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A B S T R A C T 

METEOR is a rule- and frame-based system for short-term 
(3-18 hour) severe convective storm forecasting. This task re-
quires a framework that supports inferences about the temporal 
and spatial features of meteorological changes. Initial predic­
tions are based on interpretations of contour maps generated by 
statistical predictors of storm severity, lb confirm these pre­
dictions, METEOR considers additional quantitative measure­
ments, ongoing meteorological conditions and events, and how 
the expert forecaster interprets these extra factors. Meteoro­
logical events are derived from interpreting human observations 
of weather conditions in the forecast area. To accommodate the 
large amounts of different types of knowledge characterizing this 
problem, a number of extensions to the rule and frame represen­
tations were developed. These extensions include a view scheme 
to direct property inheritance through intermingled hierarchies 
and the automatic generation of production system rules from 
frame descriptions on an as-needed basis for event recognition. 

I I N T R O D U C T I O N 

The weather prediction task offers some particular chal­
lenges for expert system research and development. It is a 
domain characterized by complex scientific theories (e.g., ther­
modynamics), assorted models and statistical predictors, and 
huge quantities of meteorological data that have both spatial 
and temporal characteristics. Nonetheless, forecasting is still 
considered something of a "black art," if only because those 
models are not yet perfectly developed to allow forecasters to 
make consistently accurate, fine-grain predictions. With reality 
always providing the opportunity for perfect hindsight, a me­
teorologist can also acquire a repertoire of heuristics. Often, 
the art of expert forecasting resides in the expert's knowledge 
of how the statistical predictors or models are affected by id­
iosyncratic features of his geographical region. In this regard, 
the problem is similar to many applications that have routinely 
been approached with a combination of statistical methods plus 
"local" expertise. 

We have been developing an expert system, called ME­
TEOR, that performs a specialised forecasting task—the short-
term (3-16 hours) prediction of severe storms, usually hail 
storms. METEOR predicts where storms will initiate, how 
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intense they will be, and where they will move. One of our 
design goals was to automate as much of this prediction task as 
possible. This means that METEOR starts with much of the 
same raw data that the expert uses—meteorological measure­
ments, maps describing features on a large scale, and reports 
of conditions provided by trained observers at weather stations. 
This contrasts with an approach whereby the user characterizes 
the data or describes the problem in some symbolic form that 
an expert system can directly use (for instance, as elements 
to match rule conditions in a production system). METEOR 
first derives what the state of the world is and then applies the 
expert's strategy, knowledge, and heuristics to interpret this 
knowledge and make predictions. 

METEOR is not a generalized forecasting system. A signif­
icant portion of it relies on the particular strategies and tools 
developed by the Alberta Research Council's Atmospheric Sci­
ences Department. However, we believe that our approach and 
methods provide some useful insights into developing systems 
with similar domain characteristics and design goals. The main 
issue for us has been organizing and representing a variety of dif­
ferent types of knowledge. Although METEOR does not have 
access to all the data available to human forecasters, its problem 
is still data intensive. METEOR has an internal representation 
of the forecast area that allows it to organize large quantities 
of meteorological measurements, synthesized information, and 
predictions. METEOR is also able to integrate this knowledge 
spatially and temporally. In this paper, we will focus on how 
we have approached this problem by integrating and extending 
two common AI formalisms: condition-action rules and frames. 

I I A P P L I C A T I O N BACKGROUND 

The Alberta Research Council's Atmospheric Sciences De­
partment has conducted a research program on weather modifi­
cation and hail suppression for a number of years. During "hail 
season," an experienced meterologist and several assistants are 
responsible for predicting the occurrence, severity, and path of 
hail storms for this research program. 

