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ABSTRACT 

As a step toward automatic circuit understand­
ing, we have developed a method for parsing circuit 
topology in a deductive system called Duck. A circuit 
is viewed as a sentence and its elements as words. 
Generating circuits with specific functions is repre­
sented by deductive rules analogous to definite clause 
grammars. Using those rules, an object circuit is de­
composed into a parse tree of functional blocks in 
terms of logic programming. 

1 INTRODUCTION 

Electronic circuits are designed as a goal orient­
ed composition of basic circuits with specific func­
tions. Therefore, understanding a circuit means finding 
a hierarchical structure of functional blocks and 
rediscovering the designer's original intentions. Almost 
all designed circuits have the features of language 
which carries information of the speaker's intentions 
mapped on its structures. In addition, a circuit 
schematic not only represents a physical circuit , but 
also functions as a writ ten language for electronic 
engineers. 

We have developed a method for parsing circuit 
topology in a deductive system called Duck [2]. A 
circuit is viewed as a sentence and its elements as 
words. Generating circuits with specific functions is 
represented by the deductive rules analogous to def i­
nite clause grammars [3]. Using those rules, an object 
circuit is decomposed into a parse tree of functional 
blocks in terms of logic programming. The parsing 
circuit topology is a step toward automatic circuit 
understanding. 

II REPRESENTATION OF CIRCUITS 

A. Circuit and its Elements 

Figure 1 shows a small portion of an analog IC 
circuit [6]. We call the circuit CD71. The circuit is 
represented as follows in our system. 

because a resistor does not have polarity. "(NPN-TR 
Q3 #4 #12 #11)" denotes an NPN-transistor named 
Q3 with the base connected to node #4, the emitter 
to node #12, and the collector to node #11 respec­
tively. A circuit is represented by a tuple of those 
terms surrounded by "!<" and ">". The order of the 
elements in the tuple is not important. 

Figure 1: Circuit CD71 

B. Macro Elements 

In designing analog IC circuits [6], there are 
many functional blocks which are viewed as macro 
elements (macro devices). The macro elements in 
Figure 1, such as "diode-connected transistor", "series 
circuit of diodes", and "voltage regulator" are repre­
sented as follows in the parsing process of the circui t . 
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element. Macro elements correspond to non-terminal 
symbols, while ordinary elements terminal symbols. 

I l l PARSING CIRCUIT TOPOLOGY 

A. Rules for Parsing 

In order to find a specific element in a circuit , 
a membership predicate "MEM-REST" is defined by 
the following assertion. 

"?"-marked symbols are universally quantified varia­
bles. The notation "!&?X" matches any number of 
elements of a tuple, binding ?X to a tuple of those 
elements. So "<!&?L ?M !&?R>" matches any tuple 
of one or more elements, and binds ?M to a member 
of the tuple, ?L to the left part, and ?R to the 
right part of the rest [2). Using the predicate "MEM-
REST", we can separate an object circuit into an 
element and the rest: 

(MEM-REST element object-c i rcui t rest) 

When we want to refer to macro elements 
in a circuit , we wi l l use a predicate "SUBCT" (sub-
circuit) similar to "MEM-RESTH. The difference is 
that the f irst argument of "SUBCT" is an abstract 
element (macro element) rather than a real one. The 
word "abstract" means that the element does not 
exist as a member of the tuple representing an object 
circuit . The abstract element is a sub-circuit wi th a 
specific function represented as a macro element: 

(SUBCT macro-element object-c i rcui t rest) 

A macro element "diode-connected transistor" 
is defined by the backward chaining rule (1). The rule 
states that the existence of an NPN-transistor with 
the base and the collector connected to the same 
node implies the existence of a diode-connected 
transistor as an abstract element. The functions 
"D-TRANSISTOR" and "FD" are introduced as Skolem 
functions representing the existence of a diode-
connected transistor and its name. 

Figure 2: Diode-connected transistor 

Rule (2) recursively defines "series circuit of 
diodes" as a macro element. The conjunctive part 
of the definit ion says "f ind a diode-connected transis­
tor ?Q connected to ?A and ?B in the circuit ?CT", 
and "f ind a series circuit of diodes ?D connected to 

?B and ?C in the rest of the circuit", then "give a 
name (S-DD ?Q ?D) to the macro element". 

