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ABSTRACT 

The ONYX program is designed to fill the need for 
planning in application areas where traditional planning 
methodology is difficult to apply. While the program being 
developed will assist with the planning of cancer therapy, its 
architecture is intended to be of use whenever goals are 
ill-specified, plan operators have uncertain effects, or trade­
offs and unresolvable conflicts occur between goals. We 
describe a planning process which uses strategic 
information and a mechanistic model of the domain. The 
process consists of three steps: (1) generate a small set of 
plausible plans based on current data, (2) simulate those 
plans to predict their possible consequences, and (3) based 
on the results of those simulations, rank the plans according 
to how well each meets the goals for the situation. 

I INTRODUCTION 

Traditional planning programs attempt to satisfy a goal with 
a sequence of actions (for example, STRIPS (Fikes, 1971)). 
Each action Is explicitly represented as an operator with 
preconditions and effects. The planner searches through a 
"state space" using operators to move between states. A 
successful plan is defined by a set of operators which 
generates a path of admissible states from the Initial state 
to the goal state. The search through the state space is 
often aided by means-ends analysis. Frequently subplans 
must be built to satisfy the preconditions of the operators in 
a higher level plan. 

More advanced planners have dealt with the problem of 
interacting subgoals. NOAH (Sacerdoti, 1977) uses a critic 
to repair Incorrect or Inconsistent plans. Stefik's 
MOLGEN (Steflk, 1981) uses constraints and a least 
commitment approach to handle subgoal interactions. 

However, in medicine and many other application areas, 
the planning task cannot be represented in a form useful to 
a conventional planner. Often the goals are ill-specified 
and the operators have uncertain effects. Furthermore, 
incomplete and unresolvable interactions occur between 
parts of the goal, limiting the usefulness of least 
commitment and plan repair techniques. Consequently, 
medical therapy planning programs such as VM (Fagan, 
1979), ONCOCIN (Shortliffe, 1981), and ATTENDING (Miller, 
1983) have frequently relied on algorithms or step-by-step 
protocols to provide explicit guidelines in the construction 
of plans appropriate to a particular patient's condition. 

Our work with ONCOCIN in the cancer therapy domain has 
revealed an important limitation of medical planning systems 
which use explicit criteria such as algorithms and protocols. 
The knowledge In these specifications is a "compiled" 
version of pathophysiological knowledge of the human body 
and of the strategic knowledge of the domain. In ONCOCIN, 
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plan elements are selected strictly according to the 
characteristics of the current treatment situation without 
considering the causal mechanisms of the domain or many 
of the strategies useful in prescribing therapy. 
Consequently, when a situation arises for which the 
algorithmic knowledge does not apply, the planning system 
often recognizes the problem but cannot propose alternative 
therapy. The ONYX system is designed to suggest expert 
quality therapy plans in such difficult cases. 

II THE ONYX ARCHITECTURE 

ONYX is faithful to the standard planning paradigm when 
possible, but it has been extended to provide for the 
uncertain and ill-specified nature of the problem and to 
accommodate the time-dependent nature of the planning 
problem. 

The planning process used by ONYX consists of three 
steps: 

1. Plan generation. Using current and past data 
about the patient, and exploiting the hierarchical 
nature of possible plan steps, generate a small 
set of "plausible plans" which are consistent 
with the patient's current state. 

2. Symbolic simulation. Using knowledge about 
the structure and behavior of the human body, 
predict the future states of the patient after the 
execution of each plausible plan. 

3. Plan ranking. Using knowledge about how 
patient data satisfy goals for the patient's 
progress, rank each of the plausible plans 
according to the extent that the simulation's 
predictions for each plan meet the therapy 
goals. 

The following three sections will describe each of these 
phases In more detail. 

A. Plan Generation 
Cancer treatment strategies are often general statements 

which may be applied to a wide range of decisions in the 
plan generation process, from broad therapeutic choices 
(e.g., whether to give drug therapy or radiation therapy) to 
specific decisions about individual drug doses. One such 
strategy is: "If a problem is encountered with a treatment, 
try to eliminate the part of the treatment that might be 
causing the problem." In one context, this is interpreted as 
a suggestion to decrease or eliminate the previously 
administered drug that is the likely cause of toxicity. In 
another context, it may be used to help decide between 
continued drug therapy and alternative treatments. 
Currently, such a strategy must be represented In each 
context in which it applies, rather than as a single more 
general principle. 

Strategies are represented as two kinds of production 
rules. Some strategies are control rules which guide the 
exploration of a therapy hierarchy, shown in Figure 1. 
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Others are generation rules which propose plan steps 
associated with the leaf nodes of the therapy hierarchy. At 
present, we primarily use the general strategy "keep close 
to the standard plan" in guiding the exploration of the 
hierarchy. Other strategies can be added as appropriate. 

Figure 1: The therapy hierarchy used in the plan 
generation phase of the therapy planning process. 

The plan generation process begins at the root of the 
hierarchy. As each node is explored, the control rules 
associated with the node are examined to determine 
whether that node's descendants should be evaluated. For 
example, control rules associated with the Drug Treatment 
node determine if drug therapies could plausibly be given to 
the patient. We have previously used a similar process for 
plan analysis in an adaptation of the ONCOCIN 
program (Langlotz, 1983). 

When a leaf node in the hierarchy is reached, and the 
control rules suggest that the node corresponds to a 
reasonable class of therapies, generation rules are used to 
propose plausible plan steps. The conditions of generation 
rules test for patterns in past and present patient data. Their 
actions propose plan steps based on interpretations of the 
data. An example generation rule is shown in Figure 2. 