The meteorologist begins his task by trying to understand 
patterns of meteorological activity. He typically consults a large 
number of maps, both diagnostic and prognostic in nature, gen­
erated from meteorological measurements taken at weather sta­
tions throughout the continent. These maps provide informa­
tion such as temperature, humidity, and wind direction and 
speed at several levels of the atmosphere. He also uses a statis­
tical index that has been developed to measure convective ac­
tivity [1]. Very simply, thb index (called the Synoptic Index of 
Convection, or Sc4) combines four predictor variables aimed at 
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(a) Sc4 Index Map 
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F i g u r e 2 . Example stat ion report for stat ion Y E G , w i t h 
cloud cover report (a) and remarks section (b) marked. 

on the map). The expert also produces another contour map 
of surface moisture (Figure l b ) and interprets it in a similar 
fashion. He combines the significant regions he has noted on 
each map to refine his predict ion of s torm location and to assess 
part ial ly the direction of storm movement. 

Other informat ion f rom the weather stat ion reports provide 
qual i tat ive informat ion on weather conditions that the expert 
can use to forecast. An example stat ion report is given in Figure 
2. A number of meteorological measurements are given in this 
report. The first, marked (a) in the figure, indicates which types 
of clouds are observed and what observable port ion of the sky 
they cover. In this example, the first cloud layer the observer 
sees, cumulonimbus (CB) , covers 7/10 of the sky. A second 
cloud layer of altocumulus (AC) covers the remaining 3/10 of 
the sky the observer can see. Other data in the report describe 
the state of this cloud cover. For example, the CB clouds are 
"broken" ( B K N ) , meaning the observer can see through this 
layer. If an earlier report f rom this stat ion had indicated the 
layer was overcast, this shift to broken might signify certain 
dynamics or processes were occurring. 

The other impor tant informat ion is the opt ional remarks 
section of the report , marked (b) in the figure. In this section, 
the human observer at the weather stat ion provides addi t ional 
informat ion on current conditions that are not easily expressed 
in coded format. What these remarks report is the fol lowing: 
"There is l ightning in the clouds, f rom cloud to cloud, and f rom 
cloud to the ground in the southwest direction [relative to the 
stat ion]. Showers are heavier in the north and west directions. 
The pressure [at the station] is unsteady." 

Both the cloud cover informat ion and the informat ion con­
tained in the remarks section have gone unanalyzed in the past 
because there is no simple way to "understand" their informa­
t ion and codify it in a form usable by stat ist ical models. How­
ever, these qual i tat ive conditions are meaningful to an experi­
enced meteorologist fami l iar w i t h this part icular forecast area. 
For example, our expert has a number of informal heuristic 
rules based on cloud formations. An example f rom this " look-
out-the-window" strategy is a I f there are cirrostratus clouds, 
then i t 's not likely a s torm w i l l occur." This rule is not sim­
ply an empirical association, but is part of the expert 's causal 
understanding of storm format ion and thermodynamics. 

In sum, this task is characterized by a huge amount of quan­
t i ta t ive data tha t change dur ing the course of the forecast pe­
r iod. The nature of how the data change over t ime is also infor­
mative. Meteorological measurements are usually displayed and 
interpreted graphically, and the forecaster often communicates 

(b) Surface Moisture Index Map 

F i g u r e 1. Sample Index Contour Maps 

evaluating whether the r ight ingredients—atmospheric instabil­
i ty and moisture—are present in the right amounts to generate 
convective act iv i ty. The index generates a single rat ing (-3 to 
+5 ) of the degree of potential convective activity. A higher rat­
ing means a more severe storm. For example, -1 means "scat­
tered showers but no thundershowers" while +5 means "hail 
larger than golf bal ls". The positive-negative sides of this scale 
roughly correspond to a hail-no hail dist inct ion. 

This index is computed f rom meteorological data taken at 
the weather stations. Values are interpolated between stations 
and the final output is provided in the form of a contour map 
(Figure l a ) . The expert interprets this map using other infor­
mat ion . For example, he locates the regions of maximum Sc4 
and considers w ind speeds and directions at a particular pres-
sure level. He then delineates a storm in i t iat ion region (the grey 
areas marked in Figure l a ) upwind of the maximum, where the 
values are changing most rapidly (i.e., areas of strong gradient 
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his own predictions and conclusions graphically as well. The 
forecaster's world and his knowledge have a four-dimensional 
quality: the "things" about which he reasons have spatial char­
acteristics (in the horizontal and vertical dimensions) as well 
as temporal characteristics. Finally, the expert has qualita­
tive knowledge and heuristics acquired from his experience with 
this forecast area. The use of this knowledge to interpret and 
augment the statistical indices distinguishes his forecasts from 
those of less experienced forecasters. 

