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ABSTRACT 

Though current expert system technology has 
become a major success, e x i s t i n g expert systems 
o f ten f a l l short of human exper t ise In many ways. 
One Important area is in the use of more bas ic , 
deep knowledge as an enhancement to the shal low, 
surface knowledge commonly employed. The In tegra t -
ed Diagnost ic Model attempts to e x p l o i t the use of 
both types of knowledge by f i t t i n g the appropr iate 
knowledge representa t ion and u t i l i z a t i o n techniques 
to each. The r e s u l t is two separate and Indepen-
dent expert systems which are then integrated and 
c o n t r o l l e d by a h i g h e r - l e v e l module ca l l ed the exe­
cu to r . 

I INTRODUCTION 

In so lv ing a problem, human experts o f t en draw 
on many d i f f e r e n t k inds of knowledge. What usua l l y 
makes an expert an expert Is the "sha l low" [ 6 ] , 
"su r face" [ 1 1 ] , "compi led" [ 1 ] , " low-road" [ 9 ] , " e m -
p l r i c a l " [ 2 ] , or " e x p e r i e n t i a l " [4] knowledge. Such 
knowledge Is acquired from other experts in the 
f i e l d or by f i r s t - h a n d experience in so lv ing domain 
problems. I t cons is ts o f ru les-of - thumb that c o n ­
nect c h a r a c t e r i s t i c s of a problem w i t h i t s possible 
s o l u t i o n s . However, t h i s type of knowledge is 
o f t en j u s t a shor t - cu t through, or a compi la t ion 
o f , a more de ta i l ed and deeper understanding of the 
problem domain. This other k ind of knowledge, r e ­
fe r red to as "deep" , " h i gh - road " , " f u n c t i o n a l " , or 
" p h y s i c a l " knowledge, al lows an expert to "reason 
from f i r s t p r i n c i p l e s " i n t r y i n g to solve a p a r t i c ­
u l a r l y d i f f i c u l t o r un fami l i a r problem. 

The human expert has no apparent d i f f i c u l t y in 
conver t ing from one k ind of knowledge to another. 
He/she may begin so lv ing a problem by using the e x ­
p e r i e n t i a l knowledge which leads to an i s o l a t i o n of 
the problem and then convert to using the deeper 
knowledge to analyze the problem f u r t h e r . I f the 
i n i t i a l hunch proves to be wrong upon c loser exami­
n a t i o n , the expert e a s i l y goes back to employing 
the more shal low, e x p e r i e n t i a l knowledge. Should 
a l l experience f a l l , he/she can s t i l l r eve r t back 
to the deeper knowledge in at tempt ing to solve the 
problem. 

Though cur rent expert system technology r e l i e s 
heav i l y on shal low knowledge in so l v ing a problem, 
some work has been done in developing systems that 

have deeper knowledge [ 1 , 2 , 3 , 4 , 5 , 7 , 8 , 1 2 , 1 3 , 1 5 ] . 
There are recognized benef i t s in being able to p r o ­
v ide a deeper understanding of the problem, such as 
be t te r performance at the per iphery of the 
knowledge base and Improved explanat ion c a p a b i l i ­
t i e s . However, shal low knowledge must also be 
ava i l ab le fo r so lv ing the more common problems and 
fo r s i t ua t i ons where human understanding of the 
domain is not extensive enough to inc lude a deeper 
model. Therefore, It would be best fo r an expert 
system to In teg ra te at least these two o f ten 
diverse types of knowledge and be able to use them 
appropr ia te ly and e f f i c i e n t l y . 

The In tegrated Diagnost ic Model (IDM) [ 4 ] , 
shown in Figure 1, is an expert system that con ­
ta ins both a shal low and a deep knowledge base. It 
was designed to work in the area of 
mechanica l /e lec t ron ic diagnosis and r e p a i r . I t 
consis ts of three main modules: 1) the exper ien ­
t i a l exper t , 2) the phys ica l exper t , and 3) the 
executor. Knowledge representa t ion and u t i l i z a t i o n 
techniques have been developed to f i t the two 
diverse types of knowledge In these spec ia l ized 
mechanica l /e lec t ron ic d iagnost ic exper ts . I n a d d i ­
t i o n , the higher l e v e l con t ro l module, the execu­
t o r , has been designed to d i r e c t the e n t i r e problem 
so lv ing process. 

