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A B S T R A C T 

It is by now well-recognised that a major impediment to 
developing know ledge-based systems is the knowledge acquisit ion 
bott leneck the task of bui lding up a complete enough and correct 
enough knowledge base to provide high-level performance. Th is 
paper proposes a new class of knowledge-based systems designed 
to address this knowledge-acquisition bottleneck by incorporat ing 
a learning component to acquire new knowledge through 
experience. In part icular, we define Learning Apprentice Systems 
as the class of interactive knowledge-based consultants that 
d i rect ly assimilate new knowledge by observing and analyzing the 
problem solving steps contributed by their users through their 
normal use of the system. This paper describes a specific 
Learning Apprent ice System, called L E A P , which is presently 
being developed in the domain of V L S I design We also discuss 
design issues for Learning Apprentice Systems more generally, as 
wel l as restr ict ions on the generality of our current approach 

I L e a r n i n g A p p r e n t i c e S y s t e m s 

It is by now well-recognised that a major impediment to 
developing knowledge-based systems is the knowledge acquisit ion 
bott leneck: the task of bui lding up a complete enough and correct 
enough knowledge base to provide high-level performance. In an 
effort to reduce the cost and increase the level of performance of 
current know ledge-based systems, a number of researchers have 
developed semi-automated tools for aiding in the knowledge 
acquisi t ion process. These tools include interact ive aids to help 
p inpo in t and correct weaknesses in exist ing sets of rules 
(e.g., | 1 , 2]) , as wel l as aids for the acquisit ion of new rules 
(e.g., |S|). Others have studied the automated learning of rules 
f rom databases of stored cases, but w i t h few exceptions 
(e.g., |4, 5]), work on machine learning has not yet led to useful 
knowledge acquisit ion tools. 

Th is paper proposes a new class of know ledge-based consul tant 
systems designed to overcome the knowledge acquisi t ion 
bott leneck, by incorporat ing recently developed machine learning 
methods to automate the acquisition of new rules. In par t icu lar , 
we define Learning Apprentice Systems as the class of interactive 
knowledge-based consultants that direct ly assimilate new 
knowledge by observing and analyzing the problem solving steps 
cont r ibu ted by their users through their normal use of the 
system. Th is paper discusses issues related to the development of 
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such Learning Apprent ice Systems, focusing on the design of a 
part icular Learning Apprent ice System (called LEAF*) for V L S I 
c i rcui t design. 

One key aspect of Learning Apprent ice Systems as we define 
them is that they are designed to cont inual ly acquire new 
knowledge w i thout an expl ic i t " t ra in ing mode". For example, the 
L E A P system provides advice on how to refine the design of a 
V L S I c i rcui t , whi le a l lowing the user to override th is advice and 
to manual ly refine the c i rcui t when he so desires. In those cases 
where the user manual ly refines the c i rcu i t , L E A P records this 
problem solving step as a t ra in ing example of some rule tha t it 
should have had. L E A P then generalizes f rom this example to 
form a new rule summar is ing this ref inement tact ic. 

In task domains for which Learning Apprent ice Systems are 
feasible, we expect tha t they w i l l offer strong advantages over 
present architectures for knowledge-based systems. Many copies 
of n Learning Apprent ice System d is t r ibuted to a broad 
communi ty of users could acquire a base of problem-solv ing 
experience very large compared to the experience f rom which a 
human expert learns For example, by d is t r ibu t ing copies of 
L E A P to a thousand c i rcui t designers, the system (collection) 
would quickly be exposed to a larger number of example c i rcui t 
designs than a human designer could hope to see dur ing a 
l i fe t ime. Such a large experience base would offer the potent ia l 
for acquir ing a very strong knowledge base, provided effective 
learning methods can be developed. 

The fo l lowing section describes the design of the L E A P 
Learning Apprent ice system for VLS I design, focusing on i ts 
mechanism for captur ing t ra in ing examples, and on its methods 
for generalizing f rom these examples to form new rules. The 
f ina l section discusses some of the major choices made in the 
in i t i a l design of L E A P , l im i ta t ions on the app l icab i l i t y of our 
i n i t i a l approach, and several basic issues tha t we see as central to 
developing Learn ing Apprent ice Systems in a var ie ty of task 
domains. 

