
The Layered Architecture of a System
for Reasoning about Programs

Charles Rich

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

2. System Motivations

Cake is a hybrid system which provides reasoning facilities for the
Programmer's Apprentice. This paper describes the architecture
of Cake, which is divided into eight layers, each with associated
representations and reasoning procedures. The operation of
Cake is illustrated by a complete trace of the solution of an
example reasoning problem. We also argue that a hybrid system
in general is characterized by the use of multiple representations
in the sense of multiple data abstractions, which does not
necessarily imply distinct implementation data structures.

1. introduction

An earlier paper [12] describes the philosophy and overall
design of a hybrid reasoning system with two levels — a bottom
level of general purpose predicate calculus facilities, and a top
level which supports a specialized planning language. This paper
describes the implementation of this system (which has come to
be called Cake) in more detail, with emphasis on the predicate
calculus level. Two new results reported here are the refinement
of the predicate calculus level into five separate layers, and a more
subtle view of hybrid reasoning systems in general. We argue in
this paper that a hybrid system is characterized by the use of
multiple representations in the sense of multiple data abstractions,
which does not necessarily (as is often interpreted) imply distinct
implementation data structures.

The body of this paper is divided into mree sections. The first
section introduces a example program reasoning problem,
discusses why program reasoning is hard in general, and points
out the advantages we hope to gain with the current architecture.
The next section describes the implementation of each layer of
Cake in detail. Following this, we return to the example reasoning
problem and trace through a complete scenario of how this
problem is solved by the current Cake implementation. We
conclude with a discussion of some difficulties with Cake and its
relation to hybrid reasoning systems in general.

This report describes research done at the Artificial IntelNoence Laboratory of the
Massachusetts Institute of Technology Support for the laboratory's artlfioial
intelligence research has been provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-80-C-0505, in part by National Science Foundation grant
MCS-8117633, and in part by the IBM Corporation.
The views and conclusions contained in this document are those of the authors,
and should not be interpreted as representing the policies, neither expressed nor
Implied, of the Department of Defense, of the National Science Foundation, nor of
me IBM Corporation.

An Example Prob lem

Cake is being developed as the central knowledge
representation and reasoning engine for the Programmer's
Apprentice [8,9,14]. As such, its reasoning capabilities will be
used to support analysis, synthesis and verification of programs.

Most of the knowledge in the Programmer's Apprentice is
represented using a programming language independent
formalism, called the Plan Calculus. A plan in this formalism is
essentially a labelled, directed graph in which nodes represent
program operations and data structures, and arcs represent the
flow of data and control. A very important kind of reasoning
involving plans which Cake must perform is the following: Given a
plan and a set of correspondences between the incoming and
outgoing arcs of the plan and the inputs and outputs of a given
operation, determine whether the plan is a correct implementation
of that operation (i.e. whether the plan satisfies the input-output
specifications of the operation).

As an example of this kind of reasoning, suppose operations
X, Y and Z are defined with the inputs, outputs, preconditions and
postconditions shown in Figure 1, where the function g is
commutative, the domain of the function f is A, the range of f is B,
and B is a subtype of C.

Our problem is then to determine whether the plan XY,
composed of operations X and Y with the data flow shown in
Figure 2, is a correct implementation of the operation Z with the
indicated input and output correspondences.

The solution to this problem is achieved by a kind of symbolic
plan evaluation [13] roughly as follows: assume the preconditions
of Z; using the correspondences between the inputs of Z and the
incoming arcs of XY, prove the preconditions of X; assert the
postconditions of X; using the data flow between X and Y, prove
the preconditions of Y; assert the postconditions of Y; using the
correspondences between the outputs of Z and outgoing arcs of
XY, prove the postconditions of Z. If all of the proofs above are
successful, then XY is a correct implementation of Z.

Why Is This Hard?

The example above is highly simplified and abstracted so that
the complete trace of its execution can fit into a paper of this
length. In particular, the size and total number of formulae
involved in the proofs is tiny, and only relevant information is
included in the problem statement (e.g. there are no unused
postconditions).