I l l K N O W L E D G E REPRESENTATION 

As noted earlier, we will focus on our approach to repre­
senting the different types of knowledge in this data-intensive 
task. Since we believe no single formalism is appropriate 
for all types of knowledge that typically characterize expert 
problem-solving, our initial predisposition was to combine dif­
ferent knowledge representations. This turned out to be essen­
tial in handling this task. Several problem features were com­
patible with a rule-based approach: there were many sub tasks 
METEOR must perform to acquire and synthesize the data; 
there was a relatively well-defined strategic approach to inter­
preting the quantitative predictors and maps for making and 
fine-tuning predictions; and the qualitative knowledge could be 
captured in IF-THEN associations. On the other hand, much of 
the domain knowledge lends itself to a hierarchic organization 
that will permit inheritance of properties. For example, there 
is knowledge about the concept "cloud" that is shared by both 
"nonconvective clouds" and "convective clouds." There are 
many such hierarchically-related concepts, some related to wea­
ther conditions, others related to areas recognized on contour 
maps like those in Figure 1. More importantly, METEOR re­
peatedly instantiates these concepts dynamically for each fore­
cast it makes during the day. The instantiated concepts must 
be organized in a way that is efficient for both storage and infer-
encing. We have chosen a frame-based representation for this 
type of knowledge. 

Not all of METEOR's knowledge is symbolic, because not 
all of the data can be efficiently represented symbolically. The 
rule and frame components are augmented by LISP objects, 
primarily for representing and processing contour maps. The 
following sections concentrate on the manner in which the two 
primary formalisms were extended and integrated to represent 
the knowledge in this task. 

A. Observations and Events 

One unique demand of this task is its temporal quality. Me­
teorological events are processes occurring over time, but they 
are inferred from direct observations that are made at partic­
ular points in time. This is analogous to the distinction some 
expert medical diagnostic systems [2] make between symptoms 
and inferred pathological states. Understanding the relation­
ship between observations and events is critical, because much 
of the expert's qualitative knowledge concerns the recognition 
of certain meteorological events and their implications for fore­
casting. 

We distinguish between an observation and event in the 
knowledge representation, primarily in terms of their spatial 
and temporal characteristics. Observations occur at a particu­
lar place and time. Events, inferred from observations, range 
over time and space. While a set of observations may signal that 

a particular event is occurring, we cannot unequivocally know 
when the event really started or stopped from this single data 
point. Similar distinctions have been made by temporal logic 
systems [3]. For METEOR, the domain knowledge strongly 
constrains what is and is not likely temporally, so we use very 
simple temporal inference rules to capture the relation among 
observations and events. 

Unlike observations, events can be separated into stages. 
Each stage specifies a set of required observations. More im­
portantly, the stages indicate particular properties the required 
observations must have and how the observations must be tem­
porally and spatially related. For example, the concept for the 
cloud type altocumulus-standing-lenticularis (ACSL) will be in­
stantiated when ACLS is observed. An ACLS observation is 
one of the required observations for a LAMINAR-FLOW event. 
The event will be recognized, however, only when this ACLS 
observation occurs in the morning and to the west of certain 
other observations. In combination with a different set of ob­
servations, or with slightly different properties, this ACLS ob­
servation might signal another kind of event. The event frames 
specify these sorts of details about particular observation in­
stantiations. 

