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Abs t rac t 

Ways in which physical objects interact are explored, and in 
particular the concept of freedom is analysed. Intuitively, the 
fit between two shapes in a given spatial configuration is a 

statement about how much one shape needs to mutilated in 
order to be made identical to the other. The freedom of one 
object with respect to another specifies what motions the First 
object can go through without the second one moving. The 
formulations, termed naive kinematics, are compared to work 
that was done in the kinematics of machinery in the 10th 
century and that has since been somewhat neglected. 

1. Introduction 
Different sorts of reasoning make different use of the 

"shape" of objects. The notations devised so far have typically 
been "autonomous" in nature: the shape of each object is 
described independently, and the problem of reasoning about 
the interaction between several objects is relegated to the user 
of the shape representation. In these notes my primary concern 
is exactly the interaction between several physical objects. I 
would like to be able to reason about questions like 

• If I place a smooth plate on a smooth table - will it 
move if pushed sideways? 

• If I bang a nail into the wall - wil l it move if 
poshed sideways at its base? 

• Why can you stack spoons economically (in term of 
"wasted space") but not knives! 

• What is the magic quality of M.C.Escher's 
Fish'n'Bird drawings! 

• What geometric features makes a piston work? 

The two central notions in reasoning about such issues seem 
to me to be goodness of fit and amount of freedom. The 
goodness of f i t between two shapes says something about how 
much one shape needs to be mutilated in order to be made 
identical to the other. The amount of freedom of one shape 
with respect to another is a statement about the physical world 
• if you had objects of the two shapes, how would the 
movement of the first be constrained by the second. 

To illustrate the probably obvious distinction between the 
two notions, consider the configuration of two objects A and B 
shown in Figure l - l . 1 

Figure 1-1: A cross in a square 

The fit between the two shapes is lousy, but placing the cross 
inside the square (in the only possible position) gives it sero 
amount of freedom. 

A notion similar (and at some places identical in name) to 
"freedom" appears in the literature on the kinematics of 
machinery2. Interestingly, the earlier literature from the 10th 
century is very close in spirit to my formulation while the later 
literature is farther apart. We will see that my formulations are 
actually a generalization and formalization of some principles 
expressed by Reuleaux in the 1870s. Reuleaux uses the word 
Kinematics in a restricted sense to denote the science of 
constrained motion, without reference to ideas such as time or 
force (A.B.W.Kennedy, his translator, suggests the term 
Metastatics). It is in this sense of the word that one can view 
my formulation as naive kinematics. I will discuss the 
kinematics literature in a later section. 

This work was done as part of the "commonsense summer" 
project at the AI center at SRI International. The purpose of 
that project was to begin the creation of a large database of 
knowledge about the real world, and in order that the 
formulations of different people be integrable it was decided 
that all theories be expressed in first order predicate calculus 
(or at least be readily translatable into it). In [Hobbs 84] a 

1 I'll be restricting the discussion in these notes to 2-space. I don't know 
how well things scale up to 3-space. 

2I' m indebted to Ken Porbue for directing me to that litersture and in 
particular to the work of F. Reuteaux. 



Y. Shoham 437 

fuller version of these notes appears which makes an attempt 
to make the theory of naive kinematics formal, but in these 
notes I will be largely informal. In that report I also analyse 
the concept of which will not be mentioned any more 
in these notes. I have another reason for referring the reader to 
[Hobbs 84] beside as a more detailed description of Naive 

Kinematics; there are other papers there that fit in nicely with 
my formulations. Particularly relevant are the reports by Greg 
Hager and Henry Kautz, attempting to axiomatize materials 
and space respectively. 

Organization of the sections: 

Section 2 is concerned with translational freedom and 
Section 3 with rotational freedom. These formulations have an 
unintuitive property that is briefly discussed in Section 4. 
Section 5 discusses the literature on kinematics, and section 0 
summarises these notes and points out where more research is 
needed. 

2. Translat ional freedom 
The freedom of an object in a spatial configuration 

characterizes its possible motions assuming the rest of the 
configuration is static. The freedom of an object with respect 
to another (in a configuration ) is its freedom assuming that it 
and the other object are the only objects in the configuration. 

The two basic motions of an object are translation and 
rotation. In this section I consider translational freedom, and in 
the next section rotational freedom. There are two 
fundamental axioms of translational freedom. 