I I L E A P : A L e a r n i n g A p p r e n t i c e f o r V L S I D e s i g n 

L E A P is cur rent ly being constructed as an augmentat ion to a 
knowledge-based V L S I design assistant called V E X E D |6|. 
V E X E D provides interact ive aid to the user in imp lement ing a 
c i rcu i t given i ts func t iona l specif ications, by suggesting and 
car ry ing out possible ref inements to the design. A large par t of 
i ts knowledge about c i rcui t design is composed of a set of 
implementation rules, each of which suggests some legal method 
for ref in ing a given func t ion . For example, one imp lementa t ion 
rule states tha t IF the required function is to convert a parallel 
signal to a serial signal, THEN one possible implementation it to 
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A. The V E X E D Design Consultant 

VEXED is a prototype knowledge-based design consultant that 
provides a convenient editor and user interface which helps the 
user design digital circuits beginning with their functional 
specifications and leading to their implementation. VEXED 
maintains an agenda of design subtasks (e.g., "implement the 
module that must multiply two numbers") which initially 
contains the top-level task of implementing the entire circuit. 
VEXED repeatedly selects a subtask from the agenda, examines 
its implementation rules to determine whether it can suggest 
possible implementations for the corresponding circuit module, 
then presents any such suggestions to the user. The user may 
select one of the suggested implementation rules, in which case 
that rule is executed to refine the module Alternatively, the 
user may disregard VEXED's suggestions and instead use the 
editor to manually refine the circuit module. It is in this later 
case that LEAP wil l add to its knowledge of circuit design, by 
generalizing from the implementation step contributed by the user 
to formulate a new rule that summarizes a previously 
uncatalogued implementation method. 

As an example of this kind of learning scenario, suppose that 
at some point during the design VEXED and the user are 
considering the task of implementing a particular circuit module. 
In the present example, this circuit module must compute the 
boolean product of sums of four particular input signals which 
appear in the context of the larger circuit. Assume further that 
these input signals are regular streams of boolean values arriving 
every 100 nanoseconds, remaining stable for approximately 70 
nanoseconds, and encoded in positive logic**. Assume 
furthermore, that the stream of input values for Inputl is known 
to be an alternating stream of logical ones and zeros. The exact 
definitions of the function to be implemented and of the signals 
for which it must work are given in the top half of figure 
I I - l * * * . 

Given this i n fo rmat ion about the module to be implemented, 
the system searches i ts set of implementa t ion rules for advice 
regarding possible ref inements of this c i rcu i t In this case, the 
system may have a rule tha t suggests imp lement ing the c i rcu i t 
module using an A N D gate and two OR gates. Suppose, 
however, tha t the user disregards the advice of the system in th is 
case, choosing instead to implement the module using the c i rcu i t 
shown in f igure I I - 1 . Th is implementa t ion cont r ibuted by the 
user provides the system w i t h precisely the k ind of t ra in ing 
example t ha t L E A P needs for learning a new implementat ion 
ru le . In general, then , each t ra in ing example consists of (1) a 
descr ipt ion of the func t ion to be implemented, (2) a descript ion 
of the known characterist ics of the input signals, and (3) a c i rcui t 
entered by the user to implement the given funct ion for the given 

inpu t s igna ls . * * * * 

Given such a t ra in ing example, there are two kinds of changes 
that one m igh t expect the system to make to its knowledge base. 
F i rs t , L E A P has the oppo r tun i t y to acquire a new 
imp lementa t ion rule that can be used in subsequent cases to 
suggest the user's NOR-gate c i rcu i t where it is a potsiblc 
imp lementa t ion . Second, the system also has an oppor tun i t y to 
learn a f ragment of contro l knowledge for selecting between the 
NOR-gate implementat ion and the previously known A N D - O R 
gate imp lementa t ion , depending on which is preferred according 
to some cost cr i ter ion. In V E X E D , we have cleanly separated 
out these two kinds of knowledge. Imp lementa t ion rules 
characterise only the possible correct implementat ions, whi le a 
separate body of control knowledge w i l l be used to select the 

**That is, a logical one is encoded as five volts, and a logical sero ai 
sero volts. 

***Signals, or "datastreams" In VEXED are described as an array of data 
elements, each defined in terms of its Value, Start-Time, Duration, 
Datatype, and Encoding. 

••**Although in this example the user's circuit has been refined down to 
the gate level, in general it need only be one step more refined than the 
sub-module it is implementing. 
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Given this t ra in ing example, the most s t ra ight forward method 
of acquir ing a new implementat ion rule is to create a ru le tha t 
suggests the given circuit, can be used to implement the given 
module funct ion in precisely this context (e.g., whenever the inpu t 
signals are precisely the same as in the t ra in ing example). Such 
a rule wou ld clearly be so specific that it wou ld add l i t t l e of 
general use to the system's knowledge of imp lementa t ion methods. 
A better approach would be to generalise the precondi t ions (left 
hand side) of the implementat ion rule, so that i t characterises the 
general class of inpu t signals for which the given c i rcu i t correct ly 
implements the specified funct ion. Such a generalised ru le is 
shown in f igure I I -2 and the method for produc ing such 
generalizations in L E A P is described in the fo l lowing subsection. 
A fur ther step in generalizing the imp lementa t ion rule wou ld be 
to generalize the user's c i rcui t as wel l as the func t ion it 
implements. (e.g., the essential idea behind the NOR-ga te 
imp lementa t ion can be used to implement a class of funct ions 
related to the one encountered in this t ra in ing example). Such a 
general izat ion of the implementat ion rule is shown in f igure I I -3 , 
and the method used by L E A P for generalizing the rule in this 
fashion is described in subsection 2.3 

