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ABSTRACT

Though current expert system technology has
become a major success, existing expert systems
often fall short of human expertise In many ways.
One Important area is in the use of more basic,
deep knowledge as an enhancement to the shallow,
surface knowledge commonly employed. The Integrat-
ed Diagnostic Model attempts to exploit the use of
both types of knowledge by fitting the appropriate
knowledge representation and utilization techniques
to each. The result is two separate and Indepen-
dent expert systems which are then integrated and
controlled by a higher-level module called the exe-
cutor.

I INTRODUCTION

In solving a problem, human experts often draw
on many different kinds of knowledge. What usually
makes an expert an expert Is the "shallow" [6],
"surface" [11], "compiled" [1], "low-road" [9],"em-
plrical"[2], or "experiential" [4] knowledge. Such
knowledge Is acquired from other experts in the
field or by first-hand experience in solving domain
problems. It consists of rules-of-thumb that con-
nect characteristics of a problem with its possible
solutions. However, this type of knowledge is
often just a short-cut through, or a compilation
of, a more detailed and deeper understanding of the
problem domain. This other kind of knowledge, re-
ferred to as "deep", "high-road", "functional", or
"physical" knowledge, allows an expert to ‘"reason
from first principles" in trying to solve a partic-
ularly difficult or unfamiliar problem.

The human expert has no apparent difficulty in
converting from one kind of knowledge to another.
He/she may begin solving a problem by using the ex-
periential knowledge which leads to an isolation of
the problem and then convert to using the deeper
knowledge to analyze the problem further. If the
initial hunch proves to be wrong upon closer exami-
nation, the expert easily goes back to employing
the more shallow, experiential knowledge. Should
all experience fall, he/she can still revert back
to the deeper knowledge in attempting to solve the
problem.

Though current expert system technology relies
heavily on shallow knowledge in solving a problem,
some work has been done in developing systems that

have deeper knowledge [1,2,3,4,5,7,8,12,13,15].
There are recognized benefits in being able to pro-
vide a deeper understanding of the problem, such as
better performance at the periphery of the
knowledge base and Improved explanation capabili-
ties. However, shallow knowledge must also be
available for solving the more common problems and
for situations where human understanding of the
domain is not extensive enough to include a deeper
model. Therefore, It would be best for an expert
system to Integrate at |least these two often
diverse types of knowledge and be able to use them
appropriately and efficiently.

The Integrated

Diagnostic Model (IDM) [4],

shown in Figure 1, is an expert system that con-
tains both a shallow and a deep knowledge base. It
was designed to work in the area of
mechanical/electronic diagnosis and repair. It
consists of three main modules: 1) the experien-
tial expert, 2) the physical expert, and 3) the
executor. Knowledge representation and utilization
techniques have been developed to fit the two
diverse types of knowledge In these specialized

mechanical/electronic diagnostic experts. In addi-
tion, the higher level control module, the execu-
tor, has been designed to direct the entire problem
solving process.

I KNOMEDGE REPRESENTATION IN THE IDM

Each of the three parts of the IDM has its own
knowledge base. The knowledge representation tech-
niqgues used in the experiential and physical ex-
perts attempt to depict the type of knowledge that

each embodies. The knowledge base In the executor
provides a link between the two.
The experiential expert contains a knowledge

base implemented as a three-level semantic network
where each level is a semantic network in Its own
right. Its general structure is shown in Figure 2
and resembles that of Casnet [15]. This structure
attempts to model some of the initial experiential,
causal reasoning that an expert does while solving
a familiar problem. The lowest level in the seman-
tic network, the 'information' level, contains any
concrete, observable facts that can be obtained
from the user. This could be information on how
tight the generator belt is, a voltage measurement
in an electronic circuit, or the stain of an organ-
ism in a lab culture* The middle level, the hy-



Figure 1.

Overview of the Integrated
Diagnostic Model

potheses' level, contains knowledge that is not ob-
servably apparent but that can be deduced from the
observable facts based upon experience. It usually

concerns physical or physiological states of the
device. Examples of this type of knowledge are
that the generator is not recharging the battery,

that a wire is shorted in the circuit board, or
that the patient is suffering from an infection of
pseudomonas bacteria. The 'solutions" level in the
semantic network contains knowledge about how to
fix the deduced problem. Thus, it would suggest
tightening the generator belt, repairing the wire,
or placing the patient on a drug therapy of colis-
tin.

The physical expert contains a
physical/functional model of the device under diag-
nosis. This model is based on a set of functional
primitives that allows the device under considera-
tion to be simulated qualitatively [8]. Examples
of such primitives are:

1) transformer

an object which converts given substances into
others; examples are: a generator converting
mechanical energy into electricity (mechanics),
a solar cell converting photons into electrici-
ty (electronics), the collection of enzymes
that converts glycogen into carbon dioxide and
water (physiology).