II KNOWLEDGE REPRESENTATION IN THE IDM 

Each of the three par ts of the IDM has i t s own 
knowledge base. The knowledge representa t ion t e c h ­
niques used in the e x p e r i e n t i a l and phys ica l e x ­
per ts attempt to depic t the type of knowledge that 
each embodies. The knowledge base In the executor 
provides a l i n k between the two. 

The e x p e r i e n t i a l expert contains a knowledge 
base implemented as a t h r e e - l e v e l semantic network 
where each l e v e l is a semantic network in I t s own 
r i g h t . I t s general s t ruc tu re is shown in Figure 2 
and resembles tha t of Casnet [ 1 5 ] . This s t ruc tu re 
attempts to model some of the i n i t i a l e x p e r i e n t i a l , 
causal reasoning tha t an expert does whi le so lv ing 
a f a m i l i a r problem. The lowest l e v e l in the seman­
t i c network, the ' i n f o r m a t i o n ' l e v e l , contains any 
concrete , observable f ac t s tha t can be obtained 
from the user . This could be in fo rmat ion on how 
t i g h t the generator b e l t i s , a vo l tage measurement 
in an e l e c t r o n i c c i r c u i t , o r the s t a i n o f an o rgan ­
ism in a lab c u l t u r e * The middle l e v e l , the h y -
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Figure 1. Overview of the Integrated 
Diagnostic Model 

potheses' l e v e l , contains knowledge that is not ob-
servably apparent but that can be deduced from the 
observable fac ts based upon experience. I t usua l l y 
concerns physical or phys io log ica l s tates of the 
device. Examples of t h i s type of knowledge are 
that the generator is not recharging the ba t te ry , 
that a wire is shorted in the c i r c u i t board, or 
that the pat ient is su f fe r ing from an i n f e c t i o n of 
pseudomonas bac te r i a . The ' s o l u t i o n s " l eve l in the 
semantic network contains knowledge about how to 
f i x the deduced problem. Thus, i t would suggest 
t i gh ten ing the generator b e l t , repa i r i ng the w i re , 
or p lac ing the pat ient on a drug therapy of c o l i s -
t i n . 

The physical expert contains a 
phys i ca l / f unc t i ona l model of the device under d i a g ­
nos is . This model is based on a set of func t iona l 
p r im i t i ves that al lows the device under cons idera­
t i o n to be simulated q u a l i t a t i v e l y [ 8 ] . Examples 
of such p r im i t i ves a re : 

4) conduit 
an object which t ransports various substances 
throughout the system; examples are: a p is ton 
t rans fe r r i ng thrus t from a cy l inder to the 
camshaft (mechanics), a wire t ranspor t ing e l e c ­
t r i c i t y ( e l e c t r o n i c s ) , a r t e r i es car ry ing oxygen 
to ce l l s (phys io logy) . 

5) j o i n t 
an object which provides a connection between 
two or more of the other p r i m i t i v e s ; examples 
are: the meshing of gears (mechanics), the 
wire nut that connects two wires ( e l e c t r o n i c s ) , 
the synapse between neurons in the b ra in (phy ­
s i o l ogy ) . 

These p r im i t i ves are implemented using a semantic 
network. The f i r s t three are represented by 
f rame- l ike [10] nodes whi le the l as t two are 
represented by arcs . 

