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Abstract

In the presence of uncertainty, computation of the cer-
tainty factor of a hypothesis requires, in general, the availa-
bility of rules for combining evidence under chaining, dis-
junction and conjunction. The method described in this
paper is based on the use of what may be viewed as a gen-
eralization of syllogistic reasoning in classical logic - - a gen-
eralization in which numerical or, more generally, fuzzy
quantifiers assume the role of probabilities. For example, the
proposition QA's are B's, in which Q is a numerical or fuzzy
quantifier, may be interpreted as "the conditional probability
of B given Ais Q." In this sense, the knowledge base of an
expert system may be assumed to consist of propositions of
the general form "QA's are B's."

It is shown that six basic syllogisms are sufficient to
provide a systematic framework for the computation of cer-
tainty factors. A comparison with the rules of combination
of evidence in PROSPECTOR, MYCIN and other expert sys-
tems is presented and a connection between syllogistic rea-
soning and the Dempster-Shafer theory is established. The
syllogistic method of reasoning lends itself to a computation-
ally efficient implementation and thus provides an effective
tool for the management of uncertainty in expert systems.

I. SYLLOGISTIC REASONING

In the existing expert systems, the computation of certainty
factors of hypotheses and conclusions is carried out through
the use of probability-based methods (Barr and Feigenbaum,
1982). More recently, the use of belief functions in the con-
text of the Dempster-Shafer theory has attracted increasing
attention (Wesley, Lowrance and Garvey, 1984).

In a different approach which is outlined in this paper,
syllogistic reasoning is employed to provide a basis for the
formulation of rules for combination of evidence. Classically,
the major and minor premises in syllogistic reasoning are
allowed to contain only the standard quantifiers all and
some. For example, the paradigmatic syllogism Barbara is
expressed by the rule

All A's are B's
All B’s are C's
All A's are Cs

where A, B and C are arbitrary predicates in two-valued
logic. This syllogism expresses the transitivity of set con-
tainment and, as such, provides the basis for property inheri-
tance in knowledge representation systems.
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In & more general sense which is employed in this
paper, & syllogism is an inference rule of the form

Q lA'a are B's
ch‘s are D'a

Q3E'a are F's

where Ql' Q, and C.'Q3 sre numerical or, more generally,
fuzzy quantiliers (c.g., 80%, mos!, meny, few) and
ABCDE and F are crisp or fuzzsy predicates (e.g., positive,
>5, amall, tall, heavy) The predicates A, B, ..., F are
mssumed to be related in a specified way, giving rise to
different types of syllogiems. For exampie, the conseguent
consenction sylfogiam correaponds to the relations A=C=E,
F=B A D, where A stands for conjunction.

The lollowing syllogisms play & basic role in the formu-
lation of rules for combining evidence in expert systems.

Intersection/product syllogiom: C=A B, E=A,
F=B A D,

Consequent confenciion syllogiam: A=C=E, F=Ba
D.

Conscquent digjunction agflagiam: A=CmE, F=Bjy
D. (v & disjunction)

Anlecedeni congunction syllogiam: B=D=F, E=A/
C.

Antecedent désjunction syllopiam; B=D=F, E=Aw
C.

Chaining syllogiam: B=C, E=A, F=B.

(The chaining syliogism may be viewed as & special case of
the intersection /product syliogism).

A quantifier in n premise of a syllogism plays a role
analogous to that of conditionad probability. More
specifically, the proposition “QA’s are B's,” may be inter-
preted as "the conditional probability of B given A is Q"
with the understanding that A and B may be fuzey events
such that the conditional probability of B given A is a fuzzy
probability Q. Viewed in this perspective, the consequent
conjunction syllogism, for example, may be viewed as & gen-
eralisation of the combining rule for the conjunction of
bypotheses in PROSPECTOR and MYCIN.

