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2. System Motivations 

Cake is a hybrid system which provides reasoning facilities for the 
Programmer's Apprentice. This paper describes the architecture 
of Cake, which is divided into eight layers, each with associated 
representations and reasoning procedures. The operation of 
Cake is illustrated by a complete trace of the solution of an 
example reasoning problem. We also argue that a hybrid system 
in general is characterized by the use of multiple representations 
in the sense of multiple data abstractions, which does not 
necessarily imply distinct implementation data structures. 

1. introduction 

An earlier paper [12] describes the philosophy and overall 
design of a hybrid reasoning system with two levels — a bottom 
level of general purpose predicate calculus facilities, and a top 
level which supports a specialized planning language. This paper 
describes the implementation of this system (which has come to 
be called Cake) in more detail, with emphasis on the predicate 
calculus level. Two new results reported here are the refinement 
of the predicate calculus level into five separate layers, and a more 
subtle view of hybrid reasoning systems in general. We argue in 
this paper that a hybrid system is characterized by the use of 
multiple representations in the sense of multiple data abstractions, 
which does not necessarily (as is often interpreted) imply distinct 
implementation data structures. 

The body of this paper is divided into mree sections. The first 
section introduces a example program reasoning problem, 
discusses why program reasoning is hard in general, and points 
out the advantages we hope to gain with the current architecture. 
The next section describes the implementation of each layer of 
Cake in detail. Following this, we return to the example reasoning 
problem and trace through a complete scenario of how this 
problem is solved by the current Cake implementation. We 
conclude with a discussion of some difficulties with Cake and its 
relation to hybrid reasoning systems in general. 
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An Example Prob lem 

Cake is being developed as the central knowledge 
representation and reasoning engine for the Programmer's 
Apprentice [8,9,14]. As such, its reasoning capabilities will be 
used to support analysis, synthesis and verification of programs. 

Most of the knowledge in the Programmer's Apprentice is 
represented using a programming language independent 
formalism, called the Plan Calculus. A plan in this formalism is 
essentially a labelled, directed graph in which nodes represent 
program operations and data structures, and arcs represent the 
flow of data and control. A very important kind of reasoning 
involving plans which Cake must perform is the following: Given a 
plan and a set of correspondences between the incoming and 
outgoing arcs of the plan and the inputs and outputs of a given 
operation, determine whether the plan is a correct implementation 
of that operation (i.e. whether the plan satisfies the input-output 
specifications of the operation). 

As an example of this kind of reasoning, suppose operations 
X, Y and Z are defined with the inputs, outputs, preconditions and 
postconditions shown in Figure 1, where the function g is 
commutative, the domain of the function f is A, the range of f is B, 
and B is a subtype of C. 

Our problem is then to determine whether the plan XY, 
composed of operations X and Y with the data flow shown in 
Figure 2, is a correct implementation of the operation Z with the 
indicated input and output correspondences. 

The solution to this problem is achieved by a kind of symbolic 
plan evaluation [13] roughly as follows: assume the preconditions 
of Z; using the correspondences between the inputs of Z and the 
incoming arcs of XY, prove the preconditions of X; assert the 
postconditions of X; using the data flow between X and Y, prove 
the preconditions of Y; assert the postconditions of Y; using the 
correspondences between the outputs of Z and outgoing arcs of 
XY, prove the postconditions of Z. If all of the proofs above are 
successful, then XY is a correct implementation of Z. 

Why Is This Hard? 

The example above is highly simplified and abstracted so that 
the complete trace of its execution can fit into a paper of this 
length. In particular, the size and total number of formulae 
involved in the proofs is tiny, and only relevant information is 
included in the problem statement (e.g. there are no unused 
postconditions). 

If the Programmer's Apprentice were concerned only with 
problems of this size, the simplest approach would be to dump all 
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the axioms into a theorem prover with a single uniform general 
method (such as resolution), and wait for the result. The difficulty 
with this approach is that reasoning about programs of realistic 
size and complexity in this homogeneous way strains such 
systems beyond reasonable time and space limits, basically due to 
the inability to control the exploration of irrelevant proof paths. 
Furthermore, because we want the Programmer's Apprentice to 
support evolutionary program design, we require the reasoning 
system to support incremental retraction (i.e. truth maintenance), 
which existing uniform theorem provers do not. 