This set of p r im i t i ves is by no means com­
p l e t e . For example, i t was necessary in the 
e l e c t r i c a l domain to d iv ide ' r e g u l a t o r " i n t o 
' s w i t c h ' and ' r e l a y ' because t he i r behavior d i f f e r ­
ences were important in representing how a c i r c u i t 
func t ions . Such a set provides an in tegrated way 
of representing the s t ruc ture and behavior of a 
device. Both physical and func t iona l aspects can 
be represented w i t h i n t h i s one model. Depending on 
the substance, such as e l e c t r i c i t y or water, that 
is being t ransported from node to node v i a the c o n ­
du i ts and j o i n t s , an e l e c t r i c a l , mechanical, e t c . 
representat ion can be provided. 

The system knowledge base for the executor 
consists of a conversion tab le that ind icates what 
node or nodes in the exper ien t ia l knowledge base 
are associated w i th what func t iona l p r i m i t i v e nodes 
or arcs in the physical knowledge base and how they 
are r e l a ted . The conversion table is essen t i a l l y a 
set of reg is te rs that represent the nodes in the 
expe r i en t i a l knowledge base and the func t iona l 
p r im i t i ve nodes and arcs in the physical knowledge 

1) transformer 
an object which converts given substances i n to 
o thers ; examples are: a generator convert ing 
mechanical energy i n to e l e c t r i c i t y (mechanics), 
a solar c e l l convert ing photons i n t o e l e c t r i c i ­
ty ( e l e c t r o n i c s ) , the c o l l e c t i o n of enzymes 
that converts glycogen i n t o carbon d iox ide and 
water (phys io logy) . 

2) regula tor 
an object which cont ro ls the a c t i v i t y of ano th ­
er ob jec t , usua l l y as a func t ion of the 
regu la to r ' s i npu t s ; examples a re : a t u r b o -
charger increasing the amount of f u e l in the 
cy l inder based upon the pressure of exhaust 
gasses (mechanics), a t r ans i s t o r c o n t r o l l i n g 
the current f low as a func t ion of the base 
current ( e l e c t r o n i c s ) , white blood c e l l s regu ­
l a t i n g the amount of fo re ign objects in the 
blood stream (phys io logy) . 

3) reservo i r 
an object which stores a substance fo r release 
at a l a t e r t ime; examples are: a spr ing s t o r ­
ing mechanical energy (mechanics), a capaci tor 
s to r i ng a charge ( e l e c t r o n i c s ) , mitochondria 
s to r ing chemical energy in a c e l l (phys io logy) . 
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base. These reg i s te r s conta in values that i nd ica te 
the s ta te of the system's knowledge about that part 
of the problem. Each r e g i s t e r is a lso associated 
with a conversion equation or equations that t e l l 
tow to convert the in fo rmat ion in a r e g i s t e r or r e * 
Sisters associated w i t h one knowledge base i n t o i n ­
formation in a r e g i s t e r or r eg i s te r s associated 
w i t h the other knowledge base. The correspondence 
between reg i s te rs associated w i t h the two knowledge 
bases is not necessar i l y one-to-one, but could be 
aany-to-one, one-to-many, or many-to-many. 

I l l CONTROL IN THE IDM 

Each of the three modules of the IDM has i t s 
>wn con t ro l mechanism. The inference engines of 
:he two experts were designed to best take advan-
:age of the knowledge ava i lab le to each. Since the 
:wo types of knowledge have independent knowledge 
representations and in ference engines, they create 
completely autonomous expert systems. These two 
exper t systems are then In tegra ted by the con t ro l 
lechanism of the executor . 

The in ference engine fo r the e x p e r i e n t i a l e x -
p e r t is model-dr iven using a b e s t - f i r s t search 
st rategy. I n i t i a l data is acquired a t the i n fo rma­
t ion l eve l which then suggests hypotheses to con­
sider. The hypotheses may then suggest more data 
that needs to be acquired from the in fo rmat ion l e v -
»1. On each arc there is a set of r a t i n g s , i n c l u d ­
ing p r o b a b i l i t y , cos t , and d i f f i c u l t y , that are 
:ombined to form a confidence fac to r fo r the asso­
c ia t i on between the two nodes that the arc con-
l e c t s . The highest f ac to r is fo l lowed f i r s t . The 
search back and f o r t h between hypotheses and i n f o r -
nation continues u n t i l a hypothesis has been v e r i ­
f ied w i t h enough conf idence. Then the arcs between 
:he hypotheses and so lu t i ons are f o l l owed . Should 
:he s o l u t i o n f a l l to solve the problem, others can 
be t r i e d or the search fo r another cause of the 
>roblem can cont inue. 