B . G e n e r a l i z i n g t h e R u l e L e f t - H a n d S ide 

L E A P computes a jus t i f iab ly general rule precondit ion by 
using i ts theory of d ig i ta l c ircui ts to analyze the single t ra in ing 
example. In part icular, L E A P f i rst explains (verifies) for itself 
tha t the circui t does in fact work for the example input signals, 
then generalizes f rom this example by retain ing only those 
features of the signals that were mentioned in this explanat ion. 
It is th is set of signal features that is required for the 
explanat ion to hold in general, and which therefore characterizes 
the class of inpu t signals for which the c i rcui t w i l l correctly 
implement the desired func t ion . Th is explain-then-generalise 
method for producing jus t i f iab le generalizations f rom single 
examples is based on our previous work on goal-directed 
generalization [7|, and is also s imi lar to the generalization 
methods employed in [8, 9, 10]. 

To i l lustrate this generalisation method, consider again the 
t ra in ing example introduced above in f igure I I - 1 . L E A P begins 
by ver i fy ing that the example c i rcu i t w i l l operate correctly for the 
example input signals. In order to do th is , i t examines its 
def in i t ions of the pr im i t i ve components tha t make up the example 
c i rcui t . Figure 2-4 shows the descr ipt ion of the p r im i t i ve NOR 
gate used in the present example c i rcui t . The Operating 
Conditions in this description summarise characteristics of the 
input signals tha t are required for the component to have a well 
defined ou tpu t . For example, the constra int " (Length 
(Intersection (Interval Input1(i)) (Interval Inputt(i)))) > S nsec." 
indicates tha t for the NOR gate to operate correct ly, i ts inputs 
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inputs Input 1. Input2 
Outpu ts Output 

Operat ing Condi t ions 
(Equals (Datatype I n p u t l ( i ) ) Boolean) 
(Equals (Encoding Inpu t1 ( i ) ) Posit ive-Logic) 
(Equals (Datatype l n p u i 2 ( i ) ) Boolean) 
(Equals (Encoding l n p u t 2 ( i ) ) Posit ive-Logic) 
(Length (Intersection ( In terva l I n p u t l ( i ) ) 

( In terva l l npu t2 ( i ) ) ) ) > S nsec. 

Mapp ing . 
(Equals (Value O u t p u t ( i ) ) 

(Not (Or (Value I n p u t l ( i ) ) (Value Inpu t2 ( i ) ) ) ) ) 
(Equals (Encoding O u t p u t ( i ) ) Posit ive-Logic) 
(Equals (Star t -T ime O u t p u t ( i ) ) 

(+ 10 (Latest (S ta r t -T ime I n p u t l ( i ) ) 
(S ta r t -T ime l npu t2 ( i ) ) ) ) ) 

(Equals (Dura t ion O u t p u t ( i ) ) 
(Length (Intersect ion ( In te rva l I n p u t l ( i ) ) 
( In terva l I npu t2 ( i ) ) ) ) ) 

The Operating Conditions describe m i n i m u m 
requirements on input signals to assure the component 
w i l l produce a well-defined ou tpu t . The Mapping 
describes how features of the ou tpu t signal depend on 
the inputs . 

F i g u r e I I - 4 : K n o w n B e h a v i o r o f a N O R G a t e . 

must over lap in t ime by at least 3 nanoseconds***** . 

These Operat ing Condi t ions of the ind iv idua l c i rcu i t 
components are constraints tha t must be verif ied for the example 
c i rcui t and the given inpu t signals. Some of these operat ing 
condi t ions can be tested d i rect ly against the descript ions of the 
global c i rcu i t inputs (e.g., the operat ing condi t ions for the left
most N O R gates in the example c i rcui t can be tested against the 
known characterist ics of the c i rcui t inputs) . The operat ing 
condi t ions associated w i t h components in terna l to the example 
c i rcui t must be restated in terms of the equivalent constra ints on 
the global c i rcu i t inputs . These constraints are therefore 
propagated to (reexpresaed in terms of) the global inputs of the 
c i rcui t ne twork , then tested to see tha t they are satisfied by the 
example inpu t signals. For instance, the constraint "(Length 
(Intersection (Interval X(i)) (Interval Y(i)))) > S nsec.* wh ich 
fol lows f r om the operat ing condi t ions of the r ight -most N O R gate, 
is reexpresaed in terms of the four global c i rcui t inputs to 
produce the equivalent const ra in t "(Length (Intersection (Interval 
Input1(i))( Interval Input2(i))( Interval Input3 (i))(Interval 
Input4(i)))) > S nsec.,".****** By propagat ing the constra ints 
arising f r o m the operat ing condi t ions of the c i rcu i t components, 
as we l l aa the or ig ina l constra int on the c i rcui t ou tpu t (e.g., t ha t 

*****The Initial of a data element is defined here as the time interval 
beginning at the Start Time of the data element, and continuing for the 
Duration of that data element. 