2 .1 . The f i rs t axiom of translational freedom 
At any point on a curve the tangent curve may or may not 

be well defined. If it's not then (in our domain) that curve 
forms an angle at that point. In fact, the case where a tangent 
exists can be viewed as a special case where the angle is 

F igure 2 - 1 : The general schema of touching 

3 'I'll omit this comment when it's clear from the context 
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Figure 3-3: Case2: the object has reflect angle 

obstacle that has an reflect angle. In this case the translation of 
OBJ is restricted by P1 to be (going clockwise) between and 

Notice that Case 1 is actually the limiting case of both Case 
2 and Case 3. 

2 .3 . T h e second a x i o m o f t r a n s l a t i o n a l f r e e d o m 
Let us call a point where an object touches an obstacle (in a 

configuration) a touchpoint of that object (in the 
configuration). 

The translational freedom of an object is the intersection of 
translational freedoms allowed by all its touchpoints. 

1.4. Examples of the second axiom of translat ional 
freedom 

Example 1 

F igu re 2-4: A trapped circle 

Figure 2-4 describes a circle trapped by three circular 

objects. There are three tonchpoints - say P1, P2 and P3 

corresponding to the objects OBSTl, OBST2 and OBST3. 

They individually restrict the direction of translating OBJ to 

the following plane segment*: 

The intersection of these allowable plane segments is empty, 
and so OBJ has no freedom whatsoever. 

F igure 2-5: A piston in a cylinder 

Figure 2-5 describes a two dimensional piston in a cylinder. 
Considering the piston as our object and the cylinder as an 
obstacle we compute the freedom of the piston in the 
configuration. There are an infinite number of tonchpoints - all 
those between A and B and all those between C and 
D. However all the points between A and B place an identical 
restriction on the translation of the piston, as do all the points 
between C and D. Let P1 be any point on the former segment 
and P2 any point on the latter one. They restrict the 
movement of the piston as follows: 

P1 P2 

Since the boundaries of these restrictions are included in the 
freedom direction, the intersection of the directions allowed by 
PI and P2 (and therefore the intersection of the directions 
allowed by all touchpoints) is that is in either direction 

along the x-axis. 

2,5. Theorems on translat ional freedom 
The following are theorems that fall directly out of the two 

axioms of translational freedom. They are not the only 
important ones, but will serve to illustrate the power of the 
axioms. 

The Two Point theorem 

You need at least two touchpoints to eliminate translational 

freedom of an object. 
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Yon need at least three touchpoints to eliminate translation*! 
freedom of a convex object by convex obstacle(s). 

The Three Point theorem relies on the following 
Lemma: The translational freedom of a convex object that is 

allowed by a single touchpoint spans an arc of at least 

A smooth object is one whose boundaries have no angles 
different than 

The Two Obstacle theorem 

Given an and object and two smooth obstacles or a smooth 

object and any two obstacles it is possible to arrange them in 

space so that the translational freedom of the object is limited 

to the two directions along some single axis4. 

The theorem of Maximum Effect 

Suppose you're given an object Obj and an obstacle Obst 
and you are required to arrange them in space so that they 
touch at a single point and so that the translational freedom of 
Obj is minimal. The theorem states that your arrangement 
must have them touch at a point where the boundary of either 
Obj or Obst forms the largest angle such that the other can be 
arranged to touch there and only there. 

3. Rotat ional freedom 
The treatment of rotational freedom is only slightly more 

complex than that of translational freedom, and most of the 
ground work has already been done in the previous section. 
Any rotation is defined by its center (a point in space) and its 
direction (clockwise or counter-clockwise). Our axioms will 
state for each point in space whether it can serve as an center 
of a clockwise rotation of the object and whether it can serve 
as an axis of a counter-clockwise rotation of it. As for the 
translational case, there are two fundamental axioms of 
rotational freedom. 

3 .1 . The f i rs t axiom of rotat ional f reedom 
Consider again the general schema of touching in Figure 2-1. 