If the Programmer's Apprentice were concerned only with
problems of this size, the simplest approach would be to dump all

C. Rich 541

the axioms into a theorem prover with a single uniform general
method (such as resolution), and wait for the result. The difficulty
with this approach is that reasoning about programs of realistic
size and complexity in this homogeneous way strains such
systems beyond reasonable time and space limits, basically due to
the inability to control the exploration of irrelevant proof paths.
Furthermore, because we want the Programmer's Apprentice to
support evolutionary program design, we require the reasoning
system to support incremental retraction (i.e. truth maintenance),
which existing uniform theorem provers do not.

The approach we are exploring in Cake is to partition the
overall reasoning task among a number of specialized reasoning
components. Even in the small example above, we can identify
several distinct categories of reasoning which can be attacked
with specialized algorithms: symbolic evaluation (of plans),
equality (input/output correspondences), algebraic properties of
operators (commutativity of g), functionality (f), and type
inheritance (B is a subtype of C). As we will see below, the
architecture of Cake has separate layers for each of these kinds of
reasoning. What we hope to gain by this partitioning is the
reduction to a controllable size of the reasoning problem seen by
each layer.

3. The Architecture of Cake

The earlier paper on Cake [12] argued for the utility of
partitioning the program reasoning task into two components, a
plan level and and predicate calculus level. In this paper we carry
this partitioning further. Figure 3 shows the architecture of the
current Cake system, which is divided into eight layers. The
bottom five layers (Truth Maintenance through Types) are the
refinement of the predicate calculus level described in the earlier
paper; the top three layers correspond to the plan level. The
currently implemented Cake system includes only the bottom five
layers plus the Plan Calculus (i.e. not the Plan Synthesis or Plan
Recognition layers). We will restrict ourselves in the discussion
below and in the example following primarily to the implemented
portion of the system.

Before describing the principal facilities of each layer, we
need to say a word about what is meant by "layer" in this context.
Most concretely, each layer is a collection of subroutines and
associated data structures. More abstractly, each layer adds a
coherent increment of functionality to the system (i.e. the principal
facilities summarized in the figure). The particular choice of layers
shown here arose out of a mixture of bottom-up and top-down
concerns. Partly we were motivated to take advantage of existing
efficient algorithms for certain specialized kinds of reasoning (e.g.
congruence closure), and partly we followed our intuition about
parts of the overall reasoning task (e.g. type inheritance), in which
the control problem could be attacked with only "local" context.
Finally, we simply needed some kind of engineering discipline to
help with the implementation of a large and complex system.

The formal modularity restriction between layers is quite weak:
the subroutines in each layer may invoke only subroutines In the
same layer or in layers below. This is not as strict as the
conventional software engineering notion of a layered
architecture, in which each layer may use only the layer
immediately below. We retreated from this stricter notion for the
usual reason, i.e. because it prevented many necessary
optimizations. We will point out some of these inter-layer
relationships in the sections which follow.

Before proceeding further in the description of Cake, we must
gratefully acknowledge the use (with minor extensions) of
McAllester's Reasoning Utility Package (RUP) [7] as the basis for
the bottom three layers of Cake. One major extension which was
made to RUP is noted below.

The Truth Maintenance Layer

The bottommost layer of Cake, Truth Maintenance, is
essentially the boolean constraint propagation network from RUP.
In this network a set of prepositional axioms is stored in
disjunctive clausal form. The literals which make up the clauses
("constraints") are called tms-nodes, and each is assigned a
value of true, false, or unknown. Each clause also has a
documentation string for use in generating explanations.

The Truth Maintenance layer provides two principal facilities.
The first is to act as a recording medium for dependencies, and
thus to support retraction and explanation. The second is to
perform simple "one-step" deductions (specifically, unit
propositional resolution) based on the constraint clauses. This
layer is at the bottom of the architecture because it provides an
"active database" in which the final results of inferencing in all
other layers must eventually be recorded. The data base also

Fig. 2. Implementation of Z as XY

542 C. Rich

performs simple inferences and limited contradiction detection.
When a contradiction is detected in the network, control is passed
to a user-provided routine to decide what to do (e.g. what premise
to retract).

