result of <parameter setting}? 

There are, however, a number of other kinds of questions 
that might reasonably be asked by a system builder or user: 

Questions of justif ication, e.g., 

- Why is the system concerned with <value, goal, or 
action>? 

- Why is (goal or action) necessary (desirable, or 
important)? 

- What is the significance of <result>? 

These questions all essentially seek information about the 
purpose underlying some aspect of the system, that is, about the 
relationship of that aspect to the goals of the system builder or 
user. Answering them involves looking at the development history 
to determine the domain principle(s) that generated the queried 
object, and from there finding further information by examining 
related terminology, trade-offs, and the preferences operative at 
the point in time under consideration. 

Questions of timing or appropriateness, e.g., 

• When did the system consider/reject (goal, action, or 
conclusion)? 

• Why did it consider/reject (goal, action, or 
conclusion) at (time reference)? 

-Why didn't it consider/reject (goal, action, or 
conclusion) at (time reference)? 

At one level, these are simply questions about the execution 
history of a system. Treated as such, they can be answered by 
techniques such as those in Davis' Teiresias system [Davis 
80] that recorded triggering conditions for rules, and determined 

absences that prevented near-miss rules from being satisfied. 
However, at a higher level, the questions again deal with 
intentions, i.e., the reasons behind the selection conditions 
imposed on various knowledge items. Answering such questions 
may be essentially the same process as justification questions, but 
it may also tap knowledge that went into deriving the control 
aspects of the system. 

Questions of definition or function, e.g., 

- What does (term) mean? 

- What are the effects of (action)? 

- What is the relationship between (term, value, goal, or 
action) and (term, value, goal, or action)? 

- What is the difference between (term, value, goal, or 
action) and (term, value, goal, or action)? 

These are questions that involve paraphrasing either the 
development history, the domain model, or domain principles. In 
each of these cases, of course, paraphrasing depends on tapping 
knowledge about terminology. 

Questions of capabilities, e.g., 

- What does the system know about (concept)? 

- What factors does the system consider/ignore in 
concluding (conclusion)? 

- What methods does the system use/avoid in 
achieving (goal)? 

Questions of this class are particularly likely to be stimulated 
by answers to previous questions. For example, in the case of the 
Xplain digitalis advisor, the answer to a justification question was 
that the system was interested in serum calcium levels in order to 
reduce the recommended dosage if the level was abnormal. This 
naturally leads to the question, "are there any other factors like 
serum calcium?" Answering such questions primarily involves 
searching through the domain model, examining type and causal 
linkages. 

4.2. Information Goals and Answering Strategies 
In order to devise a process model for answering the range 

of questions discussed above, we found it useful to categorize the 
questions we wished to answer into several question types. 
Associated with each question type are heuristics for determining 
the user's information goals. Strategies associated with a 
particular information goal direct the system in searching the 
knowledge base and producing a response which satisfies the 
goal. Other researchers in the area of question-answering have 
found it useful to identify question types and organize procedures 
for answering questions around these categories [Buchanan 84], 
[Lehnert 78], [McKeown 82]. We expect the additional step of 
separating question types and information goals will facilitate 
handling phenomena such as indirect speech acts. 

A review of the strategies associated with each information 
goal is beyond the scope of this paper, as is a discussion of the 
interface which allows users to access question-answering 
capabilities. Here we will concentrate on a discussion of one goal 
and the strategy for answering it. 



388 R. Neches et al. 

4.3. An Example 
In this section we present a detailed examination of the 

strategy used for information goals of the type Justify Result 
(which are reflected in questions such as,'' Why should this advice 
be followed?"). 

Part of the question analysis process will categorize the 
question as resulting from one of the information goals known to 
the system. Associated with the goal is the strategy to be used in 
generating an answer. For example, the strategy to be used in 
answering questions categorized as type Justify Result is as 
follows: 

1. Search the development history for the <method> that 
produced < result). 

2. Search upward through the development history for 
the <goal> that this <method> is a plan for achieving 
(skipping those goals which are implementation 
concerns as described in Section 3.2) 

3. State this <goal> by using its description in the domain 
model. 

4. State how <result> is an instance of a result of 
achieving <goal>. 

Now, we will show how this strategy is used to generate a 
response to an example question of type Justily Result. Suppose 
that the system had just presented the following result: 

There are several opportunities to replace CONDs in 
your program with the CLISP IF-THEN-ELSE 
construct. 