The approach we are exploring in Cake is to partition the 
overall reasoning task among a number of specialized reasoning 
components. Even in the small example above, we can identify 
several distinct categories of reasoning which can be attacked 
with specialized algorithms: symbolic evaluation (of plans), 
equality (input/output correspondences), algebraic properties of 
operators (commutativity of g), functionality (f), and type 
inheritance (B is a subtype of C). As we will see below, the 
architecture of Cake has separate layers for each of these kinds of 
reasoning. What we hope to gain by this partitioning is the 
reduction to a controllable size of the reasoning problem seen by 
each layer. 

3. The Architecture of Cake 

The earlier paper on Cake [12] argued for the utility of 
partitioning the program reasoning task into two components, a 
plan level and and predicate calculus level. In this paper we carry 
this partitioning further. Figure 3 shows the architecture of the 
current Cake system, which is divided into eight layers. The 
bottom five layers (Truth Maintenance through Types) are the 
refinement of the predicate calculus level described in the earlier 
paper; the top three layers correspond to the plan level. The 
currently implemented Cake system includes only the bottom five 
layers plus the Plan Calculus (i.e. not the Plan Synthesis or Plan 
Recognition layers). We will restrict ourselves in the discussion 
below and in the example following primarily to the implemented 
portion of the system. 

Before describing the principal facilities of each layer, we 
need to say a word about what is meant by "layer" in this context. 
Most concretely, each layer is a collection of subroutines and 
associated data structures. More abstractly, each layer adds a 
coherent increment of functionality to the system (i.e. the principal 
facilities summarized in the figure). The particular choice of layers 
shown here arose out of a mixture of bottom-up and top-down 
concerns. Partly we were motivated to take advantage of existing 
efficient algorithms for certain specialized kinds of reasoning (e.g. 
congruence closure), and partly we followed our intuition about 
parts of the overall reasoning task (e.g. type inheritance), in which 
the control problem could be attacked with only "local" context. 
Finally, we simply needed some kind of engineering discipline to 
help with the implementation of a large and complex system. 

The formal modularity restriction between layers is quite weak: 
the subroutines in each layer may invoke only subroutines In the 
same layer or in layers below. This is not as strict as the 
conventional software engineering notion of a layered 
architecture, in which each layer may use only the layer 
immediately below. We retreated from this stricter notion for the 
usual reason, i.e. because it prevented many necessary 
optimizations. We will point out some of these inter-layer 
relationships in the sections which follow. 

Before proceeding further in the description of Cake, we must 
gratefully acknowledge the use (with minor extensions) of 
McAllester's Reasoning Utility Package (RUP) [7] as the basis for 
the bottom three layers of Cake. One major extension which was 
made to RUP is noted below. 

The Truth Maintenance Layer 

The bottommost layer of Cake, Truth Maintenance, is 
essentially the boolean constraint propagation network from RUP. 
In this network a set of prepositional axioms is stored in 
disjunctive clausal form. The literals which make up the clauses 
("constraints") are called tms-nodes, and each is assigned a 
value of true, false, or unknown. Each clause also has a 
documentation string for use in generating explanations. 

The Truth Maintenance layer provides two principal facilities. 
The first is to act as a recording medium for dependencies, and 
thus to support retraction and explanation. The second is to 
perform simple "one-step" deductions (specifically, unit 
propositional resolution) based on the constraint clauses. This 
layer is at the bottom of the architecture because it provides an 
"active database" in which the final results of inferencing in all 
other layers must eventually be recorded. The data base also 

Fig. 2. Implementation of Z as XY 
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performs simple inferences and limited contradiction detection. 
When a contradiction is detected in the network, control is passed 
to a user-provided routine to decide what to do (e.g. what premise 
to retract). 

For example, if a reasoning process in a higher layer wishes to 
assert statement P supported by statements 0 and R, it obtains 
the tms-nodes corresponding to P, 0 and R, and installs the 
constraint clause, 

P V - Q V - R , 

which is just the disjunctive normal form of 0 A R => P. The 
effect of installing this clause is twofold. First, it is available for 
answering the question "Why P?". The answer is "from Q and R 
by ...documentation string...". One can then ask "Why Q?" and 
so on recursively. Second, the constraint propagation processing 
attached to the network will retract P whenever Q or R are 
retracted. 

Given its role in the architecture of Cake, it is an important 
feature of the Truth Maintenance layer that deductive 
completeness has been traded off for control (McAllester [6] 
proves that the amount of computation triggered by a data base 
access is at worst linear in the size of the data base). 