For example, if a reasoning process in a higher layer wishes to
assert statement P supported by statements 0 and R, it obtains
the tms-nodes corresponding to P, 0 and R, and installs the
constraint clause,

P V - Q V - R ,

which is just the disjunctive normal form of 0 A R => P. The
effect of installing this clause is twofold. First, it is available for
answering the question "Why P?". The answer is "from Q and R
by ...documentation string...". One can then ask "Why Q?" and
so on recursively. Second, the constraint propagation processing
attached to the network will retract P whenever Q or R are
retracted.

Given its role in the architecture of Cake, it is an important
feature of the Truth Maintenance layer that deductive
completeness has been traded off for control (McAllester [6]
proves that the amount of computation triggered by a data base
access is at worst linear in the size of the data base).

The Equality Layer

From the standpoint of the Truth Maintenance layer,
tms-nodes are atomic — they have no internal structure other than
their truth value. The Equality layer introduces the notion of
terms. A term is defined recursively as either an atomic term (e.g.
a symbol or a number), or a list of subterms (operator followed by
arguments), each of which is a term. The two principal facilities
supported by the Equality layer are the uniqueization of terms, and
the incremental maintenance of a congruence (equality) relation
on terms.

The uniqueization facility is a conventional hashing function
which, given a list of terms, returns an existing term which has the
given terms as subterms, or creates a new such term.

The incremental congruence closure facility operates roughly
as follows (for a more complete description see [7]): Given any two
terms, the Equality layer will tell you if they can be proved equal by

Fig. 3. The Layers of Cake

(possibly recursive) substitution of equals using the set of
currently true equalities between terms. Equalities are asserted
and retracted like any other statement. Furthermore, the answer
given by the Equality layer includes the list of currently true
equalities which are used in the proof, so that the proper
dependencies can be installed in the Truth Maintenance layer.
Substitution of equals implemented in this way is a very powerful
inference mechanism, and is used heavily by the other layers of
Cake. Note that the congruence closure algorithm does not
operate by creating all possible substitutions, since this is not only
inefficient, but impossible in general, e.g. if f(x)= x.

There are two important connections between the Equality
layer and the Truth Maintenance layer. First, the Equality layer
uses the Truth Maintenance layer to keep track of the
dependencies between substitutions it performs. Second, certain
terms (those which are interpreted as boolean-valued) are
associated with tms-nodes. The Equality layer guarantees that
whenever two such terms are equated, appropriate clauses are
installed in the constraint network to represent the logical
equivalence between them.

The Demon Layer

Demons are triggered by several different types of events in
the Equality and Truth Maintenance layers. This layer of demons
provides an interface through which many facilities in the layers
above are implemented, and also a kind of "trap door" through
which, with care, other miscellaneous kinds of inferences may be
added to Cake. There are two important types of triggering event:
the creation of a new term, and a change in the truth value of a
tms-node.

Whenever a new term is created, the data base of demons is
searched and all demons whose pattern matches the subterms of
the new term are triggered. Patterns are currently one-level, with
wild-cards but no variables. Whenever a new demon is added, it is
triggered on all existing terms which match its pattern. The body
of a demon is simply Lisp code which, when executed, may make
new assertions (with dependencies), change truth values, or
create new demons.

In a major extension to RUP, processing was added to new

C. Rich 543

term creation events to guarantee a kind of "completeness" in the
interaction between the Equality layer and the Demon layer. In
general, the Equality layer only creates a carefully controlled
subset of all possible variant terms (terms obtained from other
terms by substitution of equals). The added processing forces the
creation of variants which would not otherwise be created by the
Equality layer, if (and only if) such variants would cause a demon
to be triggered. For example, suppose there is a demon with
pattern "P(a,*) ' \ and the term P(x,y) exists, and the equalities
x = b and b = a are true. The completeness processing guarantees
that the term P(a,y) is created.

Demons triggered by a change in the truth value of a tms-node
have no patterns. Each demon of this type is attached to a
specific tms-node. Both the old and new truth values can be made
available to the body of the demon.

Examples of the use of demons will be seen in the description
of the other layers and in the reasoning scenario.