The in ference engine fo r the phys ica l expert 
ses some very general d iagnost ic reasoning ru les 

:o examine the phys ica l model and I s o l a t e the p r o b -
Lem to a s p e c i f i c func t iona l u n i t or u n i t s , 
represented by the appropr ia te f unc t i ona l p r i m i ­
t i v e . These ru les are based upon the values of the 
Inputs and outputs of the f unc t i ona l u n i t s . They 
a r e : 

[) I f an output of a f unc t i ona l u n i t is unknown, 
ask the user . 

2) I f an output from a f unc t i ona l u n i t appears in-
c o r r e c t , check i t s i n p u t . 

3 ) I f an input to a f unc t i ona l u n i t appears i n ­
c o r r e c t , check the source of the i n p u t . 

i ) I f the input of a f unc t i ona l u n i t appears to be 
c o r r e c t , but the output is n o t , assume that 
something is wrong w i t h the f u n c t i o n a l u n i t b e ­
ing examined. 

This resembles the "discrepancy de tec t i on " metho­
dology discussed by Davis [ 2 ] . Once the problem 
has been I s o l a t e d , more s p e c i f i c analys is can 
proceed in the same manner at a lower l e v e l , since 
the knowledge representa t ion can be h i e r a r c h i c a l . 

The con t ro l at the executor l e v e l determines 
when each expert system is to be used. It also 
con t ro ls the t r ans fe r of in fo rmat ion about the 
s ta te of par ts of the device under diagnosis 
between the expert systems and d i r e c t s the i n t e r a c ­
t i o n between the system and the user . 

Cu r ren t l y , top l e v e l con t ro l over which expert 
to use when is very s i m p l i s t i c . The e x p e r i e n t i a l 
expert i s run f i r s t and i f i t f a i l s t o f i n d a s o l u ­
t i o n to the problem, the physica l expert is r un . 
This appears to be how an expert would reason about 
a problem, checking out a l l reasonable, f a m i l i a r 
p o s s i b i l i t i e s f i r s t , before reso r t i ng to a more 
basic " f i r s t p r i n c i p l e s " ana l ys i s . 

A human, however, can use the knowledge gained 
dur ing the e x p e r i e n t i a l phase to help In the more 
de ta i l ed ana l ys i s . At the same t ime , knowledge a c ­
quired whi le doing a de ta i l ed analys is is not l os t 
to the human expert when he/she goes back to the 
expe r i en t i a l type of reasoning. An expert system 
should be able to do the same. Thus, whi le the e x ­
p e r i e n t i a l expert i s running, a l l in fo rmat ion 
gained is passed to the executor fo r conversion to 
a form usefu l to the physical exper t , when ap ­
p r o p r i a t e . In t h i s way the physica l expert can 
monitor the progress and make c e r t a i n inferences 
about the s ta te of the device that is not ava i lab le 
to the e x p e r i e n t i a l exper t . Through t h i s mechan­
ism, i t acquires a l l o f the in fo rmat ion that the 
expe r i en t i a l expert acqui res, thus a l lowing i t to 
begin diagnosis where the e x p e r i e n t i a l expert 
leaves o f f , should the need a r i s e . By t h i s same 
mechanism it can communicate inferences it makes 
back to the e x p e r i e n t i a l exper t . These c a p a b i l i ­
t i e s w i l l be demonstrated by an example in the next 
sec t i on . 