The first axiom of rotational freedom states that the clockwise 
rotation of Obj allowed by P is around all points that lie in the 
space segment trapped (going clockwise) between the rays R1 
and R2, where 

the orientation of Rl is 

4Can tbt condition of emoothneee be weakened or even dropped! I think 
that at least the former. 
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Recall that the segment boundaries are included in the 
freedom. Thus the intersection of the segments of clockwise 
freedom is the center of the circle as is the intersection of the 
segments of counter-clockwise freedom. That means that the 
only rotation possible for the circle is about its center, in either 
direction. 

Figure 2-5 described a two dimensional piston in a cylinder. 
Al l the points P1 between A and B allow different rotational 
freedom as do all the points P2 between C and D (although as 
we saw that was not the case with translational freedom, where 
all the points P1 allowed the same freedom as did all the 
points P2). However it b easy to show that as we move left on 
AB the clockwise rotational freedom only decreases and as we 
move right the counter-clockwise rotational freedom only 
decreases. Since we are interested in the intersection of all such 
freedoms anyway we can restrict our attention to points A and 
B. By a similiar argument the only points on CD that we need 
consider are C and D. The rotational freedom allowed by each 
of these points is shown is shown in Figure 3-3. 

The intersection of the four plane segments of clockwise 
rotational freedom is empty, and the same holds for the 
segments of counter-clockwise rotational freedom. The piston 
therefore has no rotational freedom at all. 

F igure 3-3: Rotational freedom of a piston 

3.6 . T h e o r e m s o n r o t a t i o n a l f r e e d o m 
As for the translational case we give some theorems that 

illustrate the power of our formulation. 

The Two Point theorem 
You need at least two touchpoints to completely eliminate 
rotational freedom of an object in a given direction (clockwise 
or counter-clockwise). 

The Three Point theorem 
You need at least three touchpoints to eliminate all rotational 
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freedom of an object. 

The reader is urged to read Section 4 before trying to come 
up with counter-examples to this last theorem. 

The Two Obstacle theorem 
Given a smooth object and two obstacles of any shape or two 
smooth obstacles and an object of any shape yon can arrange 
them in space so that the rotational freedom of the object is 
completely eliminated in one direction - unless the object is a 
circle. (Here too the smoothness requirement can probably be 
weakened). 

The Incomparability theorem 
There exists a configuration where an object has zero 
translational freedom but some rotational freedom. There also 
exists a configuration where the converse holds - an object has 
some translational freedom but no rotational freedom. 
(Proof: see Figures 2-4 and 2-5). 

If the limiting case of zero freedom serves to distinguish 
between the two kinds of freedom, the opposite limiting case 
relates them: 

The theorem of Absolute Freedom 
An object has total translational freedom in a configuration if 
and only if it has total rotational freedom in the same 
configuration. 

4. An observation about the nature of freedom 
Our formulations so far have been "local" in flavor, that is 

we discuss freedom in term of touchpoints. This causes some 
unintuitive results. For example, does the object in Figure 
4-1 have translational freedom? Does it have rotational 

The answer to both questions is yes in our system, although 
in both cases it is freedom that is deprived as soon as it is 
exercised. The translational freedom is along the X-axis and the 
rotational freedom is in either direction around all points on 
the Y-axis. Fortunately these controversial cases tend to arise 
when there are very few touchpoints, and usually there will be 
many. Still there's something discomforting about such a 
result, and the solution seems to me to define something that 
might be called "continuous freedom" (either translational or 

rotational). Some theorems will extend from freedom to 
continuous freedom (like the Three Point theorem for 
translation) and some will fail to do so (like the Three Point 
theorem for rotation). I don't pursue this further in these notes. 

5. Naive kinematics and real kinematics 
When I started this work I intended to make concrete some 

notions that seemed to me intuitive and fundamental for 
reasoning about objects. In doing that I found my work, and in 
hindsight not surprisingly, overlapping with that of researchers 
in the kinematics of machinery. As early as 1870 F. Reuleaux 
stated that 

...the elementary ... parts of a machine are not single, but 
occur always in pairs, so that the machine, from the 
kinematic point of view, must be divided rather into pairs 
of elements that single elements. ( (Reuleaux 76] p.86). 