The Algebra ic Layer

The Algebraic layer is composed of special-purpose decision
procedures for common algebraic properties of operators
(functions and relations). The following nine properties may be
specified to hold independently or in combination, either
permanently or retractably, of any appropriate operator.

Reflexivity Involution
Idempotency Associativity
Commutativity Distributivlty
Symmetry Transitivity
Antisymmetry

In addition to these nine basic properties, the Algebraic layer
also has special procedures for reasoning in the following more
complicated algebraic structures.

Partial Orders
Total Orders
Equivalence Relations
Lattices
Boolean Algebras

These properties and structures are useful for many different
types of reasoning about programs, such as control flow
(transitivity), arithmetic (distributivity of multiplication and
addition), lists (associativity of append), and sets (boolean
algebra). Although simplifiers and decision procedures for these
kinds of properties are not new, Cake is the first such system
which supports them in the context of retractable equalities
(including equality between operators) and truth maintenance.

Most of the complexity of implementing these algebraic
properties stems from attempting to control the creation of
irrelevant terms and to guarantee completeness with respect to
equality. To illustrate, consider commutativity, one of the simplest
properties.

A commutative operator, f, obeys the law:
To implement this law, we install a demon with the pattern
"Commutative(*)". which is triggered by the assertion of a
commutativity property. The creation of a term such as
Commutative(f) triggers this demon, which then installs a new
demon with the pattern "f(• ,♦)". When triggered on a term such
as f(x,y), this new demon checks whether the term f(y,x) exists; If It
does, the demon installs the equality f(x,y)=f(y,x) with a

dependency on the statement Commutative(f). If the term f(y,x)
does not exist, a new demon is installed with the pattern "f(y,x)"
and an empty body. The sole purpose of this third demon Is to
force (via the "completeness" processing described above) the
creation of the variant f(y,x) if it follows from other terms and
equalities. The creation of this variant will in turn trigger the
demon with pattern "f(•,♦)", which will install the equality
f(v,x)=f(x,y).

For example, suppose the following statements are premises:

Commutative(f)
f = g
a = d
b - c

and we then enquire "Why g(a,b) = g(c,d) ?". Equality
completeness processing for the pattern "Commutative(*)" forces
creation of the term Commutative(g), which installs a demon with
pattern "g(*,*)"- This demon triggers on g(a,b), installing an
empty demon with pattern "g(b,a)". Completeness processing for
this pattern forces creation of the term g(b,a) as a variant of g(c,d),
which triggers the demon with pattern "g(*,*)" to install
g(b,a) = g(a,b). The recursive explanation generated for this
derivation is as follows:

g(a,b) = g(c,d) is true by transitivity of equality from:

1 ■ g(c,d) = g(b,a) which is true by subst'n of equals from:

1.1 b = c which is true as a premise.

1.2 a = d which is true as a premise.

2. g(b,a) = g(a,b) which is true by defn of commutativity from:

2.1 Commutative(g) which is true by subst'n of equals from:

2.1.1 Commutative(f) which is true as a premise.

2.1.2 f = g which is true as a premise.

The implementation of the more complicated algebraic
structures listed above partly uses of the demons for individual
properties (e.g. partial order uses transitivity, antisymmetry and
reflexivity), but also uses specialized graph representations (e.g.
the Haas diagram for a lattice). These graph abstractions are
currently implemented using only the term indexing structures
already provided by the Equality layer. This is one example in
Cake of the use of multiple representations without separate
implementations. Another example is discussed in greater detail
in the Plan Calculus layer.

The Types Layer

Since the notion of data types is ubiquitous in reasoning about
programs, it is natural to use a typed logic in Cake. The Types
layer provides two principal facilities: a type hierarchy, and
domain/range inferences.

Types in this layer are simply sets. Type inheritance is
implemented using the boolean algebra facilities provided by the
Algebraic layer. We can define subtypes, intersection, union and
complement types; the appropriate inferences involving elements
of the tyoe are performed incrementally with dependencies. For

5 4 4 C. Rich

example, suppose P, 0, R and Intersection(Q,R) are defined types,
and P is a subtype of 0. If we assert the following type information
about x (note that types are syntactically predicates; thus "x is an
element of type P" is written P(x))t

P(x)

then Algebraic layer demons, created by the Types layer, will
deduce the following

lntersection(Q,R)(x).

