
PARSING CIRCUIT TOPOLOGY IN A DEDUCTIVE SYSTEM

Takushi Tanaka

The National Language Research Institute
3-9-14 Nishigaoka Kita-ku, Tokyo 115, Japan

ABSTRACT

As a step toward automatic circuit understand­
ing, we have developed a method for parsing circuit
topology in a deductive system called Duck. A circuit
is viewed as a sentence and its elements as words.
Generating circuits with specific functions is repre­
sented by deductive rules analogous to definite clause
grammars. Using those rules, an object circuit is de­
composed into a parse tree of functional blocks in
terms of logic programming.

1 INTRODUCTION

Electronic circuits are designed as a goal orient­
ed composition of basic circuits with specific func­
tions. Therefore, understanding a circuit means finding
a hierarchical structure of functional blocks and
rediscovering the designer's original intentions. Almost
all designed circuits have the features of language
which carries information of the speaker's intentions
mapped on its structures. In addition, a circuit
schematic not only represents a physical circuit , but
also functions as a writ ten language for electronic
engineers.

We have developed a method for parsing circuit
topology in a deductive system called Duck [2]. A
circuit is viewed as a sentence and its elements as
words. Generating circuits with specific functions is
represented by the deductive rules analogous to def i­
nite clause grammars [3]. Using those rules, an object
circuit is decomposed into a parse tree of functional
blocks in terms of logic programming. The parsing
circuit topology is a step toward automatic circuit
understanding.

II REPRESENTATION OF CIRCUITS

A. Circuit and its Elements

Figure 1 shows a small portion of an analog IC
circuit [6]. We call the circuit CD71. The circuit is
represented as follows in our system.

because a resistor does not have polarity. "(NPN-TR
Q3 #4 #12 #11)" denotes an NPN-transistor named
Q3 with the base connected to node #4, the emitter
to node #12, and the collector to node #11 respec­
tively. A circuit is represented by a tuple of those
terms surrounded by "!<" and ">". The order of the
elements in the tuple is not important.

Figure 1: Circuit CD71

B. Macro Elements

In designing analog IC circuits [6], there are
many functional blocks which are viewed as macro
elements (macro devices). The macro elements in
Figure 1, such as "diode-connected transistor", "series
circuit of diodes", and "voltage regulator" are repre­
sented as follows in the parsing process of the circui t .

408 T. Tanaka

element. Macro elements correspond to non-terminal
symbols, while ordinary elements terminal symbols.

I l l PARSING CIRCUIT TOPOLOGY

A. Rules for Parsing

In order to find a specific element in a circuit ,
a membership predicate "MEM-REST" is defined by
the following assertion.

"?"-marked symbols are universally quantified varia­
bles. The notation "!&?X" matches any number of
elements of a tuple, binding ?X to a tuple of those
elements. So "<!&?L ?M !&?R>" matches any tuple
of one or more elements, and binds ?M to a member
of the tuple, ?L to the left part, and ?R to the
right part of the rest [2). Using the predicate "MEM-
REST", we can separate an object circuit into an
element and the rest:

(MEM-REST element object-c i rcui t rest)

When we want to refer to macro elements
in a circuit , we wi l l use a predicate "SUBCT" (sub-
circuit) similar to "MEM-RESTH. The difference is
that the f irst argument of "SUBCT" is an abstract
element (macro element) rather than a real one. The
word "abstract" means that the element does not
exist as a member of the tuple representing an object
circuit . The abstract element is a sub-circuit wi th a
specific function represented as a macro element:

(SUBCT macro-element object-c i rcui t rest)

A macro element "diode-connected transistor"
is defined by the backward chaining rule (1). The rule
states that the existence of an NPN-transistor with
the base and the collector connected to the same
node implies the existence of a diode-connected
transistor as an abstract element. The functions
"D-TRANSISTOR" and "FD" are introduced as Skolem
functions representing the existence of a diode-
connected transistor and its name.

Figure 2: Diode-connected transistor

Rule (2) recursively defines "series circuit of
diodes" as a macro element. The conjunctive part
of the definit ion says "f ind a diode-connected transis­
tor ?Q connected to ?A and ?B in the circuit ?CT",
and "f ind a series circuit of diodes ?D connected to

?B and ?C in the rest of the circuit", then "give a
name (S-DD ?Q ?D) to the macro element".