( < - (SUBCT (S-DIODE ?NAME ?A ?C) ?CT ?RT) 
(OR (SUBCT (D-TRANSISTOR ?NAME ?A ?C) ?CT ?RT) 

(AND 
(SUBCT (D-TRANSISTOR ?Q ?A ?B) ?CT ?RT1) 
(SUBCT (S-DIODE ?D ?B ?C) ?RT1 ?RT) 
(= ?NAME (S-DD ?Q ? D ) ) ) ) ) ( 2 ) 

Figure 3: Series Circuit of Diodes 

The following rule enables us to refer to a 
resistor represented by "(RESISTOR ?R ?A ?B)" or 
"(RESISTOR ?R ?B ?A)" as "(RES ?R ?A ?B)". 

( < - (SUBCT (RES ?R ?A ?B) ?CT ?RT) 
(OR (MEM-REST (RESISTOR ?R ?A ?B) ?CT ?RT) 

(MEM-REST (RESISTOR ?R ?B ?A) ?CT ?RT) ) ) 

Macro elements such as "voltage regulator" and 
"current source" are also defined (Figure 4, 5), 

Figure 4: Voltage Regulator Figure 5: Current Source 

B. Parsing Process 

In definite clause grammars [3], a part of a sen­
tence under processing is represented by two pointers. 
Each pointer is composed of a list of words occurring 
after that point in the sentence. The last two argu­
ments ?CT and ?REST of the predicate SUBCT 
correspond to those pointers as shown in Figure 6. The 
parsing process proceeds similarly. The main difference 
is that the object circuit is not a string of words but 
a set of elements. Also, every elements has a struc­
ture representing the circuit topology. 
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Figure 6: Sentence vs. Circuit 

Feeding in the following goal causes Duck to 
start parsing. "cd71" stands for the tuple of CD71. 

(3) 

As the last argument of the predicate SUBCT is 
substituted by a null circuit "!<>", the goal asks 
whether the total circuit CD71 pictured in Figure 1 
is a macro element "comparator with internal voltage 
reference". The comparator is defined as a conjunction 
of two sub-goals: "single-ended differential amplifier", 
and "voltage source" for reference, "differential ampli­
f ier" is defined as a conjunction of "emitter-coupled 
pair", "current source", and a resistor for load, "vol t­
age source" is defined by either "voltage regulator" or 
"voltage divider" as disjunctive sub-goals. These goals 
are searched in top-down depth-first manner. The 
init ial goal (3) succeeds, and we can eventurally 
acquire values for the variables: 

The name of the macro element keeps track of 
succeeded goals. It forms a hierarchical structure of 
macro elements and can be viewed as a parse tree 
for the circuit corresponding to the syntactic structure 
of a sentence (Figure 7). 

C. Behavior of "SUBCT" 

Functional blocks in analog IC designs are coded 
into deductive rules. The rules define a set of circuits 
in the same way that generative grammars define a 
language. If the object circuit is given, and if the 
circuit is a member of the set, the following goal 
parses the circuit , 

(SUBCT ?WHAT-CIRCUIT o b j e c t - c i r c u i t !<>) 

In this case, the top-down mechanism does not work 
eff iciently, because the first argument does not have 
information about how to parse the circuit . Duck tries 
the rules one after another unti l the rest part of 
SUBCT becomes a null circuit !<>. This parsing mech­
anism works effectively when a circuit goal is given 
such as (3). 

Even if an object circuit is not a member of the 
set, if the null circuit !<> is replaced by a variable 
?REST, the goal can identify all functional blocks 
which are defined as macro elements in the circui t . 

As a consequence of its realization in logic 
programming, data flows to the predicate SUBCT are 
bilateral. If a macro element is given instead of the 
object circuit , the following goal works as a circui t 
generator. We can then acquire the generated circui t 
from the variable ?CT. 