The executor con t ro ls communication of i n f o r ­
mation between the user and the two expert systems. 
Any request fo r in fo rmat ion needed by one of the 
expert systems is g iven to the executor which then 
determines whether the in fo rmat ion is a l ready known 
by the other expert system, or whether to ask the 
user. I f the In fo rmat ion i s a l ready ava i l ab le from 
the other expert system, the executor simply r e ­
turns the in fo rmat ion in the proper form to the r e ­
quest ing expert system. Otherwise i t asks the 
user. Should the user request an explanat ion at 
any point in the d ia logue, the executor determines 
which expert should answer i t . Cu r ren t l y , on ly 
"how" and "why" are l ega l quest ions. The answer to 
"how" is associated w i t h the node that resu l ted in 
the l a s t output to the user . The answer to "why" 
is c u r r e n t l y always answered by the phys ica l expert 
s ince the e x p e r i e n t i a l expert could on ly o f f e r a 
very shal low exp lana t ion . 
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Figure 3. An Example Exper ien t i a l Knowledge Base fo r a Simple Heating System 

IV AN EXAMPLE 

To i l l u s t r a t e how the system works, a simple 
heating system w i l l be used as an example. The e x ­
p e r i e n t i a l and physica l knowledge bases are shown 
in Figures 3 and 4, respec t i ve l y . During a ses-
s i o n , the phys ica l representat ion appears in the 
top two- th i rds of the screen to g raph i ca l l y por t ray 
the progression of the problem s o l u t i o n . The b o t ­
tom t h i r d contains the d ia logue. 

Suppose that the user enters the i n i t i a l p r o b ­
lem that the house is too co ld . The expe r i en t i a l 
expert begins by checking out the p o s s i b i l i t y that 
the heat ing system is disabled in some way. This 
is chosen f i r s t because i t is very inexpensive and 
easy to check and i t is necessary to know i f the 
heating system is even set to be on. This leads to 
questions to the user concerning the s ta te of the 
thermostat and, when i t is establ ished that the 
thermostat is on, set c o r r e c t l y , and work ing, a r e ­
g i s t e r in the executor associated w i t h the e x ­
p e r i e n t i a l knowledge base is set to i nd ica te that 
the thermostat i s a l r i g h t . This in fo rmat ion is 
use fu l to the physica l expert in a d i f f e r e n t form. 
Thus, a conversion takes place that sets reg is te rs 
associated w i t h the power supply, the c o i l , and the 
contacts to c o r r e c t . This causes the nodes on the 
d i sp lay screen represent ing these un i t s to tu rn 
dark, g i v i ng some i n d i c a t i o n to the user of the 
progress being made. This part of the example 
demonstrates how the system handles a many to many 
conversion of i n fo rma t i on . There is no such un i t 
as a thermostat w i t h a l l o f i t s se t t i ngs in the 
phys ica l knowledge base, j u s t as there is no power 
supply, c o i l , o r contacts i n the expe r i en t i a l 
knowledge base. 

f i r s t th ing that the expe r ien t i a l expert wants to 
know under the hypothesis that the furnace is not 
producing enough heat is i f the p i l o t l i g h t is on. 
I f the answer to t h i s quest ion is yes, a r eg i s te r 
associated w i th the p i l o t l i g h t o f the e x p e r i e n t i a l 
knowledge base is se t , which t r i gge rs a conversion 
to set a reg is te r associated w i th the p i l o t l i g h t 
of the physical knowledge base. In t h i s case, the 
conversion is one-to-one and therefore s t r a i g h t f o r ­
ward. However, the physical expert can assume from 
th i s in format ion that the l i q u i d propane gas (1pg) 
tank has gas in it (a t least as a f i r s t cut ) , tha t 
the lpg tank valve is working, and that a l l of the 
conduits from the lgp tank to the p i l o t l i g h t are 
a l r i g h t . The fac t that the lpg tank is not empty 
again t r i gge rs a conversion to set the r eg i s t e r f o r 
the lpg tank of the expe r ien t i a l system. Like the 

ing 
The e x p e r i e n t i a l analys is continues by check* 
the blower and then the furnace i t s e l f . The 