(< - (SUBCT (S-DIODE ?NAME ?A ?C) ?CT ?RT)
(OR (SUBCT (D-TRANSISTOR ?NAME ?A ?C) ?CT ?RT)

(AND
(SUBCT (D-TRANSISTOR ?Q ?A ?B) ?CT ?RT1)
(SUBCT (S-DIODE ?D ?B ?C) ?RT1 ?RT)
(= ?NAME (S-DD ?Q ? D))))) (2)

Figure 3: Series Circuit of Diodes

The following rule enables us to refer to a
resistor represented by "(RESISTOR ?R ?A ?B)" or
"(RESISTOR ?R ?B ?A)" as "(RES ?R ?A ?B)".

(< - (SUBCT (RES ?R ?A ?B) ?CT ?RT)
(OR (MEM-REST (RESISTOR ?R ?A ?B) ?CT ?RT)

(MEM-REST (RESISTOR ?R ?B ?A) ?CT ?RT)))

Macro elements such as "voltage regulator" and
"current source" are also defined (Figure 4, 5),

Figure 4: Voltage Regulator Figure 5: Current Source

B. Parsing Process

In definite clause grammars [3], a part of a sen­
tence under processing is represented by two pointers.
Each pointer is composed of a list of words occurring
after that point in the sentence. The last two argu­
ments ?CT and ?REST of the predicate SUBCT
correspond to those pointers as shown in Figure 6. The
parsing process proceeds similarly. The main difference
is that the object circuit is not a string of words but
a set of elements. Also, every elements has a struc­
ture representing the circuit topology.

T. Tanaka 409

Figure 6: Sentence vs. Circuit

Feeding in the following goal causes Duck to
start parsing. "cd71" stands for the tuple of CD71.

(3)

As the last argument of the predicate SUBCT is
substituted by a null circuit "!<>", the goal asks
whether the total circuit CD71 pictured in Figure 1
is a macro element "comparator with internal voltage
reference". The comparator is defined as a conjunction
of two sub-goals: "single-ended differential amplifier",
and "voltage source" for reference, "differential ampli­
f ier" is defined as a conjunction of "emitter-coupled
pair", "current source", and a resistor for load, "vol t­
age source" is defined by either "voltage regulator" or
"voltage divider" as disjunctive sub-goals. These goals
are searched in top-down depth-first manner. The
init ial goal (3) succeeds, and we can eventurally
acquire values for the variables:

The name of the macro element keeps track of
succeeded goals. It forms a hierarchical structure of
macro elements and can be viewed as a parse tree
for the circuit corresponding to the syntactic structure
of a sentence (Figure 7).

C. Behavior of "SUBCT"

Functional blocks in analog IC designs are coded
into deductive rules. The rules define a set of circuits
in the same way that generative grammars define a
language. If the object circuit is given, and if the
circuit is a member of the set, the following goal
parses the circuit ,

(SUBCT ?WHAT-CIRCUIT o b j e c t - c i r c u i t !<>)

In this case, the top-down mechanism does not work
eff iciently, because the first argument does not have
information about how to parse the circuit . Duck tries
the rules one after another unti l the rest part of
SUBCT becomes a null circuit !<>. This parsing mech­
anism works effectively when a circuit goal is given
such as (3).

Even if an object circuit is not a member of the
set, if the null circuit !<> is replaced by a variable
?REST, the goal can identify all functional blocks
which are defined as macro elements in the circui t .

As a consequence of its realization in logic
programming, data flows to the predicate SUBCT are
bilateral. If a macro element is given instead of the
object circuit , the following goal works as a circui t
generator. We can then acquire the generated circui t
from the variable ?CT.

(SUBCT macro-element ?CT !<>)

IV ELECTRICAL CONDITIONS

A. Transferring Conditions between Goals

A "voltage divider" is defined by a pair of re-
sistors "(V-DIV ?X ?Y)" as shown in Figure 8, Duck
finds ten voltage dividers in the circuit of Figure 1
according to the definit ion, but eight of them such
as "(V-DIV Rl R4)" are not intended as voltage divid­
ers. These undesired interpretations do not form macro
elements which contribute to the goal of total c i rcui t ,
so they are to be rejected in the parsing process. If
we are informed that #1 and #2 are power nodes con­
nected to the power supply, we can reject undesired

410 T. Tanaka

Figure 8: Voltage divider

interpretations more eff ic ient ly. That is, we can use
an electrical condition which states that the node
?OUT of a voltage divider must not be connected to
power nodes.

