The Restricted Language Architecture
of a Hybrid Representation System

Marc Vilain

BBN Laboratories
10 Moulton St.
Cambridge, MA 02238

Abstract. Hybrid architectures have been used in

several recent knowledge representation systems. This
paper explores some distinctions between various
hybrid representation architectures, focusing in
particular on systems built around restricted
representation languages This restricted language

architecture is illustrated by describing KL-TWO, a
hybrid reasoner based on the restricted representation
facility ~ RUP. The bulk of this paper discusses KL-
TWO, its subcomponents, and the techniques used to
interface them.

Many recent knowledge representation systems have
been based on hybrid architectures. These systems are
hybrids in that they do not attempt the entire
knowledge representation task with a single inferential
component. Instead, they combine several reasoners
into a complex whole. The advantages to be gained by
this hybrid approach vary from system to system, but
often include increases in the system's computational
efficiency, the coverage of its representation language,
or the ease of expressing knowledge with the system.

The topic of this paper is a new logic-based hybrid
representation system. This system, called KL-TWO, is
one which | have been developing with my colleagues
over the past two years. Although KL-TWO has
features in common with other hybrid reasoners, it
differs very significantly from other systems in the way
the common features are used. The purpose of this
paper is thus twofold, to describe the features that
KL-TWO possesses, and to stress the differences in
approach between KL-TWO and other hybrid reasoners.

Hybrid Representation
Architectures

The hybrid representation scheme most familiar to the
general Al audience is that embodied by such systems
as KRYPTON (Brachman, Fikes, & Levesque, 1983) or the
theorem-proving system of Schubert and his colleagues
(Schubert, Papalaskaris, & Taugher, 1983). These
systems start with a theorem prover for first-order
logic (FOL), and augment it with special-purpose
inference systems. These special-purpose components
are designed to perform efficiently certain forms of
reasoning that would be computationally expensive for
the theorem prover to perform by itself. In essence,
for their restricted domains, these augmentations
bypass the normal proof procedure of the theorem
prover, and cut out some of its combinatorial search.

"This restorer, wot tupporttd by the Advonct Rtttorch
Projact Agency of tht Dtportment of Dtftntt. Under Contract
No. NO0014-77-C-6378.

For example, KRYPTON augments Stickel's connection
graph theorem prover with a device for terminological
reasoning. Schubert and his colleagues added to their
theorem prover components to reason about types,
part-whole relationships, temporal ordering, and color.
In this paper, | will refer to systems such as these as
theorem prover-based hybrid reasoners.

One important characteristic of these theorem
prover-based hybrids is that the hybrid architecture
may enhance the overall efficiency of the system, but
will not change its overall expressiveness. Anything
which can be represented in the special-purpose
augmentations could also be represented in the
unadorned theorem prover (albeit less conveniently or
efficiently). The augmentations don't extend the
expressive power of the theorem prover as much as
they circumvent its computational inefficiencies.

KL-TWO has a substantially different architecture
from that of theorem prover-based systems. This
alternative architecture was first suggested by
McAllester (1980, 1982). He argued that one need not
base a representation system on a full inference system
for the predicate calculus. Indeed, given that full
first-order logic is only semi-decidable, and that even
the best theorem-provers are prone to time-consuming
search, there is good reason to consider alternative
representation schemes. McAllester proposed building
knowledge representation systems around a fairly
simple restricted device, his Reasoning Utility Package
(RUP for short). RUP provides only a subset of the
inferential power of a first-order theorem prover,
(roughly the propositional subset) but is
computationally much more efficient. To restore some
of the missing representational power, one extends RUP
with special-purpose reasoners tailored to one's
application.

Other restricted languages have been proposed for
this kind of hybrid system (for example, the relevance
versions of propositional logic and FOL proposed by
Levesque (1984) and Patel-Schneider (1985)). | use the
term restricted language hybrid reasoners to refer to
hybrids built around restricted systems such as those
of McAllester, Levesque, or Patel-Schneider.