If *drug 1s a drug in *chemotherapy, 
•X 1$ one of the cur ren t problems 
•drug 1s not one of the causes of *X, but 
*drug can con t r i bu te to *X 

then reduce the dosage of *drug 
Figure 2: A generation rule in 

names are preceded by asterisks. 
ONYX. Variable 

Complete therapy plans are subsequently formed by taking 
consistent collections from the proposed plan actions. The 
consistency Is enforced by checking that the conditions of 
the rules which proposed each plan action are not 
contradicted by other actions in a collection. 

B. Symbolic Simulation 
Simulations are useful in predicting the consequences of 

carrying out proposed plans. But since knowledge of causal 
mechanisms in the medical domain Is both uncertain and 
incomplete, it is difficult to find Invariant quantitative 
mathematical relationships between parameters in our 
models. Consequently, deterministic mathematical models 
like those used in AI/MM (Kunz, 1984) are not acceptable. 

The work of Kuipers (Kuipers, 1984) suggests useful 
alternatives to a completely quantitative approach. 
Qualitative simulations provide a way of expressing 
qualitative values for the states and trends of a set of 
interrelated variables In a system. Heuristics are used to 
help envision possible future states for the system. But 
these techniques cannot resolve the conflicting trends 
which occur so frequently in oncology. Furthermore, they 
do not represent the uncertainty in the processes they 
attempt to describe. 

The need to address the problems of conflicting trends 
and uncertain relationships prompted us to develop a 
simulation architecture for ONYX in which both the structure 
and behavior of the model are represented symbolically. 
Simulation models are organized hierarchically according to 
part-of relationships. The behavior of each model is 
determined by the behavior and interconnections of Its parts 
and by three knowledge bases, described below, which 
specify the model's behavior in response to stimuli. The 
state of each model is represented by a group of stafe 
variables, and by the state of its parts. Each model has 
ports through which it communicates with other models 
using simple message passing. 

Hierarchical models are built interactively on a Xerox 1108 
LISP workstation. A representation of three such models as 
they appear on the 1108 screen is shown in Figure 3. The 
box on the left shows the body model. One of the parts of 
the body model, the bone marrow model, is shown at the 
center. The marrow space model, which is a part of the 
bone marrow model, Is shown at the right. The boxes 
containing X's are the ports through which the models 
communicate with one another. 

The behavior of each model is described by three rule 
bases containing production rules. The first rule base 

Figure 3: Each of the three large rectangular boxea signifies a model Solid lines 
represent connections between models. 
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dictates how a model will respond to the stimuli It receives 
from other models through Its ports. The second rule base 
contains knowledge about how to make further conclusions 
about the model's state based on any recent changes. The 
third rule base dictates how the new state of the model will 
be transmitted to neighboring models using a simple 
message passing scheme which acts along connections 
between models. 

At present, a simulation of the models shown in Figure 3 
can predict the behavior of the bone marrow in response to 
the Intravenous administration of a hypothetical anti-cancer 
drug. This initial stimulus is propagated throughout the 
models using rules in each about the flow of the blood 
throughout the body. In the bone marrow, the drug moves 
from the blood space to the marrow space, where it is 
transmitted from the extracellular fluid to each cell 
population. Rules In the model of each cell population are 
used to predict the drug's effect on the size, growth, and 
maturation rates of these cells. These rates are currently 
represented by simple numeric constants, which are 
modified in response to the drug. As the simulation 
proceeds, visual representations of the simulation events 
are shown on the 1108 display. For example, a graphical 
image of the drug is shown moving along the connections of 
the model to represent its movement in the body. 

When the simulation is complete, the history of state 
variables can be plotted against time. The response curve 
shown in Figure 4 shows the simulation's prediction of the 
amount of cells in a particular marrow population, as plotted 
on the screen. Because these cells are key indicators of 
toxicity caused by drug therapy, information of this kind can 
ultimately be used to help estimate the extent to which a 
plan has met the treatment goals. 

Figure 4: A plot generated by the simulation which 
shows the size of a population of bone marrow cells 
over 27 days. 

C. Plan Ranking 
While the plan ranking phase of ONYX remains 

substantially unimplemented, we are experimenting with 
decision analytic techniques which rank alternative plans. 
These techniques require knowledge of the alternatives, 
probabilities, and preferences inherent in the decision 
situation (Howard, 1984). The current ONYX architecture 
can be readily augmented to provide this information. 

Treatment alternatives are already provided by the plan 
generation mechanism. We intend to augment the symbolic 
simulation so that it can provide the probabilities of possible 
outcomes, rather than simple deterministic predictions. 
Preferences for the patient will be explicitly represented as 
at least three general goals: (1) to improve the patient's 
prognosis, (2) to reduce the treatment risk for the patient, 
(3) to remain close to the protocol guidelines for treatment 
when possible. Knowledge about how significant patient 
outcomes affect each of these goals, together with the 
relative Importance of these goals, will allow computation of 
the relative utility of alternative plans. 

Ill CONCLUSION 

Traditional techniques cannot solve planning problems In 
many application areas. ONYX's three-step planning 

process has been developed as an alternative. The first 
step in the planning process constrains the generation of 
possible plans. The second step attempts to predict how 
each plan might affect the patient. The third step will rank 
how well the possible future consequences of plans satisfy 
the goals for the patient. These three components of the 
ONYX system are not yet sufficiently complete to cooperate 
in generating a ranked set of plans. Our next task is to 
combine them to form a coherent planning system. We then 
intend to integrate the strategic and mechanistic knowledge 
In ONYX with the protocol-based knowledge In ONCOCIN, 
thereby augmenting its decision-making and explanatory 
capabilities. 
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