Further suppose that the user then asks for justification of 
this result. Once the user's question has been recognized as 
being of type Justify Result, the system will apply the strategy 
described above to produce the following explanation: 

The system scans your program looking for 
opportunities to enhance readability. Specifically, it is 
looking for constructs in your code which may be 
transformed into easy-to-read constructs. The system 

considers IF-THEN-ELSE an easy-to-read construct 
because it has keywords which identify its abstract 
components. 

In order to generate the first sentence, the system must 
perform the first two steps of the strategy shown above. It begins 
by searching through the development history looking for the 
<method> that produced <result>. (At this point <result> is 
instantiated to: COND TO IF-THEN-EISE 
TRANSFORMATION-OPPORTUNITY). Referring to Figure 3.3, we see 
that the <method> which produced <result> is the one which scans 
over s-expreasions to check if transformations like COND TO 
IFTHEN-ELSE are applicable and if so, adds to the list of 
enhancement opportunities. 

Next, we search upward through the development history 
looking for the <goal> which this <method> is a plan for achieving. 
In performing this search, we skip over those goals which are 
results of the program writer's implementation concerns. Such 

goals frequently arise when the program writer must reformulate a 
single goal into several cases which together cover this goal (see 
Section 3.2 on goal reformulation into cases.) The development 
history records which goals were generated due to 
implementation concerns (see Figure 3.3). This enables the 
explainer to determine which goals must be skipped when looking 
for a goal that is appropriate to incorporate into an explanation to 
an end user. Thus, the result of the search upward in the 
development history is the goal SCAN FOR READABILITY ENHANCING 
OPPORTUNITIES. 

Next, we state this goal by using its description in the 
domain model (step 3). As shown in Figure 3-2, a readability 
enhancing opportunity is a transformation whose left hand side is 
a construct that appears in the user's code (and which is not an 
easy-to-read construct) and whose right hand side is an easy-to-
read construct. Thus we would generate the second clause in the 
explanation above. 

Finally, we use the domain model in conjunction with the 
NIKL classifier to describe why <result>, in this case COND TO IF-
THEN-ELSE TRANSFORMATION-OPPORTUNITY, qualifies as an 
instance of a result of having achieved the <goal> of SCAN FOR 
READABILITY ENHANCING OPPORTUNITIES, i.e. Why <result> is an 
instance of a readability enhancement opportunity. First, the 
explainer has built into it some general world knowledge about 
goals. This includes the knowledge that, when trying to satisfy a 
goal of SEARCH FOR OBJECTS OF TYPE x, finding an object of type x 
is a <result> of satisfying this goal, SEARCH and SCAN are concepts 
defined in the domain model with SCAN being a subconcept of 
SEARCH. Therefore, what is left to determine is why this particular 
COND TO IF-THEN-ELSE TRANSFORMATION-OPPORTUNITY IS an Object 
of the desired type, i.e. why <result> is an instance of a readability 
enhancement opportunity. The NIKL classifier is used to provide 
this information. In this case, <result> is indeed a readability 
enhancement opportunity because its right hand side is an easy-
to-read construct (and because constraints needed to satisfy 
ancestor concepts are also present, e.g. the left hand side is a 
construct which appears in the user's code and is not a good 
construct.) 

Using the information obtained from the classifier, we can 
generate the last sentence in the explanation above. We wish to 
say why a particular IF-THEN-ELSE is an easy-to-read construct. 
To do this we look at the concept under which this construct 
classifies. A particular IF-THEN-ELSE construct will classify 
under the generic IF-THEN-ELSE definition in the domain model. 
Although it would not be particularly readable, we could therefore 
generate an explanation which states that IF-THEN-ELSE is an 
easy-to-read construct because it has a keyword IF which 
identifies its predicate, and do likewise for the keywords THEN 
and ELSE. However, since we wish to generate more abstract 
explanations, we have heuristics in the explainer which note such 
parallel structure and form generalizations. These heuristics 
enable the explainer to generate the last sentence in the 
explanation above. 