In a typed logic, every operator, f, has a domain type, D, and a
range type, R, such that the following axioms hold:

and similarly for operators of higher arity. Many useful properties
of programs can be deduced using only this Kind of information
about operators.

In the implementation of the Types layer, the first axiom above
is implemented by a demon for each operator with a pattern of the
form "f(*)" or '**(•,•)", etc. The second domain/range axiom
above is implemented by special mechanisms for handling
undefined terms.

The Plan Calculus Layer

In an early paper [11] we showed how to specify the semantics
of the Plan Calculus by mapping each feature of a plan into
predicate calculus. For example, the semantics of a data flow arc
is an equality between terms which represent the source and
destination of the arc; the semantics of control flow is captured
using a global partial order (to express temporal precedence) and
an equivalence relation (to express conditional execution). Since
preconditions and postconditions are already logical formulae in
the Plan Calculus, the only additional semantics to be specified for
them is that the preconditions of an operation imply the
postconditions. Structured data types, such as records and lists,
are represented in the Plan Calculus as clusters of nodes with a
logical constraint (invariant) between them.

In a succeeding paper [12] we reported that the predicate
calculus formalization was directly usable as the basis for an
implementation in which predicate calculus and plans co-exist. In
this paper we wish to make a more subtle point about the
relationship between the Plan Calculus and its "meaning
postulates".

What makes Cake a hybrid system is that the current
configuration of the plan for a program is represented by a set of
true statements in the Truth Maintenance layer, and that the Plan
Calculus layer provides a set of access functions supporting the
node and arc view of plans, which is used by the Plan Recognition
and Plan Synthesis layers to implement their respective
algorithms. Whether or not the Plan Calculus layer has its own
data structures is strictly an implementation question. (In this, we
are taking a functional view of knowledge representation as
advocated by Brachman et ai. [1].) In the current Cake system, the
Plan Calculus layer is in fact strictly an interface to the lower
layers. Later in the tuning of the system, we expect to introduce
into this layer some caching and additional indexing of terms.
However, these are just conventional software engineering
concerns regarding the tradeoff between store vs. recompute.

The interface provided by the Plan Calculus layer includes
functions for querying and altering any feature of a plan. Each
querying and altering function embodies the semantics of that
feature in terms of the corresponding logical formulae. For
example, the access function for enquiring whether there is data
flow between two operations generates a query to the Equality
layer asking whether the appropriate two terms are equal; the
access function for installing a new data flow arc asserts a new
equality. Plan modifications made using the Plan Calculus layer
are thus seen as a matter of course by subsequent queries from
any layer.

Furthermore, the changes in truth values resulting from a plan
modification can trigger demons and cause reasoning to take
place, for example revealing a contradiction. Such contradictions
can be reflected back into the Plan Calculus layer (e.g. for
explanation) by way of extra-logical annotations installed by the
altering functions. For example, the function for installing data
flow marks the corresponding equality statement as representing
data flow.

Of course, not all true statements in the Truth Maintenance
layer correspond to some feature of a plan. Some statements
have to do with reasoning internal to the theories of particular data
structures, such as sets, lists, integers, and so on. Reasoning
involving these terms can indirectly lead to a change in the truth
value of some plan feature, such as a data flow equality. The
dependency processing facilities of the Truth Maintenance layer
guarantee that this change is propagated to all other features
which depend on it.

Contradictions may also occur involving both plan and
non-plan terms. This implies that a significant degree of flexibility
is needed to dispatch the handling of a contradiction to the
appropriate layer. Although facilities exist in Cake for locally
binding and unbinding contradiction handlers, use of this part of
Cake's control structure has not yet been explored.