A combining rule expressed as & syllogism differs from
standard combining rules in several important respects,
First, when Ql and Q, asre numerical quantifiers or,
equivalently, numerical probabilities, ihe resultant quantifer
Q in the conclusion is, in general, interval-valued. For
example, in the case of the consequent conjunction syllogism,
Qg i given by
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Ov{Q,+Qy-1 £ Qy2Q,AQy

where A sad v stand for min and max, respectively. The
interval-valuedness of Q, refiects the incomplete state of
knowledge regarding the dependence between the major and
minor premiss. In the conventional approsches, the under-
lying events are assumed ic be conditionally independent,
which scconnts for a numerical value—rather thap an inter
val value—for the certainty factor of the conclusion.

In the more general case where Ql and Q, are fussy
quantifiers, Qa is also » fuszy quantifier given by

0Q(Q,® Q,01) < Q3 £ ;B Qy

where @, @, © and ® are the operations of max, +, — snd
mis in fussy arithmetic (Ksufmsnn snd Gupta, 1985). In
thix sense, when Q, and Q, are fuszy numbers, so is Qa‘ As
an illustration, an instance of the consequent conjunction ayl-

logism i3
Moet students are young

Most. studenta are heal
Q students are young and healthy

where D@(2 mostB1) £ Q < moat.

When B is contained in A, and Q, and Q, are mono-
tonic (ie., of lesat Q is equivalent ws‘i, and%.ilmviu 1_'or
Qz] the intersection/product syllogism reduces to the chain-
ing syllogism:

QA" are Bs
Q2B'l are O’

(Q, @Qu)A's are Cs

where @ denotes multiplication in fussy arithmetic. For example,

Most students are undergradunten
Most undergradustes are young

Moatz students are young

where most® s fursy quantifier which ia the product of
moal with itself. In this way, the chaining syllogiam provides
a mechanism for dealing with chains of rules or facts whose
constitutents {i.c., predicates and quantifiers (or probabili-
ties)) are not sharply defieed.

II. DEMPSTER-SHAFER THEORY

A special eane of syllogistic ressoning which provides & link
with the Dempater-Shafer theory of belief functions, relates
to premises in which the quantifiers can take only three
values: 1( af}, >0{ somej and G {nonc]. Thus, all premises
are of the form QA s are R, is=1, ..., b, where Qi isl, »0
mo.mdthe%mdﬁmmmdtheuivmd
discaurse, with R representing & range query and A, being
the value of an attribute. For example, if the attribute is
Age, the query may be, “What fraction of individuals in the
datsbase ere jn the age range {20, 95}, with R being the
interval (20, 28], For an individusl i, A; would represent the
pomaible values of the age of i, so that the propasition “All
are R," would signify that all possible values of the age of )
are contained in the interval k and hence thet it is certain
that the age of i aatishes the condition of the query.

The answer 10 the query, then, would bave two com-

panents. The first compopent, called belief in the Dempster-
Shafer theory, is, in efact, the fraction of the Q. which are

equal to 1. The second component, placeibdity, ia the frac-
tion of the Q; which are greater than sero. These com-
ponents may be interpreted, respectively, as the messures of
certainty (or becessity) and possibility (Zadeh, 1981).

The advantage of viewing the Dempater-Shafer theory
as 2 variant of syliogiatic rewsoning in which the quantifiers
are three-valued, is that it suggests 8 more genersl approach
in which the quantifiers may be quantised to any desired
number of levels. In this way, the number of levels may be
sdjusted to Bt the grapularity of the information in the
knowledge basze.