The advantages of the restricted language approach
become apparent if the subcomponents that extend the
central reasoner are themselves restricted but
efficient. The resulting system will not have the full
representational expressiveness of a first-order
language, but in exchange it will have the potential for
reasoning efficiently. This approach has a very
attractive promise: if one can make do with the
expressive limitations of a restricted language hybrid,
one may have a very efficient system indeed.

548 M. Vllaln

KLrTWO

KL-TWO it an experiment with the restricted language
approach to hybrid reasoning. The KL-TWO hybrid is
composed of two subreasoners: PENNI, a modified
version of RUP, and NIKL, a terminological reasoner
that descended from KL-ONE. In the pages that follow
I will describe both PENNI and NIKL in some detail, and
will explain how the two systems are interfaced. But
first let me give a general description of KL-TWO for
the reader to keep in mind through the discussion
ahead.

KL-TWOQO'a subcomponents, PENNI and NIKL, are
complimentary reasoners. The representation task is
divided up between them, roughly as follows.

PENNI contains a database of propositions assertions.
The language of PENNI is essentially the propositional
subset of first order predicate calculus (a more precise
definition follows). This language does not contain any
quantification.

PENNI's simple propositional framework is extended by
KL-TWO's second subreasoner, NIKL. NIKL is a
terminological reasoner similar to KL-ONE (Brachman &
Schmolze, 1985) or the terminological component of
KRYPTON (Brachman et al.. 1983). As | will explain
below, the terminological statements one can make in
NIKL define a simple class of wuniversally quantified
sentences. These sentences can be applied in PENNI to
extend PENNI's propositional language with a limited
form of quantification.

PENNI NIKL
PROPOAITICN AL m QUANTIFICATIONAL
Figurs 1: The architecture of KL-TWO

The architecture of KL-TWO can be summarized in
this way: PENNI provides propositional reasoning and
NIKL provides limited quantificational reasoning. This
is illustrated by Figure 1.

PENNI

PENNI is a modified version of McAllester's RUP (1980;
1982). The features of PENNI | will describe in this
section are thus originally features of RUP.

At the heart of PENNI is a database of propositions.
The language of this database is the quantifier-free
predicate calculus with equality. This language is
defined as containing:

1. Expressions of the form (P a), (Q a b),... at in
(MAN John) or (OFFSPRING John Mary);

2. Expressions of the form (= a b), as in
(= (grade Bill) B+),

3. Boolean combinations of (1) and (2), art in
(-> (FATHER John) (PERSON John)).

This language doesn't contain any quantifiers, | will say
more about this below.

The database permits incremental assertions and
retractions. Propositions can be added in any order;
following each addition a number of deductions will be
made. Retractions can also be performed at any time.
The RUP database is built as a truth maintenance
system (or TMS), and permits all the useful operations
that have been associated with such systems. These
include the ability to justify a deduction by returning
the exact set of user-asserted propositions that entail
it, the ability to retract efficiently the logical
consequences of a proposition when that proposition is
itself retracted, and the ability to perform fast
dependency-directed backtracking. These features are
extraordinarily useful: eloquent arguments for them
have been made by McAllester (1980; 1982), Doyle
(1978), and others.

I mentioned above that the language of PENNI does
not include quantification. The decision not to include
quantifiers was made by McAllester when he designed
RUP. and follows from his view of logical reasoning as
consisting of two separate processes, deduction and
instantiation. Deduction is the process of deriving the
consequences of a set of propositions, whereas
instantiation is the process of applying quantified
sentences to produce new propositions. McAllester
(1980) argues that within certain constraints deduction
can be performed relatively efficiently. Instantiation,
on the other hand, is very difficult: often the choice of
which sentences to instantiate, and when to do so, can
only be determined efficiently on the basis of the
specific reasoning domain. The approach embodied by
RUP (and hence by PENNI) is to focus on providing a
good efficient mechanism for deduction,2 and to remain
uncommitted as to how to perform instantiation.