Knowledge relating observations and events is initially repre­
sented in frames, since this formalism provides an easily-under­
stood specification of concepts and properties that are related 
through type hierarchies. However, recognizing that events are 
occurring from a set of observations is really a matching prob­
lem: the same type of observation might be shared by different 
events, and each event typically requires several different obser­
vations. Some production system languages, such as OPS [4,5], 
provide powerful matching algorithms which can be exploited 
for this kind of problem. Therefore, we separate event-matching 
into two stages: first find a set of potentially-matched events, 
and then check the observations against the detailed specifica­
tions on the event frames. The first stage is handled by produc­
tion rules that METEOR automatically generates from specifi­
cations of required observations on event frames. In this way, 
METEOR takes advantage of the overlap among required ob­
servations associated with different events (via the rule match­
ing network described in [5]) by building rules of the form IF 
obs-1 obs-2 obs-4 ... THEN event-A and IF obs-1 obe-8 obs-
4 ... THEN event-B. When observations instantiated in the 
frame system are inserted in the production system's working 
memory, a number of potentially-matched events can be recog­
nized. The second stage of event-matching examines each can­
didate event in turn, checking whether the relationships among 
instantiated observation match the specifications given in the 
candidate event's frame. 

There are a number of advantages to this approach. First, 
it exploits the best aspects of the two formalisms. The frame 
structure allows instantiated concepts to participate in type 
hierarchies and have their interassociations available to ME­
TEOR as additional properties. Specific event properties can 
reference the properties of instantiated observations. Since 
searching for observations is a relatively time-consuming task, 
we do not want to keep looking for the same type of observation 
for different events. In this regard, recognizing when particular 
events are occurring is best done by production rule match­
ing. By adhering to a particular format for specifying required 
observations on the event frame, we can modify or extend ME­
TEOR's knowledge about event and observation relationships 
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at the frame level and st i l l ensure that legal production rules 
are generated, on an as-needed basis. Finally, the goal of event-
matching is to be able to make addit ional inferences concerning 
s torm development. The inference rules associated w i th events 
are also in i t ia l ly stored on the event frames. Only when an event 
is matched does M E T E O R migrate its inference rules f rom the 
frame representation to the rule representation. 

The last important feature of events is their temporal qual­
i ty. Because events are defined as spanning t ime, there must be 
a way to represent changes that a single property of an event 
can have over t ime. The most obvious example is " locat ion" . 
In general, any concept might have a mix of t ime-invariant and 
t ime-varying properties. We represent t ime-varying properties 
by specifying a path to a generic time frame. A t ime-frame 
essentially has an add/delete l ist format for indicat ing what a 
property's value was at a part icular t ime. Time frames are used 
extensively throughout M E T E O R ' s knowledge representation. 
Not only do they provide a way of maintaining what proper­
ties were, but they serve as a consistent way of representing 
predictions as changes to properties for future times. 

B . I n t e r m i n g l e d H i e r a r c h i e s 

In this domain, the same concept can part icipate in several 
different conceptual hierarchies. However, some knowledge, es­
pecially membership, must be repeated across several hierar­
chies. We could use simple, unconnected hierarchies and du­
plicate knowledge when necessary, but there would be no easy 
way to maintain duplicated knowledge or to know all the hier­
archies in which a concept participates. We have approached 
this problem by developing a view scheme that combines sim­
ple hierarchies into a single network. Repeated concepts in the 
original hierarchies become a single node in this new network. 
Each node represents the collection of all knowledge about a 
concept. Knowledge that was part icular to a single hierarchy 
defines a certain view of the concept. This view is maintained as 
a further subdivision of knowledge w i th in the node. Each node 
in the network has as many views as the number of simple hi ­
erarchies in which its concept originally part ic ipated. Not all 
knowledge about a concept has to be associated w i t h a view— 
it is possible to declare knowledge as being true of the concept 
in general. This approach is similar in spir i t , i f not complexity, 
to previous proposals for organizing knowledge around different 
perspectives and viewpoints [6]. 