2) regulator

an object which controls the activity of anoth-
er object, wusually as a function of the
regulator's inputs; examples are: a turbo-
charger increasing the amount of fuel in the
cylinder based upon the pressure of exhaust
gasses (mechanics), a transistor controlling
the current flow as a function of the base
current (electronics), white blood cells regu-
lating the amount of foreign objects in the
blood stream (physiology).

3) reservoir
an object which stores a substance for release
at a later time; examples are: a spring stor-
ing mechanical energy (mechanics), a capacitor
storing a charge (electronics), mitochondria
storing chemical energy in a cell (physiology).
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4) conduit
an object which transports various substances
throughout the system; examples are: a piston

transferring thrust from a cylinder to the
camshaft (mechanics), a wire transporting elec-
tricity (electronics), arteries carrying oxygen
to cells (physiology).

5) joint
an object which provides a connection between
two or more of the other primitives; examples

are: the meshing of gears (mechanics), the
wire nut that connects two wires (electronics),

the synapse between neurons in the brain (phy-
siology).
These primitives are implemented using a semantic

network. The first three are represented by
frame-like [10] nodes while the Ilast two are
represented by arcs.

This set of primitives is by no
plete. For example, it was necessary in the
electrical domain to divide ‘regulator” into
'switch' and 'relay' because their behavior differ-
ences were important in representing how a circuit
functions. Such a set provides an integrated way
of representing the structure and behavior of a
device. Both physical and functional aspects can
be represented within this one model. Depending on
the substance, such as electricity or water, that
is being transported from node to node via the con-
duits and joints, an electrical, mechanical, etc.
representation can be provided.

means com-

The system knowledge base for the executor
consists of a conversion table that indicates what
node or nodes in the experiential knowledge base
are associated with what functional primitive nodes
or arcs in the physical knowledge base and how they
are related. The conversion table is essentially a
set of registers that represent the nodes in the
experiential knowledge base and the functional
primitive nodes and arcs in the physical knowledge

SOLUTIONS  REMEDILS, REFANL PROCIDURNY,
PLARS, DESIONS, PREDICTIONS,
TREATWENT, £7C.

NYPOTHESES  PUYEICAL OR PHYSIOLOBICAL UTATS,
SOALS, DEDUCTIONS,

Figure 2. General Structure of the
Experisutial Knowledga Base



428 P. Fink

base. These registers contain values that indicate
the state of the system's knowledge about that part
of the problem. Each register is also associated
with a conversion equation or equations that tell
tow to convert the information in a register or re*
Sisters associated with one knowledge base into in-
formation in a register or registers associated
withthe other knowledge base. The correspondence
between registers associated with the two knowledge
bases is not necessarily one-to-one, but could be
aany-to-one, one-to-many, or many-to-many.

I11 CONTROL IN THE IDM

Each of the three modules of the IDM has its
>wn control mechanism. The inference engines of

the two experts were designed to best take advan-
:age of the knowledge available to each. Since the
wo types of knowledge have independent knowledge

representations and inference engines, they create
completely autonomous expert systems. These two
expert systems are then Integrated by the control
lechanism of the executor.

The inference engine for the experiential ex-

pert is model-driven wusing a best-first search
strategy. Initial data is acquired at the informa-
tion level which then suggests hypotheses to con-
sider. The hypotheses may then suggest more data

that needs to be acquired from the information lev-
»1. On each arc there is a set of ratings, includ-
ing probability, cost, and difficulty, that are
:ombined to form a confidence factor for the asso-
ciation between the two nodes that the arc con-
lects. The highest factor is followed first. The
search back and forth between hypotheses and infor-
nation continues until a hypothesis has been veri-
fied with enough confidence. Then the arcs between
:he hypotheses and solutions are followed. Should
che solution fall to solve the problem, others can
be tried or the search for another cause of the
>roblem can continue.

The inference engine for the physical expert
ses some very general diagnostic reasoning rules
:0 examine the physical model and Isolate the prob-
Lem to a specific functional wunit or units,
represented by the appropriate functional primi-
tive. These rules are based upon the values of the
Inputs and outputs of the functional units. They
are:

[) If an output of a functional unit is
ask the user.

unknown,

2) If an output from a functional unit appears in-
correct, check its input.

3) If an input to a functional unit appears in-
correct, check the source of the input.

i) If the input of a functional unit appears to be
correct, but the output is not, assume that
something is wrong with the functional unit be-
ing examined.