In RUP, the choice of how to instantiate quantified
sentences is left up to the user. This is facilitated by
providing "hooks" into the database that allow the user
to augment its language. The hooks are realized by
the mechanism of demon invocation; RUP provides
several varieties of |IF-ADDED and IF-NEEDED demons.
The version of RUP used in KL-TWO contains
McAllester's demon invocation mechanisms. However, as
| mentioned above, KL-TWO can provide a class of
quantified inferences efficiently and automatically,
without requiring the use of demons. These inferences
are performed by NIKL, KL-TWO's second subreasoner.

NIKL

NIKL® is a terminological reasoner that descends from
KL-ONE (Brachman & Schmolze 1985). As with KL-ONE,
NIKL allows one to make statements about the terms
that describe a domain.

NIKL distinguishes two kinds of terms, Concepts and
Roles. Semantically. these correspond respectively to
1-place and 2-place relations. For example, the NIKL
Concept PERSON corresponds to the predicate that is

Zmpe forward-choining deduction algorithm Is very
efficlent. It s Incomplete, howsver: |t falls to perform
cartoln inferencea, roughly those that require came
onolysis, RUP doss provide onother deduction aligerithm
whioh axtends tha firat ons teo produce o compists proof
procedurd.

3ly necannlty, ihis description of NIKL Is rother
slmpiitied end terse. For moars detalls, ses Moser (1083),
and Schwolize & Israel {1083).

true of all entities which are persons The NIKL Role
OFFSPRING corresponds to the relation that holds
between any individual and its children

Primitive and Complex Terms

NIKL further distinguishes between primitive and
complex terms. Primitive terms are simply terms for
which no definition can be given. PERSON, for example,
is a primitive Concept, since the criteria for being a
person defy complete description. Similarly, OFFSPRING
is a primitive Role.

In NIKL, complex terms are built out of other terms
(which themselves can be simple or complex). To
create complex terms, NIKL provides a set of term
constructors which combine Concepts and Roles to
produce new Concepts and new Roles. Several of these
constructors, along with their intended semantics are
summarized in Figure 2.

NIKL Expression, Semantics of x,
F Iz}

(CMeet C, C,) ax {[c,] x) & ([C,] %)

{CMin R n) hx. 3 n distinet 3; &; (IR] x 7}

{CRestrct R C) A ¥y (IRI x y)

— ([C] ¥}

ey, (IR) x v) & {[c] ¥)

Figure 2: Complex term constructors

{(VRIuff R C)

For example, consider the complex Concept
(CMeet PARENT MAN) (1)

This Concept corresponds in turn to a complex
predicate which can be notated with the » -expression

Ax. (PARENT x) & (MAN 1)

This complex predicate holds true of everything for
which the PARENT and MAN predicates hold true (e.g., it
holds true of fathers). Similarly, the complex Role

(VRDIff OFFSPRING MALE) (2)

M. Vilain 549

corresponds to the 2-place h—abstracted relation
Ax.¥. (OFFSPRING x y) & (MALE vy)

This relation holds between something and any of its
OFFSPRING which are MALE (e.g., between something and
its sons).

Naming terms

To make complex terms more convenient, NIKL allows
them to be assigned names. For example, the complex
terms | have just described (formulas 1 and 2) can be
assigned their rightful names by means of the following
NIKL statements.

(Let FATHER (CMeet PARENT MAN)) (3)
(Let SON (VRDIff OFFSPRING MALE)) (4)

Note that assigning a name to a complex term s
tantamount to giving a definition to that name. This
definition can be interpreted as a first-order sentence.
For example, the assignments in formulas 3 and
4 correspond to the following definitions.

¥ x (FATHER x) <> {PARENT x) & (MAN x)
¥ 1.y (SON x y)} <> {OFFSPRING x v} & (MALE y)

For more examples of NIKL definitions, see Figure 3.