5. Current Status 
As of this writing, the EES framework is entering the 

transition from design to implementation, as is the Program 
Enhancement Advisor. Using programs volunteered by research 
programmers in our laboratory and relying on the expertise of 
highly skilled builders of LISP-based systems, we have identified 
approximately a dozen enhancements that the program ought to 



R. Neches et al. 3 8 9 

be able to perform. We have set ground rules for representing 
concepts such as transformations, and the syntactic structure and 
semantic components of programming constructs. Using these 
rules we have completed the representation of domain and 
problem-solving knowledge for the COND= = >IF-THEN-ELSE 
transformation and are in the process of encoding three others. 
Design of a prototype version of the program writer is also almost 
complete. Explanation strategies have been devised for six of our 
13 question types, but none are yet implemented. 

6. Conclusions 
In the sections above, we have argued for a new paradigm 

of expert system development, in which deep models separate and 
explicitly represent the different forms of knowledge that go into 
the implementation of an expert system, and in which a recorded 
development history is kept to trace the intertwining of those 
different forms of knowledge into runnable code. We have 
considered some particular forms of knowledge and development 
that seem likely to be important, discussed our design for an EES 
system that makes use of them, and tried to show how that system 
might facilitate a broader range of explanations than is possible 
under current expert system technology. 

In addit ion to its implications for explanation, we believe this 
approach also offers other benefits related to development and 
maintenance. Separating the different forms of knowledge 
reduces the amount that has to be changed when moving to a new 
domain. The separation, combined with the support of the 
hierarchical planner, also means that less has to be done when 
adding new knowledge about a given domain; producing 
additional code to account for a new concept involves making a 
few assertions and re-running the program writer rather than 
engaging in extensive manual recoding. In addition to these 
maintenance-related benefits, there are also potential gains in the 
development process, since the discipline of explicitly specifying 
domain knowledge and principles is likely to make errors and 
inconsistencies more readily apparent. 

[McKeown 82] McKeown, Kathleen, R. 
Generating Natural Language Text in Response 

to Questions About Database Structure. 
PhD thesis, University of Pennsylvania, 1982. 

[Moser83] M.G. Moser. 
An Overview of NIKL, the New Implementation 

of KL-ONE. 
In Research in Natural Language 

Understanding. Bolt, Beranek, and Newman, 
Inc., Cambridge, MA, 1983. 

BBN Technical Report 5421. 

[Schmolze 83] Schmolze, J.G., and Lipkis, T.A. 
Classification in the KL-ONE Knowledge 

Representation System. 
In Proceedings of the Eighth IJCAI. IJCAI, 1983. 

[Swartout 83] Swartout, W. 
XPLAIN: A system for creating and explaining 

expert consulting system s. 
Artificial Intelligence 21 (3):285-325, September, 

1983. 
Also available as ISI/RS.83.4. 

[Szolovits 83] Szolovits, P. 
Toward more perspicuous expert system 

organization. 
In W. Swartout (editor), SIGART Newsletter. 

ACM, 1983. 
in Report on Workshop on Automated 

Explanation Production. 

References 

[Brachman 78] Ronald Brachman. 
A Structural Paradigm for Representing 

Knowledge. 
Technical Report, Bolt, Beranek, and Newman, 

Inc., 1978. 

[Buchanan 84] Buchanan, Bruce G. and Shortliffe, Edward H. 
Rule-Based Expert Systems The MYCIN 

Experiments of the Stanford Heuristic 
Programming Project. 

Addison-Wesley Publishing Company, 1984. 

[Davis 80] Davis, R. 
Knowledge-based systems in artificial 

intelligence. 
McGraw-Hill, 1980. 

[Interlisp 83] Interlisp Reference Manual 
Xerox Corporation, 1983. 

[Lehnert 78] Lehnert, Wendy G. 
The Process of Question Answering. 
Lawrence Erlbaum Associates, Hillsdale, New 

Jersey, 1978. 