An example is i l lustrated in Figure 3. In this case, the con­
cept C L O U D is a member of both the OBS (observation) hierar­
chy and E V E N T hierarchy. The complete concept for C L O U D 
includes both its views as an OBS and an E V E N T . Knowledge 
generally true of C L O U D (that would have been found in both 
the OBS and E V E N T hierarchies) resides on the CLOUD frame 
(frame 3). Knowledge unique to a C L O U D view (that would 
have been found in only one of the original hierarchies) is repre-
sented in view frames (frames 4 and 5) associated w i t h the main 
node frame (frame 3). There are three ways to separate the to­
ta l knowledge about C L O U D . It can be viewed as an E V E N T , 
in which case knowledge is collected f rom frames 4, 3, and 1. 
When viewed as an OBS, knowledge f rom frames 5 ,3 , and 2 is 
accessible. Final ly, al l the knowledge associated w i t h C L O U D 
(frames 1-5)—previously spl i t over different hierarchies—is also 
accessible f rom C L O U D . This includes knowledge about what 
views it has. It might seem that al l this knowledge could reside 
on the single C L O U D frame, w i t h the property names imply ing 

F i g u r e 3. Views in Two Combined Hierachies 

the hierarchy f rom which each piece of knowledge or iginated. 
However, it is possible that the same property of a concept 
could have different values in different hierarchies. By placing 
properties on dist inct views, we avoid this potential clash. 

It is not necessary for a concept to have more than one par­
ent in order to have views. Al though CIRRUS has only one 
parent in this example network, i t was repeated in the or ig i ­
nal unconnected hierarchies. So, just like C L O U D , CIRRUS 
has views that reflect the original hierarchies. For example, 
CIRRUS can be viewed as a C L O U D E V E N T , in which case 
knowledge is collected f rom frames 7, 6, 4, 3, and 1. When 
viewed as a C L O U D OBS, knowledge is collected f rom frames 
8, 6, 5. 3, and 2. In effect, CIRRUS inherits views (e.g., frames 
4 and 5) f rom its parent, and consequently inherits properties 
f rom those views. 

Frames 1-8 in Figure 3 represent part of M E T E O R ' s in i t ia l 
hierarchy. The concepts at the lowest level of this hierarchy can 
be dynamical ly instant iated. It is possible to instant iate a par­
t icular v i e w of a concept, thereby restr ict ing the inheritance 
of other views associated w i t h that concept. Frames 9 and 10 
i l lustrate two examples of view instant ia t ions—EVENT-47 and 
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OBS-12. (These event and observation instantiations do not 
occur simultaneously and do not necessarily co-exist.) OBS-12 
is an instantiation of CIRRUS viewed as a CLOUD OBS. It in­
herits only those properties on an inheritance path that include 
frames 8, 6, 5, 3, and 2. Similarly, EVENT-47, as a-kind-of 
CIRRUS CLOUD EVENT, inherits only those properties on a 
path consisting of frames 7, 6, 4, 3, and 1. 

The main advantages to this scheme are (a) properties com­
mon to all views can be shared; (b) the structure of the network 
need not be repeated for every simple hierarchy; (c) the number 
of ways of viewing a particular concept is part of the knowledge 
available to the system; and (d) the property inheritance mech­
anism of simple hierarchies is preserved. 

I V I M P L E M E N T A T I O N DETAILS 

Figure 4 shows the current METEOR system and its major 
parts. METEOR runs on a Xerox 1100 Lisp Machine and is 
written in INTERLISP-D and OPS4 [4]. Initial data collection 
is done on a VAX 11/780 running VMS. 

A . V A X 11/780 Side 

METEOR is configured by information that resides on 
the VAX. This information contains geographical information 
about the forecast area, weather stations in the area, and its di­
vision into larger geographical regions (described below). It also 
describes a directory that is used to organize both station re­
ports and contour maps generated from this station data. Data 
from weather stations (Figure 2) arrives hourly on a dedicated 
circuit line. This station data is automatically collected by pro­
cesses that monitor a particular set of stations in the forecast 
area (currently about 70 stations). At present, METEOR is 
being tested and refined using several test cases from the 1984 
hail season. 

B. Xerox 1100 Side 

The frame and rule-based components reside on the 1100. 
The rule-based component is currently implemented as three 
OPS production systems (although they are compiled together). 
Our version of OPS4 was extended to compile its action sides, 
and its interface with the INTERLISP-D environment was im­
proved. The Forecaster production system initiates the con­
figuration of the METEOR'S "storm world" (described below) 
and is responsible for data acquisition, interpretation, and fore­
casting subtasks. This Forecaster production system invokes 
two other production systems that have very specialized tasks: 
the Remarks Parser production system, which "translates* and 
parses the human observations contained in the station report 
remarks (Figure 2) and the Region Builder production sys­
tem, which identifies regions of meteorological activity from 
the parsed remarks and cloud reports (Figure 2). These are 
described in more detail below. 