Subsumption and Classification

The semantics of NIKL lead naturally to a relation
that holds between NIKL terms, that of subsumption. A
term subsumes another term if the meaning of the
second entails the meaning of the first. More
precisely, in the case of Concepts, we say that a
Concept C; subsumes a Concept C, iff

FY¥xi€,n > (Cx

Subsumption between Roles has a similar definition.
Considering the examples from figure 3, we can see
that the Concept ANIMAL directly subsumes the
Concepts HERBIVORE, CARNIVORE, and BIG-ANIMAL.
There are other Concepts that ANIMAL subsumes in a
derived way, for example BIG-CARNIVORE, or the
Concept

(CMeet HERBIVORE CARNIVORE)

KIKL Let expression

Semantics of Concepl lerm

Defimtional interpretation

{Let HERBIVORE Ax (ANIMAL x)
(CMert ANIMAL

(CMin (VRDiff EATS PLANT) 1)})

{Let CARNIVORE 2x (ANIMAL x)
(CMeet ANIMAL

(CMaty (VRDUI EATS ANIMAL) 1}})

(let BIG-ANINMAL Ax {ANIMAL x)

(CMeet ANIMAL
{CRestrict S1ZE BIG)Y

{Let BIG-CARNIVORE ax. {CARNIVORE x)
(CMest CARNIVORE BIG-ANIMAL)}

Figure 3:

& I y (EATS x y) & (PLANT y)

& Ty {EATS x y) & (ANIMAL ¥)

& vy (SIZE x y) — (BIG y)

& (BIG-ANIMAL x)

¥ % {HEEBIVORE x} <>
{ANIMAL x)
& T y (EATS x Y} & (PLANT y)

¥ x (CARNIVORE x) <>
(ANIMAL x)
& 3 y {EATS x ¥) & (ANIMAL ¥)

¥ x (BIG-ANIMAL x) <>
(ANIMAL x)
& ¥V y (SIZE x y) — (BIG ¥)

¥ x (BIG-CARNIVORE x) <>
{BIG—ANIMAL x) & (CARNIVORE x)

NIKL Examplexs

550 M. Vilain

which would appropriately be named OMNIVORE. Stating
these subsumption relations in terms of first-order
sentences, we have

¥ x (CARNIVORE x) —» (ANIMAL x)
¥ x (BIG-CARNIVORE x) — (ANIMAL x)
and ao forth.

Subsumption relations in NIKL are computed in an
operation known as classification. Given a NIKL term
To and a database of (pre-classified) NIKL terms, the
classifier locates all the database terms which subsume
To. This computation effectively installs To in the NIKL
database; to allow for efficient subsumption queries,
the computation is then cached.

For example, classifying the OMNIVORE Concept (i.e.
(CMeet HERBIVORE CARNIVORE)) with respect to the
database in Figure 3 would install OMNIVORE in the
database. It would be given as subsumers the Concepts
HERBIVORE, CARNIVORE, ANIMAL, and all other Concepts
that subsume these.

In addition to computing subsumption relations, the
classifier performs a canonicalization operation on the
term it is classifying. For example, the Concept

(CMeet ANIMAL (CRestrict SIZE BIG)
(CMin (VRDIff EATS ANIMAL) 1))

would canonicalize to the pre-existing Concept
(CMeet BIG-ANIMAL CARNIVORE)

which is the
BIG-CARNIVORE.

The subsumption relation and the operation of
classification provide NIKL with much of its
representational strength. In KL-TWO, they also play a
crucial role in the interface between NIKL and PENNI.

Concept that has been named

Interfacing PENNI and NIKL

As | described above, PENNI holds a database of
grounded propositions, and NIKL contains definitions
which can be read as universally quantified sentences.
Terms in NIKL (such as the Concept HERBIVORE)
correspond to the predicate names of propositions in
PENNI (such as HERBIVORE in (HERBIVORE rabbit-1)).
The KL-TWO interface exploits this correspondence: it
operates by applying in PENNI sentences from NIKL.
Consider for example the database in Figure 3.
Among the sentences derivable from that database is

¥ & {HERBIVORE x) — {(ANIMAL x} (5)

If (HERBIVORE rabbit-1) were asserted in PENNI, then
by applying formula 5 in PENNI, KL-TWO could infer
automatically (ANIMAL rabbit-1).