Figure 4. An Example Physical Knowledge 
Base f o r a Simple Heating System 
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previous convers ion, it Is one-to-one and there fore 
s t r a i gh t f o rwa rd . However, t h i s In fo rmat ion proves 
to be use fu l to the e x p e r i e n t i a l expert because the 
next quest ion it would ask is if the 1pg tank is 
empty. Rather than asking the user an apparent ly 
redundant ques t ion , the e x p e r i e n t i a l expert can ac ­
qu i re the in fo rmat ion through the reg i s te r s in the 
executor. In t h i s way, the 1DM is capable of p r o ­
pagating knowledge acquired by one expert to the 
other exper t , thus avoid ing asking poss ib ly dumb or 
r e p e t i t i v e quest ions. 

Now suppose f o r t h i s simple example, that the 
problem Is w i t h the lpg in take valve being stuck 
shut . The e x p e r i e n t i a l expert w i l l there fore ex-
haust a l l o f i t s p o s s i b i l i t i e s , since I t knows 
nothing of the lpg Intake va l ve , and the phys ica l 
expe r t ' s knowledge base would appear as in Figure 
5. Only the p i l o t l i g h t sensor, the sa fe ty sw i t ch , 
the lpg intake v a l v e , the combustion chamber, and 
various conduits remain to be checked. These are 
par ts of the system that the e x p e r i e n t i a l expert 
knows noth ing about. 

The phys ica l expert takes over diagnosis by 
sys temat i ca l l y checking each of the nodes in the 
system to determine i t s input and ou tpu t . i t b e ­
g ins w i t h the i n i t i a l problem i t s e l f , the house be ­
ing c o l d , which is represented by the conduit 
between the vent and the c o l l . It moves backwards 
from the vent to the blower and f i n a l l y to the 
combustion chamber using the ru les discussed above 
to guide the search. The phys ica l expert knows 
tha t i t s output is not cor rec t since the a i r coming 
out of the vents is not warm, so i t looks f o r the 
source of the combustion chamber's input , which is 
the p i l o t l i g h t and the lpg in take v a l v e . The p i ­
l o t l i g h t is known to be a l r i g h t but the lpg intake 
va l ve ' s s ta te Is unknown. The system therefore 
asks the user to check the va l ve . This is found to 
be stuck shu t . Once the valve Is loosened the f u r ­
nace begins working p rope r l y . 

Figure 5. The Physical Knowledge Base 
at the Point where i t Takes 
Contro l of the Diagnosis 

In t h i s l a s t sequence, where the phys ica l e x ­
per t f i n a l l y diagnoses the problem, we have demon­
s t ra ted how a problem was found and solved that 
could not have been solved by the e x p e r i e n t i a l e x ­
pert because i t lacked the proper knowledge. In 
such a simple example, of course, it would be pos­
s i b l e to Include such knowledge in the e x p e r i e n t i a l 
exper t . However, in a la rger system, such as the 
automotive e l e c t r i c a l system that we are implement­
i n g , the i n c l u s i o n of every d e t a i l o f the w i r i ng 
diagram would be very d i f f i c u l t and diagnosing from 
i t would not be s t ra igh t fo rward in the e x p e r i e n t i a l 
exper t . It knows about such th ings as the ba t t e r y , 
the generator , the fan b e l t , and c e r t a i n prominent 
wire connect ions, but more de ta i l ed in fo rmat ion on 
the components and w i r i n g is l e f t to a more 
coherent and use fu l representa t ion in the phys ica l 
exper t . 