Before going on to the trace of reasoning in the next section,
let us briefly project future developments in the remaining two
layers of Figure 3. The Plan Recognition layer will use Brotsky's
algorithm for parsing flow graphs [3] for the "structural" part of
recognition, and the lower layers of Cake for verifying the logical
conditions. The Plan Synthesis layer will initially be a
straightforward interactive plan generator (using a library of plan
refinement rules), and will later use a general purpose planner
such as Chapman's [5]. The Plan Synthesis layer is above the
Plan Recognition layer because (as has been argued
elsewhere [10]) non-trivial program synthesis must make use of
recognition.

4. A Trace of Reasoning

To further illustrate the interaction of the layers of Cake, let us
return now to the reasoning example of Section 2 and trace the
complete execution of the solution. The scenario described here
runs in the current implementation of Cake on a Symbolics 3600
Lisp Machine in approximately 10 seconds. In addition to the
example problem statement here being a significant simplification
as discussed in Section 2, the trace below is also a summarization
in that it does not follow all alternative proof paths and it omits the
irrelevant terms and clauses that are produced even in this small
example.

Recall that the problem we were given, summarized in Figure
2, is to determine whether the plan XY is a correct implementation

C. Rich 545

of the operation Z, under the given input-output correspondences.
The control structure of the solution comes from the symbolic
evaluation of the plan XY in the Plan Recognition layer, which is
currently being simulated by an ad hoc procedure.

The data flow arcs of the plan XY in the Plan Calculus layer
are implemented in the Truth Maintenance layer by the following
true equalities:

1. x2 = y1
2. x1 = y3

The input-output specifications of operations X and Y in the
Plan Calculus are implemented in the Truth Maintenance layer by
the constraint clauses resulting from reduction of the following
formulae to disjunctive normal form:

The "data theory" underlying this example includes the following

true statement,

5. Commutative(g)

as well as several demons with patterns indicated below. The
code in the body of each demon is summarized below by the
quantified fact which it implements. First, there is a demon in the
Algebraic layer which implements the definition of commutativity
(as described above) for the function g.

The domain and range type of the function f is implemented in part
by the following demon in the Types layer.

" f (.) " V x A(x) =* B(f(x))

And finally, the fact that B is a subtype of C is implemented in part

by the following demon associated with the type lattice in the

Types layer.

The symbolic evaluation begins by assuming the preconditions of

Z:

6. A(z1)

We also take as premises the correspondences shown in Figure 2
between the inputs and outputs of the plan XY and the inputs and
outputs of operation Z, which are implemented by the following
true equalities:

7. z1 = x1
8. z 2 « y2
9. z3 • y4
10. z4 « y6

Now, in order to recognize XY as an instance of Z we need to
establish the truth of the postconditions of Z:

First we symbolically evaluate the operation X. The precondition

of X,

13. A(x1)

is true by substitution of the equality of line 7 into line 6. Then, by

the constraint of line 3 we get the postcondition of X:

14. x2 - f(x1)

Next we need to establish the preconditions of operation Y. The
creation of the term f(x1) in the postconditions of X triggers the
domain/range demon with pattern "f(*)", which installs the
constraint clause,

15. A(x1) => B(f(x1))

which, with line 13 gives us:

16. B(f(x1))

The creation of this term triggers the subtype noticer with pattern
"B(*)", which installs the constraint clause,

17. B(f(x1)) => C(f(x1))

by which it follows with line 16 that

18. C(f(x1))

By the operation of the Equality layer, the precondition of Y
follows from line 18 and the equalities of line 1 and 14:

19. C(y1)

With the constraint clause of line 4, this gives us the
postconditions of Y:

20. y4 = g(y2,y3)
21. P(y4,y5)

By substitution of the equalities from lines 9 and 10 into line 21 we
establish line 12, one of the postconditions of Z (OED).

The creation of the term g(y2,y3) in line 4 triggers the demon
with pattern "g(*,*)", which installs a demon with pattern
"g(y3,y2)" and an empty body. Via the "completeness"

processing between the Equality and Demon layers (as illustrated
in the commutativity example earlier) this forces substitution of the
equalities of lines 2,7 and 8 into the term g(z1 ,z2) yielding:

22. g(z1,z2) = g(y3,y2)

The creation of the term g(y3,y2) then triggers the
commutativity demon with pattern "g(*,*)" again, which now
installs the following constraint:

23. Commutative(g) => g(y3,y2) = g(y2,y3)

From this constraint and line 5 it follows that

24. g(y2,y3) - g(y3,y2)

is true. Line 11, the other postcondition of Z, follows by transitivity
of equality from lines 9,20,22 and 24 (OED).