I USUALITY

An important application of syllogistic reasoning relates
to what might be ealled the concept of wisefity. In easence,
usuality is concerned with the usual values of varisbles, e.g.,
the usual price of & cup of collee, the usual durstion of a par-
ticular event, etc. More specifically iet X be a variable tak-
ing values in & universe of discourse U, and lev F be & Muxsy
subset of U characterized by s membership function up
which smscciates with each point g € U a number in the
intervat [0,1} which represents its grade of membership in F.
As shown in (Zadeh, 1978}, the proposition X i F - - which
may be interpreied as the assignment of a fursy value Fto X
- - inducea » posaibility distribution in U/ such that the possi-
bility that X = v is given by pr (x). For example, the pro-
position X i small induces » possibility distribution on the
space of real numbers such that the pomibility that X = v,
where u is & real number, is equal to gguer (v}, (i, the
degree to which w hita the deBaition of the predicate amahl,
with SMALL being a fussy wubset of real aumbers which
represents the denotation of small. Similarly, in the case of
the proposition AMary ie yousy, if X is taken to be the age of
Mary and U/ is the interval {0,100, then the proposition in
question inducea a poesibility distribution of X such that the
postibility that Age (Mary) =26, say, equals the degree o
which 28 fite the definition of the predicate young in the con-
texi in which the proposition Mary is young is asaerted.

With this possibiliatic interpretation of the proposition
X 1o F aa the point of departure, the mesning of the disposi-
tional proposition wawally (X & Fj or, equivalently, X is wsx-
ally F, may be defined as follows {Zadeh, 1084b):

wasglly (X is F} = if Z iz R then most X's wrc F,

where Z is the conditioning variable and R is & Tuszy value of
Z which constrains 2 away from exceptiona} values for which
the proposition most X" ere F does not bhold. For example,
in the coae of the propoaition wasally st fakes chout an howr
to drive from Berkeley to Stenford, 7 may be the time at
which the trip iv started and R is the non-rush-hour period.
If Ris U, then wsually is unconditioned and the defipition of
wanslly (X 6 F) reduces to

wivelly (X is F} = moat X's are F

which implies that wsually plays the role of a fusy
quantifier, that is, s fussy oumber which represents the rels-
tive count of elements in & fursy set (Zadeb, 1882). More
specificaliy, il the observed values of X wre u), ..., 4, then
the relative count of X' which are Fin expressed by

re} (np () +t pr [ J}

and the degree to which r fits the definition of mee! is given
by



7= pyosr(r)

where MOST is the fuzzy subset of the unit interval which
represents the denotation of the fuzzy quantifier moat. In this
way, the meaning of the propositipn usually (X is F) may be
expressed in terms of the meanings of F and most. In a simi-
lar fashion, in the case of conditioned usuality, the meaning
of usually (Xis F) may be expressed as

TCount (F/R) s MOST

where ZCsunt (F /R )) denotes the relative count of elements
of Fwhich are in R.

The concept of usuality makes it possible to extend the
domain of applicability of syllogistic reasoning by allowing a
premise in a syllogism to be qualified - - implicitly or expli-
citly - - by the adjunction of usually, with the understanding
that usually may be interpreted as a conditioned or uncondi-
tioned fuzzy quantifier. As a simple illustration, a special
case of the intersection/product syllogism is the dispositional
modus ponens

XisF
¢f X i F then wavally (Y is G)

wexally (Y is G)
or, more generally

{uoually)(X & F}
if X do F then fuswaliy) Y i G)

fuaually 2}{ YiG)

2
where usually is the product of the fuzzy number usually
with itself in fuzzy arithmetic. Syllogisms of this type are of
particular relevance to commonsense reasoning.

In summary, syllogistic reasoning provides a systematic
framework for inference from premises which are imprecise
and/or not totally reliable. In this mode of reasoning,
numerical quantifiers play a role analogous to that of proba-
bilities in probabilistic reasoning (Nilsson, 1984). However,
the facility provided by syllogistic reasoning for manipulation
of fuzzy quantifiers as fuzzy numbers within the framework
of fuzzy arithmetic goes beyond the capabilities of existing
probability-based methods and makes it possible to deal
computationally with rules and facts whose certainty factors
are not known with sufficient precision to justify the use of
numerical probabilities.
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