Reuleaux then goes on to state assumptions that are very 
close to the ones I used - objects are rigid, space is fixed (i.e. a 
global frame of reference), only one object can move. He then 
has two sections - "Restraint against sliding" and "Restraint 
against turning". As might be expected these deal respectively 
with what I have termed translational freedom and rotational 
freedom. It turns out that in both cases Reuleaux considered 
Case 1 of sections 2.2 and 3.2. This amounts to the 
assumption that all objects are everywhere "smooth", that is 
the tangent to their boundaries is defined everywhere. My 
results for this special case are identical to Reuleaux's. He also 
gives an informal version of the Three Point theorem for 
translational freedom, and analyses cases of rotational freedom 
where three, four and five points are need to completely 
eliminate rotational freedom. Like in these notes Reuleaux 
restricts the discussion to 2-space. In 1807 P. Somov proved 
that in 3-space at least seven points of contact are needed to 
completely eliminate freedom ( [Somov 07]). 

To avoid giving the wrong impression it must be emphasised 
that these issues are only a small part of what these learned 
kinematicians are concerned with. They only introduced them 
in order to define complicated notions like the crank and the 
screw-pair, so they could reason about actual machines like the 
newly-invented train. In fact as far as I could see in most of 
the more recent texts this introductory analysis doesn't appear 
- for example in the texts by Hardison (1070), Dijksman (1076), 
Shigley (1050), Sue & Radcliffe (1078), Hinkle (1053), Barr 
(1800), Guillet (1040) and Beyer (1063). 

The concernes of these texts are typified by a quote from 
(Hardison 70] 

A major aim (of this book is] to provide explanations for ... 
the more difficult concepts. 
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Computers of coarse need explanations for the "easy" concepts 
too, and it is those I've been concerned with in these notes. 

One exception is [Rosenaner & Willis 53] where Reuleaux's 
results are reproduced in a slightly more rigorous way, and new 
terms are used which may not sound totally unfamiliar - "field 
of translational (rotational) freedom", 'Yield of restraint". 

Current interest in robotics has produced more recent related 
work. One example is [Salisbury 82] which analyses possible 
designs for a robot hand. Based on this analysis one was in fact 
built - the Stanford/JPL three-fingered hand. Involved in the 
analysis is classification of surface contacts, which unlike my 
(or Reulaux's) treatment allows friction. His analysis of them 
is by determining the "degree of freedom" of each contact 
type, rather than directly in terms of translational and 
rotational freedom. 

What then is the relation between Naive Kinematics and the 
real thing! The answer seems to me that the naire version is 
concerned with the basic notions underlying the kinematics of 
machinery, which were explicated more than one hundred years 
ago when some folks were attempting to make the kinematics 
of machinery a science rather than an engineering discipline, 
and that in the meanwhile have been somewhat neglected. In 
the process of recreating that information I arrived at a 
formulation that b more general than the original one. We can 
now build on top of that basis a richer theory - but it will 
probably look very different from the one found in the 
kinematics literature. Gears, cams, linkage chains and screws 
are unlikely to appear in the formulation, at least not at the 
early stage they do in in kinematics. 
6 . S u m m a r y 

I have outlined an approach to object representation 
- instead of describing each object without regard to other 
objects, center the representation around the relation between 
objects. In doing that there are two main notions to consider 
• freedom, which I analysed here, and fit, which I did not. 

There are several directions in which the analysis offered in 
these notes should be extended: 

• The notion of f i t should be analysed and related to 
freedom. Some results along those lines are offered 
in my report in [Hobbs 84], including an application 
to robot grasping. 

• 1 mentioned the unintuitive local" flavor of the 
formulation, and suggested that it could be avoided 
by defining "continuous freedom". 

• A rich library of Shape tuples" should be created, 
each analysed in terms of f i t and freedom. In doing 
that one important issue b abstracting away from 
configurations: we want to know the relation 
between two shapes regardless of how they are 

embedded in a specific spatial configuration. In 
terms of our our formal notation in [Hobbs 84], we 
want to get rid of the "configuration" argument to 
the FREEDOM and FIT predicates. This can be 
achieved by essentially quantifying over 
configurations In a sense this b where things get 
really interesting - in these notes I have only 
provided the machinery for creating such a 
knowledge base. 

• Natural language concepts such as touch, contact, 
pointed, aligned, abut, rap around, encircle, trap, 
lean against, tangled, f i t like a glove, hold, grasp, 
grip, pinch, clasp, slide along, turn, insert, "guide", 
hinge, bottleneck, wedge, hang and others could be 
analysed in terms of concepts defined in these 
notes. 
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