(SUBCT macro-element ?CT !<>) 

IV ELECTRICAL CONDITIONS 

A. Transferring Conditions between Goals 

A "voltage divider" is defined by a pair of re-
sistors "(V-DIV ?X ?Y)" as shown in Figure 8, Duck 
finds ten voltage dividers in the circuit of Figure 1 
according to the definit ion, but eight of them such 
as "(V-DIV Rl R4)" are not intended as voltage divid­
ers. These undesired interpretations do not form macro 
elements which contribute to the goal of total c i rcui t , 
so they are to be rejected in the parsing process. If 
we are informed that #1 and #2 are power nodes con­
nected to the power supply, we can reject undesired 
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Figure 8: Voltage divider 

interpretations more eff ic ient ly. That is, we can use 
an electrical condition which states that the node 
?OUT of a voltage divider must not be connected to 
power nodes. 

The electrical conditions are not only used as 
inputs for identifying a macro element, but also used 
as outputs. If "voltage regulator" is identif ied in a 
circui t , we can assume that the input node ?IN and 
the common node ?COM of the voltage regulator must 
be power nodes. Those assumptions are used afterward 
in identifying another macro element such as a voltage 
divider eff ic ient ly. In order to transfer the information 
between goals, we wi l l introduce new variables "?IN-
COND" and "?OUT-COND" to form a new predicate 
"SUBCTC" (sub-circuit with conditions). 

We wi l l also re-define "voltage regulator" using 
this predicate: 

B. Context-dependent Circuit Generation 

Suppose that a goal generates two conjunctive 
sub-goals and each goal generates a voltage source 
in designing circuits. When one of the voltages is 
derived from the other, an engineer may combine 
two voltage sources into one voltage source for sim­
pl ic i ty. That is, he has the abil i ty to use context 
dependent circuit generation rules, while we have 
developed the rules corresponding to context-free 
grammars. 

Using the predicate SUBCTC, we can overcome 
the problem of combining circuits. When a subgoal 
finds a voltage source, the subgoal generates informa­
tion pertaining to the voltage source as an electrical 
condition and transfers the information to another 
subgoal which needs a voltage source. Then the sub-
goal succeeds by the transferred conditions instead of 
finding another voltage source. 

C Rules for Combined Circuits 

We wi l l define the voltage source using the 
predicate SUBCTC, so that it generates a term 
"(CTRLD-VOLTAGE (V-SOC ?V) ?OUT ?COM)" as 
an electrical condition for the output. The condition 
states that the voltage across ?OUT and ?COM is 
controlled by the voltage source "(V-SOC ?V)". If 
the goal succeeds, the rest of the circuit no longer 
contains the voltage source, but the ?OUT-COND 

contains the electrical condition term for another 
goal which needs a voltage source. Using this condi­
t ion, we can define a current source which shares 
its voltage source with another circui t . 

V CONCLUSION 

An electronic circuit is designed as a goal 
oriented composition of functional blocks. Therefore, 
if a circuit goal is given, the goal contains the infor­
mation needed to read the circuit . The top-down 
mechanism effectively analyzes an electronic circuit 
according to the goal. The parsing circuit topology 
is a step toward automatic circuit understanding 
similar to syntactic analysis of language. But, circuit 
understanding implies more than language understand­
ing; unlike language, a circuit not only represents 
designer's intentions, but also represents the physical 
circuit itself. 

We have tacit ly employed a closed world assump­
tion on circuit topology. That is, no element or device 
exists without being explicit ly included in the circuit 
tuple. However, the closed world assumption is no 
longer appropriate for a tuple of electrical conditions. 
The tuple represents only a small portion of the 
electrical properties of an object circuit . If a specific 
term is not found in the tuple, we can not conclude 
that the circuit does not have the electrical property 
denoted by the term. Negative information on electr i ­
cal conditions must be explicit ly mentioned in an 
open world assumption. 

The electrical conditions define the relationship 
between a circuit topology and its electrical charac­
teristics. We can introduce more terms relating to 
electrical behavior to the definitions of functional 
circuits. We may introduce terms of the form "(<-
q p)" in which "p" and " q " specify electrical behavior. 
When a circuit goal succeeds, the argument ?OUT-
COND of the predicate SUBCTC contains rules of 
electrical behavior for the circui t . We are now in 
the process of developing such rules. 
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