The key issue here is determining which NIKL
sentences should be instantiated in PENNI, and when
this instantiation should take place. In KL-TWO, these
decisions are arrived at using a carefully controlled
mixed regimen of forward and backward reasoning. The
forward reasoning takes place when a new proposition
is asserted of an individual: the forward reasoner is
invoked to determine which NIKL sentences may as a
result be applied to the individual. The backward
reasoner is invoked to answer a query: it will apply
sentences that have been selected as appropriate by
the operation of the forward reasoner.

The Forward Reasoner

The forward reasoner is brought into action when new
propositions are asserted of some PENNI individual I. Its
job is to combine all that has been asserted of |, and
determine from this which sentences can be applied to
I (without actually applying them). It does so by
creating for | a NIKL Concept called the MSG of | (for
Most Specific Generalization of). This Concept
captures an abstraction of that which is known of I,
and in turn determines which NIKL sentences can be
applied to |. These sentences are simply those that
encode the subsumption relations between the MSG of |
and other Concepts in the NIKL database.

This is best clarified by an example. Consider again
the NIKL database of Figure 3. Let's say now that the
following propositions were added to PENNI.

(BIG-ANIMAL al)
(ANIMAL a2)
(EATS al a2)

This might correspond to the situation where you're in
the African plains, and you've just noticed near you
some big animal eating another animal

The forward reasoner abstracts these propositions
into the Concept Caf, the MSG for al:

(CMeet BIG-ANIMAL
(CMin (VRDIff EATS ANIMAL) 1))

To see that this abstraction is valid, note that
semantically it corresponds to

Ax. (BIG-ANIMAL x) & 2 v (EATS x y)
& (ANIMAL y)

Applying this A-expression to al yields the valid
proposition

(BIG-ANIMAL al) & 3 y (EATS al y)
& (ANIMAL y)

By constructing Ca1, the interface has effectively
abstracted what is known of al. To determine which
sentences may be applied to al, the interface next
classifies Caf. The classifier in turn locates every
existing Concept which subsumes Caf, in this case
CARNIVORE. BIG-ANIMAL, ANIMAL (and any other
subsumers of these Concepts not indicated in Figure 3).
These subsumption relations encode the sentences

¥ x (Caf x} —> (CARNIVORE x}
¥ x (Caf x) —> (ANIMAL x)
and so forth

There is actually one more sentence which s
applicable here, and it is determined by virtue of the
classifier's canonicalizing Caf. Indeed, given the Figure
3 database, Caf canonicalizes to

(CMeet CARNIVORE BIG-ANIMAL)

which is the Concept named BIG-CARNIVORE. In essence
the canonicalization operation revealed

¥ x (BIG-CARNIVORE x} «>» (Caf 1)} >
3 y (EATS x y) & (ANIMAL ¥) & (BIG-ANIMAL x}

The forward reasoner has now discovered all NIKL
sentences applicable to al. At this point it chooses to
instantiate only one of these, the one derived by
canonicalization. This is done by asserting in PENNI

((BIG-ANIMAL al) & (EATS al a2) & (ANIMAL a2))
--> (BIG-CARNIVORE al)

From this, the PENNI TMS will automatically infer

(BIG-CARNIVORE al)

We call this proposition the MSG predication of al.

Because the classifier caches subsumption relations,
all other NIKL sentences applicable to al will be
retrievable later (as needed), and need not be
instantiated now. Additionally, the MSG predication
being true in PENNI will allow demons that are indexed
by the proposition's predicate name to fire (Including,
for example, a demon encoding the rule that you ought
to run away from a big carnivore!) Finally, asserting
the MSG predication facilitates subsequent TMS
deductions which are of importance to the backward
reasoner.

The Backward Reasoner

The backward reasoning operation is used to answer
queries, propositions for which a truth assignment is
being sought. To determine the truth of a query about
an individual |, the backward reasoner will try to
determine whether any NIKL sentences applicable to |
entail the truth of the queried proposition.

I will assume here that the query has form (C 1),
where the predicate name C corresponds to a Concept
of the same name * To determine the truth of (C 1), the
backward reasoner compares the Concept C to CI/, the
MSG of I. If C subsumes C/, then the backward reasoner
may infer (C I).