The frame and view component was implemented in INTER­
LISP-D. The production systems interact with the frame rep­
resentation via the flexibility afforded by the OPS4 language in 
accessing the INTERLISP-D environment. Thus, the produc­
tion rules can examine frames, transfer knowledge from frames 
into working memory, build new rules from knowledge stored 
on frames, initiate processes for building maps on the VAX and 
transferring them to the 1100, and initiate the creation of new 

Figure 4. System Organization 

frames to represent the instantiation of particular meteorologi­
cal activities it has derived or inferred. 

METEOR currently starts with 140 production rules (across 
the three PSs) and 300 frames. In the course of forecasting, 
many new frames are dynamically created that represent par­
ticular instantiations of the concepts in the type hierarchies. 
This could be an additional 300 or more frames per forecast. 
(There are typically four forecasts per day.) New OPS rules 
are dynamically generated from information stored in frames 
on an as-needed basis, particularly to aid the event-matching 
described earlier. 

C. METEOR Output 
METEOR outputs it predictions by displaying a map of the 

forecast area on the 1100 screen and outlining the location of 
one or more storm initiation regions. For each region, ME­
TEOR displays a predicted intensity and direction, as well as 
the factors that support these predictions. Qualitative influ­
ences on these predictions are also reported, e.g., "intensity 
may be lessened due to the influence of the mountains." 

V METEOR'S STORM WORLD 

Given maps like those in Figure 1, METEOR must be able 
to locate areas of absolute or relative maximum, identify areas 
of strong contour gradient, combine them with the location of 
other spatially-defined regions, and create new regions. There 
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are a number of questions impl ic i t ly asked and answered in this 
process: Does this region intersect w i th another region of a 
part icular type? Was there a part icular act iv i ty southeast of 
th is region two hours ago? Thus, a knowledge-representation 
framework must support creating and reasoning about entities 
defined in space and t ime. 

A . R e p r e s e n t i n g M e t e o r o l o g i c a l A c t i v i t i e s 

M E T E O R ' s storm wor ld (about 2.3 mi l l ion km 2 ) is repre­
sented as a two-dimensional array of map elements or mapels. 
Mapels have no meteorological significance. The location of all 
objects in this wor ld are defined by mapels. There are three ma­
jo r types of objects in this wor ld: STATIONS, REGIONs, and 
GEOREGIONs . A STATION is a source of data, located by a 
single mapel. A R E G I O N is a collection of mapels to denote 
some part icular meteorological activity. Example types of re-
gions are "Sc4 max imum" , "storm in i t i a t ion" , or "cirrostratus 
observation". GEOREGIONs are collections of mapels, larger 
than REGIONs, that represent a higher-level organization of 
the storm wor ld. They are used pr imari ly to speed certain in­
ferences about the relative locations of regions. An example 
georegion would be "Central A lber ta" . The knowledge asso­
ciated w i t h these objects and their members is represented in 
frames w i th in a type hierarchy. While STATION and GEORE­
G I O N have a fixed set of members, REGION is dynamically 
instant iated to represent areas on contour maps and meteoro-
logical activit ies that are located in space and t ime. In fact, 
all M E T E O R ' s dynamic instantiations must be a-kind-of RE­
G I O N and have a corresponding a view as a REGION. In Fig­
ure 3, then, the OBS-12 instant iat ion of CIRRUS viewed as a 
CLOUD OBS would more commonly be represented as concept 
w i t h two separate views: the view shown in Figure 3 as frame 
10 and another view as a REGION. 

