ON THE DESCRIPTIONAL COMPLEXITY OF PRODUCTIOIN SYSTEMS

Peter Trum

Battelle-Institut e.V.
Am Roemerhof 35
D-6000 Frankfurt am Main
West-Germany

Abstract

In this paper we formalize different
methods for describing control
knowledge in production systems by the
concept of production system schemes.
In this framework these methods are
compared from the viewpoint of
descriptional complexity giving us
some insight by which means problems
can be described in an easy and
succinct way.

1 Introduction

In (Georgeff, 82) a production system
architecture is described in which
procedural knowledge is specified by
control languages. In this framework
he outlined transformations on
production systems to remove the
amount of nondetermism to get a more
efficient execution. In order to
clearly separate the means for
describing control knowledge from the
(object-level) semantics of a
production system and to compare
different methods to describe
controlknowledge we will abstract this
concept by production system schemes.
Different methods to describe control
information in production systems can
then be modelled by different classes
of production system schemes (this is
in parallel to the theory of program
schemes (Greibach, 75)). The concept
of production system schemes might
also form the basis for a theory of
transformations on production systems.
In this paper we consider the following
classes of production system schemes:
controlled production system schemes
in which procedural knowledge is
described by languages and production
system schemes with markers, which use
special database symbols to sequence
the order of productions. These
classes of production system schemes
will be compared from the viewpoint of
descriptional complexity. We show

that removing nondeterminism (if
possible) in controlled production
systems might result in a size
explosion of the equivalent
deterministic production system. In
the same way we show that in some
cases the specification of control-
knowledge by markers can result in
drastic more succinct representations
than a separate description of
controlknowledge in even non-
deterministic controlled production
systemss-

2 Notations and Definitions

In the following definitions we
introduce the concept of {controlled)
production system schemes and
production system schemes with
markers.

Def.:

A production system schema (PSS) is a

quadrupel Q = {xr , P, A, f) with 1 a
finite set of production symbols, A a
finite set of action eymbole, and f a
function from § into (PUP)*x A with P
- {PlprPldencting the set of
negative predicate symbols. For s in I
f(s) = (c,a) is denoted by c -— a

where ¢ ie the condition (to be
interpreted as the conjunction of its
elements) and a the action of s.

Def. t
An interpretation of a PSS Q « (% P,
A, f) is a pair | = (D, h) where D is

a nonempty set, the database of Q, and
h is a mapping assigning to each pEP a
predicate h(p) from D into (0,1) and
to each a FA a relation over D.

Def .:

A controlled production system schema
(CPSS) is a pair Q - (L, P) where P is
a PSS and L a language over the
production symbols of P.

Def.1

Let Q= (L, P, A, £} be a PSS, C = {L,
Q) be a CPSS and I = (D, h) an
interpretation. The execution relation
=> OVer

{N;,xD)2 where Ny denotes the set of

all prefixes of words in L is defined
ag followe:

veEY VX1, x3 € D2: (v, x7) == (us,
xp) iff f](s! =q —a, h{g)ix;)= 1 and
{(x3, x3) r hi{a). The relation 1(C)
computed by C under I is defined as
I(C,‘ {(I! Y)f'(ac x)I\—"(wo Y)f
weL } .

Let Q) and (3 be two CPSS's. Then @
and Qp are equivalent iff I(Q;) = I}Qz)
under every interpretation I.

The abeve definitions deacribe how the
execution is controlled by a language.
Another method to specify control in
production systems consists of allowing
the productions to assert certain
markerg into the data base that then
can be tested by other productions.
This can be formalized as follows:

Def.:

Let M » {v],..., ¥vn} be a set of
markers and V= {m,...,mg } be a set
of valuea. For vj M and m4ZV we'll
denote by vy = m4 a new predicate
symbol with negation vijems; and by vi«<-
my a new action symbol with the fixed
méaning: "assert that vi has value mj
into the database"”.

Def.s

A production system schema with
markers {MPSS) is a tuple 0 = (¢, P,
A, M, V, £f) with £ , P, A defined as
for production system schemas, M a set
of markers, V a set of values for
markers in M and £ a function from I
into the set (PUPL {v = my, vy ¢
mj/v1€M‘ ijV)*x(AU {vi<-my/vjiM,
micv D%

The definition of execution under an
interpretation | = (D, h) must be
modified in the obvious way so that
the meanings of the new predicates and
actions are fixed (see e.g.
Engelfriet, 74).

In the following we will restrict
ourselves to regular control languages.
In order to compare the sizes of
production systems we next introduce
our size measures. Clearly the size of
a PSS P is given by the number of its
productions. In the case of a CPSS we
also have to measure the control
language complexity. This can be done
by the size of the automaton accepting
this language. For a regular control

P. Trum 463

language L the number of states in the
nondeterministic (NPA) or

deterministic (DFA) finite automaton M
accepting L then is a good measure for
the descriptional complexity of L (in
this case L is also denoted by T(M)).