The electrical conditions are not only used as
inputs for identifying a macro element, but also used
as outputs. If "voltage regulator" is identif ied in a
circui t , we can assume that the input node ?IN and
the common node ?COM of the voltage regulator must
be power nodes. Those assumptions are used afterward
in identifying another macro element such as a voltage
divider eff ic ient ly. In order to transfer the information
between goals, we wi l l introduce new variables "?IN-
COND" and "?OUT-COND" to form a new predicate
"SUBCTC" (sub-circuit with conditions).

We wi l l also re-define "voltage regulator" using
this predicate:

B. Context-dependent Circuit Generation

Suppose that a goal generates two conjunctive
sub-goals and each goal generates a voltage source
in designing circuits. When one of the voltages is
derived from the other, an engineer may combine
two voltage sources into one voltage source for sim­
pl ic i ty. That is, he has the abil i ty to use context
dependent circuit generation rules, while we have
developed the rules corresponding to context-free
grammars.

Using the predicate SUBCTC, we can overcome
the problem of combining circuits. When a subgoal
finds a voltage source, the subgoal generates informa­
tion pertaining to the voltage source as an electrical
condition and transfers the information to another
subgoal which needs a voltage source. Then the sub-
goal succeeds by the transferred conditions instead of
finding another voltage source.

C Rules for Combined Circuits

We wi l l define the voltage source using the
predicate SUBCTC, so that it generates a term
"(CTRLD-VOLTAGE (V-SOC ?V) ?OUT ?COM)" as
an electrical condition for the output. The condition
states that the voltage across ?OUT and ?COM is
controlled by the voltage source "(V-SOC ?V)". If
the goal succeeds, the rest of the circuit no longer
contains the voltage source, but the ?OUT-COND

contains the electrical condition term for another
goal which needs a voltage source. Using this condi­
t ion, we can define a current source which shares
its voltage source with another circui t .

V CONCLUSION

An electronic circuit is designed as a goal
oriented composition of functional blocks. Therefore,
if a circuit goal is given, the goal contains the infor­
mation needed to read the circuit . The top-down
mechanism effectively analyzes an electronic circuit
according to the goal. The parsing circuit topology
is a step toward automatic circuit understanding
similar to syntactic analysis of language. But, circuit
understanding implies more than language understand­
ing; unlike language, a circuit not only represents
designer's intentions, but also represents the physical
circuit itself.

We have tacit ly employed a closed world assump­
tion on circuit topology. That is, no element or device
exists without being explicit ly included in the circuit
tuple. However, the closed world assumption is no
longer appropriate for a tuple of electrical conditions.
The tuple represents only a small portion of the
electrical properties of an object circuit . If a specific
term is not found in the tuple, we can not conclude
that the circuit does not have the electrical property
denoted by the term. Negative information on electr i ­
cal conditions must be explicit ly mentioned in an
open world assumption.

The electrical conditions define the relationship
between a circuit topology and its electrical charac­
teristics. We can introduce more terms relating to
electrical behavior to the definitions of functional
circuits. We may introduce terms of the form "(<-
q p)" in which "p" and " q " specify electrical behavior.
When a circuit goal succeeds, the argument ?OUT-
COND of the predicate SUBCTC contains rules of
electrical behavior for the circui t . We are now in
the process of developing such rules.

ACKNOWLEDGMENTS

1 would like to thank: Prof. Drew McDermott for
Duck, Isao Nagasawa and David Litt leboy for their
helpful advice, and Al-circ le AIUEO for discussions.

REFERENCES

[1] DeKleer, J. "Causal and Teleological Reasoning in
Circuit Recognition" MIT AI-TR-529, 1979.

[2] McDermott, D. "Duck: A Lisp-based Deductive
System" Dept. of CS. Yale Univ., 1983.

[3] Pereira, F. and Warren, D. "Definite Clause Gram­
mars for Language Analysis" Ar t i f i c ia l Intelligence
13 (1980) 231-278.

[4] Tanaka, T. "Representation and Analysis of Electr i ­
cal Circuits in a Deductive System" Proc. IJCAI-83.
Karlsruhe W.-Germany, August 1983, pp. 263-267.

[5] Tanaka, T. "Structural Analysis of Electronic Cir­
cuits in a Deductive System" to appear in Com­
puter Expert Systems, Leonard Bolc ed., Springer-
Verlag, 1985.

[6] "101 Analog IC Designs" Interdesign Inc., Sunnyvale
Ca., 1976