The Equality Layer 

From the standpoint of the Truth Maintenance layer, 
tms-nodes are atomic — they have no internal structure other than 
their truth value. The Equality layer introduces the notion of 
terms. A term is defined recursively as either an atomic term (e.g. 
a symbol or a number), or a list of subterms (operator followed by 
arguments), each of which is a term. The two principal facilities 
supported by the Equality layer are the uniqueization of terms, and 
the incremental maintenance of a congruence (equality) relation 
on terms. 

The uniqueization facility is a conventional hashing function 
which, given a list of terms, returns an existing term which has the 
given terms as subterms, or creates a new such term. 

The incremental congruence closure facility operates roughly 
as follows (for a more complete description see [7]): Given any two 
terms, the Equality layer will tell you if they can be proved equal by 

Fig. 3. The Layers of Cake 

(possibly recursive) substitution of equals using the set of 
currently true equalities between terms. Equalities are asserted 
and retracted like any other statement. Furthermore, the answer 
given by the Equality layer includes the list of currently true 
equalities which are used in the proof, so that the proper 
dependencies can be installed in the Truth Maintenance layer. 
Substitution of equals implemented in this way is a very powerful 
inference mechanism, and is used heavily by the other layers of 
Cake. Note that the congruence closure algorithm does not 
operate by creating all possible substitutions, since this is not only 
inefficient, but impossible in general, e.g. if f(x)= x. 

There are two important connections between the Equality 
layer and the Truth Maintenance layer. First, the Equality layer 
uses the Truth Maintenance layer to keep track of the 
dependencies between substitutions it performs. Second, certain 
terms (those which are interpreted as boolean-valued) are 
associated with tms-nodes. The Equality layer guarantees that 
whenever two such terms are equated, appropriate clauses are 
installed in the constraint network to represent the logical 
equivalence between them. 

The Demon Layer 

Demons are triggered by several different types of events in 
the Equality and Truth Maintenance layers. This layer of demons 
provides an interface through which many facilities in the layers 
above are implemented, and also a kind of "trap door" through 
which, with care, other miscellaneous kinds of inferences may be 
added to Cake. There are two important types of triggering event: 
the creation of a new term, and a change in the truth value of a 
tms-node. 

Whenever a new term is created, the data base of demons is 
searched and all demons whose pattern matches the subterms of 
the new term are triggered. Patterns are currently one-level, with 
wild-cards but no variables. Whenever a new demon is added, it is 
triggered on all existing terms which match its pattern. The body 
of a demon is simply Lisp code which, when executed, may make 
new assertions (with dependencies), change truth values, or 
create new demons. 

In a major extension to RUP, processing was added to new 
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term creation events to guarantee a kind of "completeness" in the 
interaction between the Equality layer and the Demon layer. In 
general, the Equality layer only creates a carefully controlled 
subset of all possible variant terms (terms obtained from other 
terms by substitution of equals). The added processing forces the 
creation of variants which would not otherwise be created by the 
Equality layer, if (and only if) such variants would cause a demon 
to be triggered. For example, suppose there is a demon with 
pattern "P(a,*) ' \ and the term P(x,y) exists, and the equalities 
x = b and b = a are true. The completeness processing guarantees 
that the term P(a,y) is created. 

Demons triggered by a change in the truth value of a tms-node 
have no patterns. Each demon of this type is attached to a 
specific tms-node. Both the old and new truth values can be made 
available to the body of the demon. 

Examples of the use of demons will be seen in the description 
of the other layers and in the reasoning scenario. 

The Algebra ic Layer 

The Algebraic layer is composed of special-purpose decision 
procedures for common algebraic properties of operators 
(functions and relations). The following nine properties may be 
specified to hold independently or in combination, either 
permanently or retractably, of any appropriate operator. 

Reflexivity Involution 
Idempotency Associativity 
Commutativity Distributivlty 
Symmetry Transitivity 
Antisymmetry 

In addition to these nine basic properties, the Algebraic layer 
also has special procedures for reasoning in the following more 
complicated algebraic structures. 

Partial Orders 
Total Orders 
Equivalence Relations 
Lattices 
Boolean Algebras 

These properties and structures are useful for many different 
types of reasoning about programs, such as control flow 
(transitivity), arithmetic (distributivity of multiplication and 
addition), lists (associativity of append), and sets (boolean 
algebra). Although simplifiers and decision procedures for these 
kinds of properties are not new, Cake is the first such system 
which supports them in the context of retractable equalities 
(including equality between operators) and truth maintenance. 