3 Main Results

If only one production application at
each execution step of a CPSS Q = (L,
P) can eventually lead to a successful
termination, then it's possible to
translate it into an equivalent
deterministic production system. If
in addition the control language is
regular we can transform the
production system into an equivalent
flowchart program.

It is easy to show that in such cases
the number of states in the DFA M
accepting the language s(L) gives us
the size-complexity (i. e. number of
statements) of the equivalent
flowchart program where s denotes the
following substitution from the
production symbols into the predicate
and action symbols of P:

s(p) = qf where
f(p) = q -—>f
Theorem 1

For all n>l there exists a CPSS P,
with size complexity 0(n) s. t. every
equivalent flowchart program Q, has a
size complexity of at least 2".

Proof:
Let P be defined as follows:

Pnp = (Lp, Qp) where
Qn = ({pll P2, P%}l {qu}
{91, g2}, £) with:
f(p;) = P +91.
£(pz) = pg ~qz.
fip3) = pg ~nil,
Ln = {P1. p2i*{p1l: 1, P2 17!
- 3}

Kow it's easy to see that Pp allows
for deterministic exacution and that

s{Lp) = {pqg1. ptrqzl-{pqq%}
. fpagy, paEg2ln-1 (B9}

Since Ln can be accepted by a NFA with
0(n) states it also follows that the

(nondeterministic) description of P,

has a size complexity of O(n). On the
other hand it can be shown (Trum,

464 P.Trum

Wotschke, 83) that each DFA M with T(M)
= s(Ln) needs at least 2" states
prooving our theorem.

If we consider a MPSS Q with a
markerset M the execution order of
productions is only constrained by the
testing/setting of markers (i. e. the
control language is I*),., But, as shown
in (Engelfriet, 74), the constraints
introduced by the use of markers can be
modelled by a regular controllanguage
CM. This means that in such cases

the control language is defined in the
productions themselves. This leads us
to the following characterisation for
the equivalence of MPSS's and CPSS's:

Theorem 2

Let Q1 be a MPSS with markers in M and

Q2 = (L, P) be a CPSS. Then Q1 and Q2

are equivalent if s(L) = h(s(Cw))

where h is the following substitution:

h(vi = mj) = h(vi =m;) = h(vi <--m;) = ¢
and n(a) = a otherwise.

This result leads us to our last
theorem:

Theorem 3

For all n21 there exists a MPSS P,
with size complexity 0(n) s. t. every
equivalent CPSS C, has a size
complexity of at least 2".

Proof
Let P, = (E P,A,MV,f) with P = {P},
A={g igz}l

M= {q,Vi,eee,vph V= {1,...2n+1},
L= {Plsvs+sP2n+ls Ple-=+eBanland £

defined as follows:

flpi) = (g=i Aap=> g + i+l A vy« 1l

£(py) = q 21i AP+ g + i+l A vi+ 0

flpn+i) = (g Ezr):-!-i Avy = 1 - qgrn+iel

£(Pnei) = (g Ell}-ﬁi Avy = 0 - qgentisl
g2

for 1 s 1 s n and
f{pan+1)= (g = 2n+1 -»nil),

Furthermore, the initial value for the
markers is 1 and the goal state is any
state where q has value 2n+l.

>

Since we do not allow to introduce new
predicate or function symbols, any
equivalent CPSS Cp, = (Lp,Q,) without
any markers can have only productions
of the form ¢ - a where ¢ ¢{p,p } and

acfgy, 93}

Because of theorem 2 these productions
have to be sequenced by the language
Ln s.t. e(Lp) = {wyw /w*E {p91. p92}™,
waefgy, g2} P s.t. hiw)) = wgy where

hi(p) = h(p) = ¢, hig;)} = g1 and h(g3)
= g3} = lp.

For any language Lp with s{Lp) = L it
holds that any pushdown automaton
accepting L;, needs 2D gtate or
stacksymbols (Meinecke-Schmidt, 78} no
matter how the productions in Qp lock
like. From this it follows that the
specification of the control language
by even more general context - free
rewrite rules (meaning that the
control language itself is specified
by a production system) requires 0{2P)
productions, thus prooving our
theorem.

References

/1l Georgeff M.P., Procedural Control
in Production Systems, Artificial
Intelligence (1982) pp. 175-201

/2] Greibach, S.A., "Theory of
Program Structures", Lecture
Notes in Computer Science 36,
Springer Verlag, Berlin, 1975

/131 Engelfriet J., Simple Program
Schemes and Formal Languages,
Lecture Notes in Computer Science
20, Springer Verlag, Berlin, 1974

/3/ Trum P., Wotschke D., "Economy of
Description for Program
Schemes". InProceedings of FCT
83, Springer Verlag, Berlin, 1983

141 Meinecke-Schmidt E., Succinctness
of Deeriptions of Context-Free,
Regular and Finite Languages,
Technical Report DAIMI PB-84,
University of Aarhus, 1978