The properties that REGION instantiations inherit f rom 
R E G I O N are pr imar i ly spatial in nature. One such property 
is the mapels property. Whi le this property is t ime-invariant 
for STATION and GEOREGION members (since these objects 
do not move), it is t ime-varying for some instantiations of RE­
G I O N (for activit ies moving through the forecast area). The 
t ime frames that describe the dynamic properties that OBS-12 
inherits as a-kind-of R E G I O N are linked to its view as a RE­
G I O N . By using t ime frames to describe the dynamic properties 
of the entire storm wor ld (e.g., what kinds of activit ies popu­
lated the wor ld at a part icular t ime) , M E T E O R can keep track 
of what the world looked like in the past and what it predicts 
the wor ld might look like in the future. Under this scheme, 
answers to the kinds of questions given above ("Does Region 
A intersect w i t h Region B?" and " Was there a Sc4 maximum 
southwest of Region C four hours ago?") are handled essentially 
the same way by the same mechanisms. 

B . B u i l d i n g Reg ions 

The product ion systems direct the identif ication and cre-
at ion of new regions f rom two types of raw data: contour maps 
(Figure 1) and weather stat ion reports (Figure 2). 

1. Regions f rom Contour Maps—To glean the same infor­
mat ion f rom the Figure 1 contour maps as the expert does, 
M E T E O R must recognize areas of maxima, locate the interest­
ing areas of strong contour gradient, and create new entities in 
i ts internal storm wor ld corresponding to these areas. Plot ted 

contour maps like those in Figure 1 can be produced on the 
V A X and transferred to the 1100 at M E T E O R ' s request. 

The expert's strategy for locating " interest ing" gradients on 
the contour map is embodied in the Forecaster product ion sys­
tem. The potential ly interesting gradients are those w i t h the 
greatest changes in slope that occur upwind of the max imum. 
The Forecaster production system consults wind speed and d i ­
rection data stored in the frame system (a t ime-varying prop-
erty of certain STATION members). To get the changes in the 
slope of the contours, M E T E O R takes the first deriv i t ive of the 
contour map along the direction of the proper w ind . Given the 
original contour map, a derivi t ive map, and the mapel-space 
map, M E T E O R examines those port ions of the derivi t ive map 
that are upwind of the line of max imum. Candidate s torm in i ­
t ia t ion regions are strong gradients (those w i t h a high enough 
derivit ive value). Once regions are located in mapel space, M E ­
T E O R can create regions in its internal s torm wor ld like the 
grey areas in Figure 1 outl ined by the forecaster. 

2. Regions f rom human remarks—There is considerable vari­
abi l i ty in the nature of abbreviations, in whether punctuat ion 
is used to jo in elements or signal the end of a phrase, and in 
word order. This variabi l i ty occurs both w i th in and across re­
marks. The job of METEOR 's Remarks Parser product ion sys­
tem module (a production system plus lexical knowledge rep-
resented in frames) is to extract the remark f rom the stat ion 
data, translate the abbreviations into fu l l words, and parse the 
remark into its proper constituents. The Remarks Parser relies 
solely on a set of syntactic heuristics gleaned f rom a corpus of 
remarks. 

The parsed remarks are a t ime-varying property of the sta­
t ion f rom which they originated. The Qual i tat ive Region PS 
can then satisfy a request f rom the Forecaster PS such as "de-
termine if there are cirrostratus observations in northwestern 
Alber ta." This request typical ly occurs when the Forecaster 
production system is involved w i t h event-matching. The re-
quest w i l l actually include detailed property specifications for 
an observation that were found on the event's frame. The Qual ­
i tat ive Region PS examines the parsed remarks as well as the 
cloud cover informat ion, searching for the requested observa­
tions, and locates those finds in mapel space. It then computes 
a set of mapels to define that region, and creates a concept tha t 
has views as a REGION and as part icular k ind of OBServat ion. 