This resembles the "discrepancy detection”
dology discussed by Davis [2]. Once the problem
has been Isolated, more specific analysis can
proceed in the same manner at a lower level, since
the knowledge representation can be hierarchical.

metho-

The control at the executor level determines

when each expert system is to be used. It also
controls the transfer of information about the
state of parts of the device under diagnosis

between the expert systems and directs the interac-
tion between the system and the user.

Currently, top level control over which expert
to use when is very simplistic. The experiential
expert is run first and if it fails to find a solu-
tion to the problem, the physical expert is run.
This appears to be how an expert would reason about
a problem, checking out all reasonable, familiar
possibilities first, before resorting to a more
basic "first principles" analysis.

A human, however, can use the knowledge gained
during the experiential phase to help In the more
detailed analysis. At the same time, knowledge ac-
quired while doing a detailed analysis is not lost
to the human expert when he/she goes back to the
experiential type of reasoning. An expert system
should be able to do the same. Thus, while the ex-
periential expert is running, all information
gained is passed to the executor for conversion to
a form wuseful to the physical expert, when ap-
propriate. In this way the physical expert can
monitor the progress and make certain inferences
about the state of the device that is not available
to the experiential expert. Through this mechan-
ism, it acquires all of the information that the
experiential expert acquires, thus allowing it to
begin diagnosis where the experiential expert
leaves off, should the need arise. By this same
mechanism it can communicate inferences it makes
back to the experiential expert. These capabili-
ties will be demonstrated by an example in the next
section.

The executor controls communication of infor-
mation between the user and the two expert systems.
Any request for information needed by one of the
expert systems is given to the executor which then
determines whether the information is already known
by the other expert system, or whether to ask the
user. If the Information is already available from
the other expert system, the executor simply re-
turns the information in the proper form to the re-
questing expert system. Otherwise it asks the
user. Should the user request an explanation at
any point in the dialogue, the executor determines
which expert should answer it. Currently, only
"how" and "why" are legal questions. The answer to
"how" is associated with the node that resulted in
the last output to the user. The answer to "why"
is currently always answered by the physical expert
since the experiential expert could only offer a
very shallow explanation.
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Figure 3. An Example Experiential Knowledge Base for a Simple Heating System

IV AN EXAMPLE

To illustrate how the system works, a simple
heating system will be used as an example. The ex-
periential and physical knowledge bases are shown
in Figures 3 and 4, respectively. During a ses-
sion, the physical representation appears in the
top two-thirds of the screen to graphically portray
the progression of the problem solution. The bot-
tom third contains the dialogue.

Suppose that the user enters the initial prob-
lem that the house is too cold. The experiential
expert begins by checking out the possibility that
the heating system is disabled in some way. This
is chosen first because it is very inexpensive and
easy to check and it is necessary to know if the
heating system is even set to be on. This leads to
questions to the user concerning the state of the
thermostat and, when it is established that the
thermostat is on, set correctly, and working, a re-

gister in the executor associated with the ex-
periential knowledge base is set to indicate that
the thermostat is alright. This information s
useful to the physical expert in a different form.

Thus, a conversion takes place that sets registers
associated with the power supply, the coil, and the
contacts to correct. This causes the nodes on the
display screen representing these units to turn
dark, giving some indication to the user of the
progress being made. This part of the example
demonstrates how the system handles a many to many
conversion of information. There is no such unit
as a thermostat with all of its settings in the
physical knowledge base, just as there is no power
supply, <coil, or contacts in the experiential
knowledge base.

The experiential analysis continues by check*
ing the blower and then the furnace itself. The

first thing that the experiential expert wants to
know under the hypothesis that the furnace is not
producing enough heat is if the pilot light is on.
If the answer to this question is yes, a register
associated with the pilot light of the experiential
knowledge base is set, which triggers a conversion
to set a register associated with the pilot |light
of the physical knowledge base. In this case, the
conversion is one-to-one and therefore straightfor-
ward. However, the physical expert can assume from
this information that the liquid propane gas (1pg)
tank has gas in it (at least as a first cut), that
the Ipg tank valve is working, and that all of the
conduits from the Igp tank to the pilot light are
alright. The fact that the Ipg tank is not empty
again triggers a conversion to set the register for
the Ipg tank of the experiential system. Like the

Figure 4. An Example Physical Knowledge

Base for a Simple Heating System
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previous conversion, it Is one-to-one and therefore
straightforward. However, this Information proves
to be useful to the experiential expert because the
next question it would ask is if the 1pg tank is
empty. Rather than asking the user an apparently
redundant question, the experiential expert can ac-
quire the information through the registers in the
executor. In this way, the 1DM is capable of pro-
pagating knowledge acquired by one expert to the
other expert, thus avoiding asking possibly dumb or
repetitive questions.