This completes the example trace. Note that as a byproduct of
this reasoning, all the appropriate dependencies have been
installed to support explanation and incremental retraction.

5. Conclusions

The system presented here is still under development.
Although we do find that the hybrid approach gives us leverage on
the control problem, there are still difficulties. For one, the
interaction of the layers (especially involving the Algebraic layer)
is highly tuned. Each additional increment of functionality has
been difficult to add without causing explosions of computation.
Also, on the topic of explosions, we are still concerned about the
inherently exponential computations implicit in using a full

546 C. Rich

boolean algebra of types. Although this has yet not turned out to
be a problem in practice, we may eventually be forced into
restricting the power of the type hierarchy as in Krypton [2].

On the topic of hybrid reasoning systems in general, we simply
would like to point out that the layered architecture of Cake is just
one small point in a large spectrum of possible designs. There are
many other options for how knowledge is partitioned, and how the
individual components communicate and share information.
Some of these general design issues in hybrid reasoning systems
are discussed in a paper by Brotsky and Rich [4].

6. References

[1] R.J. Brachman, R.E. Fikes, and H.J. Levesque, "KRYPTON:
A Functional Approach to Knowledge Representation",
IEEE Computer Magazine, Special Issue on Knowledge
Representation, pp. 67-73, October, 1983.

[2] RJ. Brachman, H.J. Levesque, "The Tractability of
Subsumption in Frame-Based Description Languages**,
Proc. of the Fourth National Conference on Artificial
Intelligence, Austin, Texas, August, 1984.

[3] D. Brotsky, "An Algorithm for Parsing Row Graphs", (M.S.
Thesis), MIT/AI/TR-704, March, 1984.

[4] D. Brotsky and C. Rich, "Issues in the Design of Hybrid
Knowledge Representation and Reasoning Systems**, Proc.
of Workshop on Theoretical Issues in Natural Language
Understanding, Halifax, Nova Scotia, May, 1985.

[5] D. Chapman, "Nonlinear Planning: A Rigorous
Reconstruction", Proc. of the 9th Int. Joint Conf. on
Artificial Intelligence, Los Angeles, CA, August, 1985.

[6] D.A. McAllester, "An Outlook on Truth Maintenance",
MIT/AIM-551, August, 1980.

[7] D.A. McAllester, "Reasoning Utility Package User's
Manual", MIT/AIM-667, April, 1982.

[8] C. Rich and H. Shrobe, "Initial Report on A Lisp
Programmer's Apprentice", IEEE Trans, on Software Eng.,
Vol. 4, No. 5, November, 1978.

[9] C. Rich, H.E. Shrobe, and R.C. Waters, "An Overview of the
Programmer's Apprentice", Proc. of 6th Int. Joint Conf. on
Artificial Intelligence, Tokyo, Japan, August, 1979.

[10] C. Rich, "Inspection Methods in Programming",
MIT/AI/TR-604, (Ph.D. thesis), June, 1981.

[11] C. Rich, "A Formal Representation for Plans in the
Programmer's Apprentice", Proc. of 7th Int. Joint Conf. on
Artificial Intelligence, Vancouver, Canada, August, 1981.

[12] C. Rich, "Knowledge Representation Languages and
Predicate Calculus: How to Have Your Cake and Eat It
Too", Proc. of Second National Conf. on Artificial
Intelligence, Pittsburgh, PA, August, 1982.

[13] H.E. Shrobe, "Dependency Directed Reasoning for
Complex Program Understanding", (Ph.D. Thesis),
MIT/AI/TR-503, April, 1979.

[14] R.C. Waters, "The Programmer's Apprentice: Knowledge
Based Program Editing", IEEE Trans, on Software Eng., Vol
SE-8, No. 1, January 1982.

