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Abstract 

In the presence of uncertainty, computation of the cer
tainty factor of a hypothesis requires, in general, the availa
bi l i ty of rules for combining evidence under chaining, dis
junction and conjunction. The method described in this 
paper is based on the use of what may be viewed as a gen
eralization of syllogistic reasoning in classical logic - - a gen
eralization in which numerical or, more generally, fuzzy 
quantifiers assume the role of probabilities. For example, the 
proposition QA's are B's, in which Q is a numerical or fuzzy 
quantifier, may be interpreted as "the conditional probability 
of B given A is Q." In this sense, the knowledge base of an 
expert system may be assumed to consist of propositions of 
the general form "QA's are B's." 

It is shown that six basic syllogisms are sufficient to 
provide a systematic framework for the computation of cer
tainty factors. A comparison with the rules of combination 
of evidence in PROSPECTOR, MYCIN and other expert sys
tems is presented and a connection between syllogistic rea-
soning and the Dempster-Shafer theory is established. The 
syllogistic method of reasoning lends itself to a computation
ally efficient implementation and thus provides an effective 
tool for the management of uncertainty in expert systems. 

I. SYLLOGISTIC REASONING 

In the existing expert systems, the computation of certainty 
factors of hypotheses and conclusions is carried out through 
the use of probability-based methods (Barr and Feigenbaum, 
1982). More recently, the use of belief functions in the con
text of the Dempster-Shafer theory has attracted increasing 
attention (Wesley, Lowrance and Garvey, 1984). 

In a different approach which is outlined in this paper, 
syllogistic reasoning is employed to provide a basis for the 
formulation of rules for combination of evidence. Classically, 
the major and minor premises in syllogistic reasoning are 
allowed to contain only the standard quantifiers all and 
some. For example, the paradigmatic syllogism Barbara is 
expressed by the rule 

where A, B and C are arbitrary predicates in two-valued 
logic. This syllogism expresses the transitivity of set con
tainment and, as such, provides the basis for property inheri-
tance in knowledge representation systems. 
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where MOST is the fuzzy subset of the unit interval which 
represents the denotation of the fuzzy quantifier moat. In this 
way, the meaning of the propositipn usually (X is F) may be 
expressed in terms of the meanings of F and most. In a simi
lar fashion, in the case of conditioned usuality, the meaning 
of usually (X is F) may be expressed as 

where ) denotes the relative count of elements 
of F which are in R. 

The concept of usuality makes it possible to extend the 
domain of applicability of syllogistic reasoning by allowing a 
premise in a syllogism to be qualified - - implicitly or expli
citly - - by the adjunction of usually, with the understanding 
that usually may be interpreted as a conditioned or uncondi
tioned fuzzy quantifier. As a simple illustration, a special 
case of the intersection/product syllogism is the dispositional 
modus ponens 

2 
where usually is the product of the fuzzy number usually 
with itself in fuzzy arithmetic. Syllogisms of this type are of 
particular relevance to commonsense reasoning. 

In summary, syllogistic reasoning provides a systematic 
framework for inference from premises which are imprecise 
and/or not totally reliable. In this mode of reasoning, 
numerical quantifiers play a role analogous to that of proba-
bilities in probabilistic reasoning (Nilsson, 1984). However, 
the facility provided by syllogistic reasoning for manipulation 
of fuzzy quantifiers as fuzzy numbers within the framework 
of fuzzy arithmetic goes beyond the capabilities of existing 
probability-based methods and makes it possible to deal 
computationally with rules and facts whose certainty factors 
are not known with sufficient precision to justify the use of 
numerical probabilities. 
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