V RELATED WORK 

Over the past several years much work has been 
done in addressing the problem of employing more 
fundamental knowledge in an expert system 
[1 ,2 ,3 ,5 ,7 ,8 ,12 ,13 ,15 ) . However, most are c o n ­
cerned only w i t h t h i s deeper knowledge. Work by 
P a t i l e t a l . [12] i s probably the most c l ose l y r e ­
la ted to the work presented here because i t is also 
concerned w i t h i n t e g r a t i n g d i f f e r e n t l eve l s o f 
knowledge. In t h e i r work on ABEL, in the domain of 
diagnosing and t r e a t i n g e l e c t r o l y t e and acid-base 
d is turbances, P a t i l et a l . demonstrate how three 
d i f f e r e n t l eve l s of knowledge represent ing the 
p a t i e n t ' s s ta te can be used to diagnose and t r ea t 
the problem. I t d i f f e r s from our model not on ly in 
the number of l eve ls of knowledge used but in how 
c lose l y these leve ls are l i n k e d . In ABEL, the l e v ­
e ls are designed to be compatible and cons is ten t . 
The lower l eve l s conta in a more de ta i l ed vers ion of 
the higher l e v e l s . Knowledge at one l e v e l can be 
passed cons i s t en t l y to another through a set of 
spec ia l f unc t i ons . The IDM, on the other hand, 
does not necessar i l y requ i re a cons is tent view of 
the problem between the e x p e r i e n t i a l and the p h y s i ­
ca l exper ts . Each expert is developed independent­
ly and in tegra ted at complet ion. The e x p e r i e n t i a l 
knowledge employed in the IDM resembles tha t used 
in the higher l eve l s of ABEL. IDM's e x p e r i e n t i a l 
knowledge i s , in some cases, causal since the l i n e 
between e x p e r i e n t i a l and causal knowledge is some­
what i n d i s t i n c t . But the deeper knowledge employed 
in the IDM is more c lose l y re la ted to the device 
under diagnosis than is ABEL's. The phys ica l e x ­
per t of the IDM contains knowledge of the com­
ponents of the device and how they behave and i n ­
t e r a c t . Cause and e f f e c t is thus propagated v ia 
the phys ica l and f unc t i ona l s t ruc tu re of the device 
ra ther than d i r e c t l y represented as in ABEL. 

VI CONCLUSIONS AND FUTURE WORK 

The IDM works w e l l in the types of domains 
tha t i t was designed f o r , namely 
mechanica l /e lec t ron ic diagnosis and repa i r . I t 
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even appears app l icab le to the medical domain, to 
debugging computer programs, and to f a i l u r e modes 
and e f f ec t s analys is o f o f f -shore o i l d r i l l i n g 
plat forms (using a d i f f e r e n t set of f unc t i ona l 
p r i m i t i v e s ) . However, i t does not appear a p p l i c a ­
ble to such f i e l d s as mineral prospect ing, speech 
recogn i t i on , and law. The expe r i en t i a l expert is 
most l i k e l y s t i l l v i a b l e , but the deep knowledge in 
these domains seems to requi re a d i f f e r e n t approach 
to representat ion than a set of f unc t i ona l p r i m i ­
t i v e s . The concept of processes [14] may be one 
p o s s i b i l i t y . 

The IDM exh ib i t s a way of prov id ing a w e l l -
def ined but f l e x i b l e con t ro l over the propagation 
of knowledge between the d i f f e r e n t experts that era-
body the diverse types of knowledge about a problem 
domain. Future work w i l l inc lude e f f o r t s to gen ­
e r a l i z e the approach so that the conversion tab le 
in the executor can be automat ica l ly generated from 
the knowledge bases of the expe r i en t i a l and p h y s i ­
ca l exper ts . Cur ren t l y i t is b u i l t by hand. We 
also plan to examine d i f f e r e n t t o p - l e v e l con t ro l 
s t ra teg ies w i th respect to when to use each of the 
exper ts . This is an extremely d i f f i c u l t but impor­
tant problem since it involves the quest ion of how 
a human knows when to use each type of knowledge. 
Another area fo r research could be in i d e n t i f y i n g 
other types of deep knowledge that appropr ia te ly 
f i t other domains such as the ones mentioned above. 
F i n a l l y , the use of several d i f f e r e n t kinds of deep 
knowledge that represent d i f f e r e n t aspects of the 
same device, such as e lec t ron ic and mechanical, 
could be i nves t i ga ted . 
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