To see how this works, consider again our example
from the African plains. Say the forward reasoner has
found the MSG of the individual a1 to be BIG-
CARNIVORE, and say we query

(CARNIVORE al)

To determine the truth of this query, the backward
reasoner checks whether CARNVVORE subsumes BIG-
CARNIVORE. Given the database in Figure 3. this
subsumption relation does indeed hold, which
establishes that

¥ x (BIG-CARNIVORE x)} —> (CARNIVORE x)

This is precisely the NIKL sentence that is needed to
answer the query, and the interface instantiates it by
asserting

(BIG-CARNIVORE al) --> (CARNIVORE al)
In turn the PENNI TMS will infer

(CARNIVORE al)

Conclusions

In the view of KL-TWO | have given here, KL-TWO's
principal achievement can be seen as having extended
RUP with some form of quantification. However, the
kind of quantification that KL-TWO provides is limited,
the scope of NIKL's quantificational language is the
class of terminological statements that are
characteristic of KL-ONE and its various descendants.

“For more details on how Role queries are hondled.
Vilain (1985).

M. Vilain 551

Many quantified statements can not be handled in this
way. In KL-TWO, these statements that can't, be
expressed in NIKL must be encoded with demons
attached to the PENNI database. This observation also
applies to other restricted language hybrids built on
RUP, in particular the CAKE system of Rich (1982).

So how well does KL-TWO measure up to the promise
of the restricted language approach to hybrid
reasoning? Can it be both computationally efficient
and representationally sufficient? The answer
unfortunately is yes and no. Yes, the system s
efficient (although it relies on some incomplete
algorithms), and yes, it is more expressive than RUP
alone. But, as might be predicted, KL-TWO still isn't
sufficient unto itself. @As RUP before it. KL-TWO mutt
be extended for particular applications, albeit to a
lesser extent than RUP.

However, this state of affairs is representative of the
inherent trade-off between expressiveness and
efficiency that is common to all knowledge
representation systems. Out of the many possible ways
of handling this trade-off, KL-TWO makes one

particular choice, one which | think has been
successful.
References

Brachman, R. J., Fikes, R. E.,, & Levesque, H. J. (1983).
KRYPTON. A functional approach to knowledge
representation IEEE Computer, 16(10), 87-73.

Brachman, R. J. & Schmolze, J. G. (1985). An Overview
of the KL-ONE knowledge representation system.
Cognitive Science, 9(2).

Doyle, J. (1978). Truth maintenance systems for problem
solving (Al Technical Report 419). MIT Al Lab.

Levesque, H. J. (1984). A logic of implicit and explicit
belief. In Proceedings of AAAI-84, 198-202.

McAllester, D. A. (1980). An outlook on truth
maintenance (Al Memo 551). MIT Al Lab.

McAllester (1982). Reasoning utility =~ package user's
manual (Al Memo 667). MIT Al Lab.

Moser, M. G. (1983). An overview of NIKL, the new

implementation of KL-ONE. In Sidner (1983).
7-26.

Patel-Schneider, P. (1985). A decidable first-order
logic for knowledge representation. In

Proceedings of 1JCAI-85.

Rich, C. (1982). Knowledge representation languages
and the predicate calculus. How to have your
cake and eat it too. In Proceedings of AAA1-82,
193-196.

Schmolze, J. G. & Israel, D. J. (1983). KL-ONE:
Semantics and classification. In Sidner (1983),
27-39.

Schubert, L. K, Papalaskaris, M. A.. & Taugher,
J. (1983). Determining type, part, color, and time
relationships. IEEE Computer, 16(10), 53-80.

Sidner, C. L. (Ed.) (1983). Research in knowledge

representation and natural language
understanding — Annual report, 1 September
1982 - 31 August 1983. Bolt Beranek and

Newman Report No. 5421.

Vilain, M. B. (1985). An approach to hybrid reasoning.
BBN Laboratories Report (in preparation).