V I R U L E J U S T I F I C A T I O N 

In this paper, we have concentrated on describing how M E ­
TEOR's knowledge was designed to accommodate the problem-
solving demands of this task. We want to describe briefly a 
further use of this framework for investigating how procedu­
ral and declarative representations can be integrated to obta in 
more expert-like problem solving. One feature of expert prob­
lem solving is the "conceptual leaps" that an expert seems to 
make. This observation tha t much of an expert 's knowledge 
seems "compiled" [7,8] is a not ion common to many theories of 
skilled performance. There is usually a chain of causal re lat ion­
ships and support ing inference rules connecting what otherwise 
appears to be a mysterious t ransi t ion f rom an antecedant con­
di t ion to a consequence. We recognize this when our expert , 
having given a rule such as " I f there are cirrostratus clouds, 
then a severe storm is unlikely," can produce a detailed causal 
just i f icat ion for this assertion. 
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As noted earlier, METEOR has a redundant representa­
tion of some domain knowledge: those relating events and 
observation types, and those asserting the implications of a 
matched event. This knowledge resides in the event's frame 
representation but is migrated to the rule representation on 
an as-needed basis. We are exploring this method as a means 
of unpacking inference rules by referencing causal connections 
and relationships among the rule's related frames. Just as an 
event's required-observations property specifies particular values 
for properties of instantiated observations, an event's inference 
rules are stored as properties whose values reference other con­
cepts in the network. A mechanism aimed at justifying a pro-
cedurally-represented rule can follow these references through 
the frame representation. In doing so, it will find a number 
of low-level inference rules and relations that were never repre-
sented procedurally or directly used in problem-solving. These 
low-level rules and relations are the causal underpinnings of the 
expert's conceptual leap. 

For example, the justification for the cirrostratus rule above 
rests on the notion that the required "players" associated with a 
cirrus event (e.g., vertical motion in a downward direction) have 
properties that clash with the required "players" for a storm 
event (e.g., vertical motion in an upward direction). These 
players can also exist as concepts in the type hierarchies, with 
their own associated inference rules indicating how instantia­
tions of their properties would effect the properties of other 
concepts. For instance, If VERTICAL-MOTION's direction 
property were instantiated as down, this would suggest that 
RELATIVE-HUMIDITY's direction-of-change property should 
be instantiated as decreasing). The notion of required play­
ers assembling with the correct properties and affecting each 
other's the properties is similar to some ICAI approaches aimed 
at helping students understand complex causal processes [9]. 

By separating the procedural knowledge from its declarative 
support, one can have an expert system that problem-solves as 
if its knowledge were compiled, but that could back up that 
compiled knowledge on demand. By having a facility for auto­
matically migrating declaratively-represented rules to procedu­
ral form during problem solving, an expert system could access 
a wider range of inference rules on an as-needed basis than the 
set it originally began the problem with. 

V I I S U M M A R Y A N D CONCLUSIONS 

METEOR could have been designed to take symbolic spec­
ifications of weather conditions, along with their spatial and 
temporal characteristics, from a user. However, this would 
have precluded using much of the data we currently interpret. 
The quantity of the data, particularly qualitative information 
on weather conditions, was so great that it could not be pro­
cessed by human forecasters in real-time. In this sense, ME­
TEOR goes beyond what the expert currently does. This has 
increased the complexity of the problem, since this is the first 
opportunity the expert has had to use his qualitative knowledge 
about ongoing weather conditions during real-time forecasting. 
The positive aspect is that METEOR will not only be useful 
to less-experienced forecasters, but will provide the expert with 
additional information that has been intelligently incorporated 
into its forecast. 

We found it necessary to use and extend a number of dif­
ferent formalisms to handle the large amount of different types 

of knowledge: the meteorological measurements, data in map 
form, hierarchically-related domain concepts, strategies and 
subtasks, and qualitative inference rules. The view scheme 
is an efficent method of organizing the knowledge METEOR 
uses. It also imposes a rigor on the frame structure and has 
made knowledge about this structure more explicit to the sys­
tem. By giving some procedural knowledge an initial declara­
tive representation, we have made this knowledge more accessi­
ble and potentially more versatile. These redundant represen­
tations could facilitate rule justification without compromising 
the conceptual-leap aspect of expert problem-solving. Why, 
when, and how an expert system might unpack its procedu­
ral knowledge to aid its own problem-solving requires further 
consideration of the role of causal models in expert reasoning. 
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