Most of the complexity of implementing these algebraic 
properties stems from attempting to control the creation of 
irrelevant terms and to guarantee completeness with respect to 
equality. To illustrate, consider commutativity, one of the simplest 
properties. 

A commutative operator, f, obeys the law: 
To implement this law, we install a demon with the pattern 
"Commutative(*)". which is triggered by the assertion of a 
commutativity property. The creation of a term such as 
Commutative(f) triggers this demon, which then installs a new 
demon with the pattern "f(• ,♦)". When triggered on a term such 
as f(x,y), this new demon checks whether the term f(y,x) exists; If It 
does, the demon installs the equality f(x,y)=f(y,x) with a 

dependency on the statement Commutative(f). If the term f(y,x) 
does not exist, a new demon is installed with the pattern "f(y,x)" 
and an empty body. The sole purpose of this third demon Is to 
force (via the "completeness" processing described above) the 
creation of the variant f(y,x) if it follows from other terms and 
equalities. The creation of this variant will in turn trigger the 
demon with pattern "f(•,♦)", which will install the equality 
f(v,x)=f(x,y). 

For example, suppose the following statements are premises: 

Commutative(f) 
f = g 
a = d 
b - c 

and we then enquire "Why g(a,b) = g(c,d) ?". Equality 
completeness processing for the pattern "Commutative(*)" forces 
creation of the term Commutative(g), which installs a demon with 
pattern "g(*,*)"- This demon triggers on g(a,b), installing an 
empty demon with pattern "g(b,a)". Completeness processing for 
this pattern forces creation of the term g(b,a) as a variant of g(c,d), 
which triggers the demon with pattern "g(*,*)" to install 
g(b,a) = g(a,b). The recursive explanation generated for this 
derivation is as follows: 

g(a,b) = g(c,d) is true by transitivity of equality from: 

1 ■ g(c,d) = g(b,a) which is true by subst'n of equals from: 

1.1 b = c which is true as a premise. 

1.2 a = d which is true as a premise. 

2. g(b,a) = g(a,b) which is true by defn of commutativity from: 

2.1 Commutative(g) which is true by subst'n of equals from: 

2.1.1 Commutative(f) which is true as a premise. 

2.1.2 f = g which is true as a premise. 

The implementation of the more complicated algebraic 
structures listed above partly uses of the demons for individual 
properties (e.g. partial order uses transitivity, antisymmetry and 
reflexivity), but also uses specialized graph representations (e.g. 
the Haas diagram for a lattice). These graph abstractions are 
currently implemented using only the term indexing structures 
already provided by the Equality layer. This is one example in 
Cake of the use of multiple representations without separate 
implementations. Another example is discussed in greater detail 
in the Plan Calculus layer. 

The Types Layer 

Since the notion of data types is ubiquitous in reasoning about 
programs, it is natural to use a typed logic in Cake. The Types 
layer provides two principal facilities: a type hierarchy, and 
domain/range inferences. 

Types in this layer are simply sets. Type inheritance is 
implemented using the boolean algebra facilities provided by the 
Algebraic layer. We can define subtypes, intersection, union and 
complement types; the appropriate inferences involving elements 
of the tyoe are performed incrementally with dependencies. For 
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example, suppose P, 0, R and Intersection(Q,R) are defined types, 
and P is a subtype of 0. If we assert the following type information 
about x (note that types are syntactically predicates; thus "x is an 
element of type P" is written P(x))t 

P(x) 

then Algebraic layer demons, created by the Types layer, will 
deduce the following 

lntersection(Q,R)(x). 

In a typed logic, every operator, f, has a domain type, D, and a 
range type, R, such that the following axioms hold: 

and similarly for operators of higher arity. Many useful properties 
of programs can be deduced using only this Kind of information 
about operators. 

In the implementation of the Types layer, the first axiom above 
is implemented by a demon for each operator with a pattern of the 
form "f(*)" or '**(•,•)", etc. The second domain/range axiom 
above is implemented by special mechanisms for handling 
undefined terms. 

The Plan Calculus Layer 

In an early paper [11] we showed how to specify the semantics 
of the Plan Calculus by mapping each feature of a plan into 
predicate calculus. For example, the semantics of a data flow arc 
is an equality between terms which represent the source and 
destination of the arc; the semantics of control flow is captured 
using a global partial order (to express temporal precedence) and 
an equivalence relation (to express conditional execution). Since 
preconditions and postconditions are already logical formulae in 
the Plan Calculus, the only additional semantics to be specified for 
them is that the preconditions of an operation imply the 
postconditions. Structured data types, such as records and lists, 
are represented in the Plan Calculus as clusters of nodes with a 
logical constraint (invariant) between them. 