Now suppose for this simple example, that the
problem Is with the Ipg intake valve being stuck
shut. The experiential expert will therefore ex-
haust all of its possibilities, since It knows
nothing of the Ipg Intake valve, and the physical
expert's knowledge base would appear as in Figure
5. Only the pilot light sensor, the safety switch,
the |Ipg intake valve, the combustion chamber, and
various conduits remain to be checked. These are
parts of the system that the experiential expert
knows nothing about.

The physical expert takes over diagnosis by
systematically checking each of the nodes in the
system to determine its input and output. it be-
gins with the initial problem itself, the house be-
ing cold, which is represented by the conduit
between the vent and the coll. It moves backwards
from the vent to the blower and finally to the
combustion chamber using the rules discussed above
to guide the search. The physical expert knows
that its output is not correct since the air coming
out of the vents is not warm, so it looks for the
source of the combustion chamber's input, which is
the pilot light and the Ipg intake valve. The pi-
lot light is known to be alright but the Ipg intake
valve's state Is unknown. The system therefore
asks the user to check the valve. This is found to
be stuck shut. Once the valve Is loosened the fur-
nace begins working properly.

Figure 5.

The Physical Knowledge Base
at the Point where it Takes
Control of the Diagnosis

In this last sequence, where the physical ex-
pert finally diagnoses the problem, we have demon-
strated how a problem was found and solved that
could not have been solved by the experiential ex-
pert because it lacked the proper knowledge. In
such a simple example, of course, it would be pos-
sible to Include such knowledge in the experiential
expert. However, in a larger system, such as the
automotive electrical system that we are implement-
ing, the inclusion of every detail of the wiring
diagram would be very difficult and diagnosing from
it would not be straightforward in the experiential
expert. It knows about such things as the battery,
the generator, the fan belt, and certain prominent
wire connections, but more detailed information on
the components and wiring is left to a more
coherent and useful representation in the physical
expert.

V' RELATED WORK

Over the past several years much work has been
done in addressing the problem of employing more
fundamental knowledge in an expert system
[1,2,3,5,7,8,12,13,15). However, most are con-
cerned only with this deeper knowledge. Work by
Patil et al. [12] is probably the most closely re-
lated to the work presented here because it is also
concerned with integrating different levels of
knowledge. In their work on ABEL, in the domain of
diagnosing and treating electrolyte and acid-base
disturbances, Patil et al. demonstrate how three
different levels of knowledge representing the
patient's state can be used to diagnose and treat
the problem. It differs from our model not only in
the number of levels of knowledge used but in how
closely these levels are linked. In ABEL, the lev-
els are designed to be compatible and consistent.
The lower levels contain a more detailed version of
the higher levels. Knowledge at one level can be
passed consistently to another through a set of
special functions. The IDM, on the other hand,
does not necessarily require a consistent view of
the problem between the experiential and the physi-
cal experts. Each expert is developed independent-
ly and integrated at completion. The experiential
knowledge employed in the IDM resembles that used
in the higher levels of ABEL. IDM's experiential
knowledge is, in some cases, causal since the line
between experiential and causal knowledge is some-
what indistinct. But the deeper knowledge employed
in the IDM is more closely related to the device
under diagnosis than is ABEL's. The physical ex-
pert of the IDM contains knowledge of the com-
ponents of the device and how they behave and in-
teract. Cause and effect is thus propagated via
the physical and functional structure of the device
rather than directly represented as in ABEL.

VI CONCLUSIONS AND FUTURE WCRK

domains
namely
repair. It

The IDM works well in the types of
that it was designed for,
mechanical/electronic diagnosis and



even appears applicable to the medical domain, to

debugging computer programs, and to failure modes
and effects analysis of off-shore oil drilling
platforms (using a different set of functional

primitives). However, it does not appear applica-
ble to such fields as mineral prospecting, speech
recognition, and law. The experiential expert is
most likely still viable, but the deep knowledge in
these domains seems to require a different approach

to representation than a set of functional primi-
tives. The concept of processes [14] may be one
possibility.

The IDM exhibits a way of providing a well-
defined but flexible control over the propagation
of knowledge between the different experts that era-
body the diverse types of knowledge about a problem
domain. Future work will include efforts to gen-
eralize the approach so that the conversion table
in the executor can be automatically generated from
the knowledge bases of the experiential and physi-
cal experts. Currently it is built by hand. We
also plan to examine different top-level control
strategies with respect to when to use each of the
experts. This is an extremely difficult but impor-
tant problem since it involves the question of how
a human knows when to use each type of knowledge.
Another area for research could be in identifying
other types of deep knowledge that appropriately
fit other domains such as the ones mentioned above.
Finally, the use of several different kinds of deep
knowledge that represent different aspects of the
same device, such as electronic and mechanical,
could be investigated.
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