In a succeeding paper [12] we reported that the predicate 
calculus formalization was directly usable as the basis for an 
implementation in which predicate calculus and plans co-exist. In 
this paper we wish to make a more subtle point about the 
relationship between the Plan Calculus and its "meaning 
postulates". 

What makes Cake a hybrid system is that the current 
configuration of the plan for a program is represented by a set of 
true statements in the Truth Maintenance layer, and that the Plan 
Calculus layer provides a set of access functions supporting the 
node and arc view of plans, which is used by the Plan Recognition 
and Plan Synthesis layers to implement their respective 
algorithms. Whether or not the Plan Calculus layer has its own 
data structures is strictly an implementation question. (In this, we 
are taking a functional view of knowledge representation as 
advocated by Brachman et ai. [1].) In the current Cake system, the 
Plan Calculus layer is in fact strictly an interface to the lower 
layers. Later in the tuning of the system, we expect to introduce 
into this layer some caching and additional indexing of terms. 
However, these are just conventional software engineering 
concerns regarding the tradeoff between store vs. recompute. 

The interface provided by the Plan Calculus layer includes 
functions for querying and altering any feature of a plan. Each 
querying and altering function embodies the semantics of that 
feature in terms of the corresponding logical formulae. For 
example, the access function for enquiring whether there is data 
flow between two operations generates a query to the Equality 
layer asking whether the appropriate two terms are equal; the 
access function for installing a new data flow arc asserts a new 
equality. Plan modifications made using the Plan Calculus layer 
are thus seen as a matter of course by subsequent queries from 
any layer. 

Furthermore, the changes in truth values resulting from a plan 
modification can trigger demons and cause reasoning to take 
place, for example revealing a contradiction. Such contradictions 
can be reflected back into the Plan Calculus layer (e.g. for 
explanation) by way of extra-logical annotations installed by the 
altering functions. For example, the function for installing data 
flow marks the corresponding equality statement as representing 
data flow. 

Of course, not all true statements in the Truth Maintenance 
layer correspond to some feature of a plan. Some statements 
have to do with reasoning internal to the theories of particular data 
structures, such as sets, lists, integers, and so on. Reasoning 
involving these terms can indirectly lead to a change in the truth 
value of some plan feature, such as a data flow equality. The 
dependency processing facilities of the Truth Maintenance layer 
guarantee that this change is propagated to all other features 
which depend on it. 

Contradictions may also occur involving both plan and 
non-plan terms. This implies that a significant degree of flexibility 
is needed to dispatch the handling of a contradiction to the 
appropriate layer. Although facilities exist in Cake for locally 
binding and unbinding contradiction handlers, use of this part of 
Cake's control structure has not yet been explored. 

Before going on to the trace of reasoning in the next section, 
let us briefly project future developments in the remaining two 
layers of Figure 3. The Plan Recognition layer will use Brotsky's 
algorithm for parsing flow graphs [3] for the "structural" part of 
recognition, and the lower layers of Cake for verifying the logical 
conditions. The Plan Synthesis layer will initially be a 
straightforward interactive plan generator (using a library of plan 
refinement rules), and will later use a general purpose planner 
such as Chapman's [5]. The Plan Synthesis layer is above the 
Plan Recognition layer because (as has been argued 
elsewhere [10]) non-trivial program synthesis must make use of 
recognition. 

4. A Trace of Reasoning 

To further illustrate the interaction of the layers of Cake, let us 
return now to the reasoning example of Section 2 and trace the 
complete execution of the solution. The scenario described here 
runs in the current implementation of Cake on a Symbolics 3600 
Lisp Machine in approximately 10 seconds. In addition to the 
example problem statement here being a significant simplification 
as discussed in Section 2, the trace below is also a summarization 
in that it does not follow all alternative proof paths and it omits the 
irrelevant terms and clauses that are produced even in this small 
example. 

Recall that the problem we were given, summarized in Figure 
2, is to determine whether the plan XY is a correct implementation 
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of the operation Z, under the given input-output correspondences. 
The control structure of the solution comes from the symbolic 
evaluation of the plan XY in the Plan Recognition layer, which is 
currently being simulated by an ad hoc procedure. 

The data flow arcs of the plan XY in the Plan Calculus layer 
are implemented in the Truth Maintenance layer by the following 
true equalities: 

1. x2 = y1 
2. x1 = y3 

The input-output specifications of operations X and Y in the 
Plan Calculus are implemented in the Truth Maintenance layer by 
the constraint clauses resulting from reduction of the following 
formulae to disjunctive normal form: 

The "data theory" underlying this example includes the following 

true statement, 

5. Commutative(g) 

as well as several demons with patterns indicated below. The 
code in the body of each demon is summarized below by the 
quantified fact which it implements. First, there is a demon in the 
Algebraic layer which implements the definition of commutativity 
(as described above) for the function g. 

The domain and range type of the function f is implemented in part 
by the following demon in the Types layer. 

" f ( . ) " V x A(x) =* B(f(x)) 

And finally, the fact that B is a subtype of C is implemented in part 

by the following demon associated with the type lattice in the 

Types layer. 

The symbolic evaluation begins by assuming the preconditions of 

Z: 

6. A(z1) 

We also take as premises the correspondences shown in Figure 2 
between the inputs and outputs of the plan XY and the inputs and 
outputs of operation Z, which are implemented by the following 
true equalities: 

7. z1 = x1 
8. z 2 « y2 
9. z3 • y4 
10. z4 « y6 

Now, in order to recognize XY as an instance of Z we need to 
establish the truth of the postconditions of Z: 

First we symbolically evaluate the operation X. The precondition 

of X, 

13. A(x1) 

is true by substitution of the equality of line 7 into line 6. Then, by 

the constraint of line 3 we get the postcondition of X: 

14. x2 - f(x1) 

Next we need to establish the preconditions of operation Y. The 
creation of the term f(x1) in the postconditions of X triggers the 
domain/range demon with pattern "f(*)", which installs the 
constraint clause, 

15. A(x1) => B(f(x1)) 

which, with line 13 gives us: 

16. B(f(x1)) 

The creation of this term triggers the subtype noticer with pattern 
"B(*)", which installs the constraint clause, 

17. B(f(x1)) => C(f(x1)) 

by which it follows with line 16 that 

18. C(f(x1)) 

By the operation of the Equality layer, the precondition of Y 
follows from line 18 and the equalities of line 1 and 14: 

19. C(y1) 

With the constraint clause of line 4, this gives us the 
postconditions of Y: 

20. y4 = g(y2,y3) 
21. P(y4,y5) 

By substitution of the equalities from lines 9 and 10 into line 21 we 
establish line 12, one of the postconditions of Z (OED). 

The creation of the term g(y2,y3) in line 4 triggers the demon 
with pattern "g(*,*)", which installs a demon with pattern 
"g(y3,y2)" and an empty body. Via the "completeness" 

processing between the Equality and Demon layers (as illustrated 
in the commutativity example earlier) this forces substitution of the 
equalities of lines 2,7 and 8 into the term g(z1 ,z2) yielding: 

22. g(z1,z2) = g(y3,y2) 

The creation of the term g(y3,y2) then triggers the 
commutativity demon with pattern "g(*,*)" again, which now 
installs the following constraint: 

23. Commutative(g) => g(y3,y2) = g(y2,y3) 

From this constraint and line 5 it follows that 

24. g(y2,y3) - g(y3,y2) 

is true. Line 11, the other postcondition of Z, follows by transitivity 
of equality from lines 9,20,22 and 24 (OED). 

This completes the example trace. Note that as a byproduct of 
this reasoning, all the appropriate dependencies have been 
installed to support explanation and incremental retraction. 

5. Conclusions 

The system presented here is still under development. 
Although we do find that the hybrid approach gives us leverage on 
the control problem, there are still difficulties. For one, the 
interaction of the layers (especially involving the Algebraic layer) 
is highly tuned. Each additional increment of functionality has 
been difficult to add without causing explosions of computation. 
Also, on the topic of explosions, we are still concerned about the 
inherently exponential computations implicit in using a full 
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boolean algebra of types. Although this has yet not turned out to 
be a problem in practice, we may eventually be forced into 
restricting the power of the type hierarchy as in Krypton [2]. 

On the topic of hybrid reasoning systems in general, we simply 
would like to point out that the layered architecture of Cake is just 
one small point in a large spectrum of possible designs. There are 
many other options for how knowledge is partitioned, and how the 
individual components communicate and share information. 
Some of these general design issues in hybrid reasoning systems 
are discussed in a paper by Brotsky and Rich [4]. 
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