* * * * * *Th is constraint propagation step is performed in the VEXED 
system by a set of routines called CRITTER [11) which is able to propagate 
and check signal constraints in loop-free digital circuits, by examining the 
function definitions of the primitive circuit elements. 

it produce the . .. i - U P ..l ,.. i » I ih> inputs) | | \ | ' . „, 
venfy that the user-imr«>du<rd U P U I I w i l l correctly implement the 
desired funct ion for the given inputs More impo r tan t ) ) the 
constraints that are propagated to the inputs of the circuit 
network characterize precisely the class of inputs for which the 
c i rcui t w i l l operate correct ly, and therefore const i tu te the desired 
general precondit ions for the newly acquired imp lementa t ion rule. 

In summary , the procedure for comput ing the generalized 
precondit ions for the new rule is to (1) propagate each constra int 
derived f rom the operat ing condi t ions of each p r i m i t i v e c i rcu i t 
component, along w i t h constraints on the global c i rcu i t ou tpu t , 
back to the global inputs to the c i rcu i t network, then to (2) 
record the result ing constraints on the global inpu ts , w i t h 
appropriate subst i tu t ion of var iable names, as the generalized 
precondit ions for the new imp lementa t ion ru le. F igure I I -2 
i l lustrates the resul t ing general ization for the t r a i n i ng example 
f rom f igure I I - 1 . Not ice that in compar ing this generalized rule 
w i t h the or ig ina l t ra in ing example, values of several features of 
the c i rcui t inputs have been generalized Only the constraints on 
Data type and on Signal-Encodings remain in tac t , wh i le the 
detai led values for the signal S tar t -T imes and Dura t ions have 
been replaced by the general constra int on over lapping t ime 
intervals. 

C . G e n e r a l i s i n g R u l e R i g h t - H a n d S i d e 

The previous section describes how L E A P is able to generalize 
the lef t -hand side (LHS) of the rule by determin ing the class of 
input signals for which the given c i rcu i t w i l l work Th i s section 
describes how L E A P can also generalize the r igh t -hand side 
(RHS) of the rule; tha t is, generalize the circui t schematic along 
w i t h the funct iona l specifications to be implemented 

The key to generalizing the RHS is to f i rst ver i fy t ha t the 
c i rcui t correctly implements the desired func t ion . Th i s 
ver i f icat ion can then be examined to determine the general class 
of circuits and funct ional specif ications to wh ich the same 
ver i f icat ion steps w i l l apply. Th is method, wh ich we cal l 
Ver i f icat ion-Based Learn ing, is described more generally in [12|. 
T h a t paper discusses the general app l icab i l i t y of th is method to 
learning problem-decomposi t ion rules, or p lann ing schema. Here 
we discuss the appl icat ion of this method to general izing c i rcu i t 
implementat ion rules, and i l lust rate the method using the t ra in ing 
example and rule discussed above. 

1 . S t e p 1 : F o r m i n g t h e C o m p o s e d S p e c i f i c a t i o n f r o m 
R u l e R H S 

The f i rst step in the process of in ferr ing a general c i rcu i t 
design rule f rom a t ra in ing example is tha t of ver i f i ca t ion : 
ensuring tha t the funct ion computed by the user's c i rcu i t meets 
the or ig inal c i rcu i t specif icat ion. 

We can derive a descr ipt ion of the c i rcu i t 's func t ion f r o m its 
st ructure by composing the funct ions of the submodules 
const i tu t ing the c i rcu i t , according to the conf igurat ion in wh ich 
they are interconnected. For the user's NOR-ga te c i rcu i t , th is 
composed specification is given as 
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Note tha t , in general, the composed specif ication w i l l be a 
syntactically reexpressed version of the or iginal specif icat ion. For 
example, the above composed specification is not syntact ica l ly 
ident ical to the funct ional specifications* in the t ra in ing example, 
even though it does represent the same boolean func t ion . Th is 
frequently occurs in VLS I circuits in wh ich , for example, 
funct ional specifications in terms of A N D and OR boolean 
expressions are often implemented in terms of N A N D and N O R 
gates. 

2 . S t e p 2 : V e r i f y i n g t h e C i r c u i t F u n c t i o n 

To verify the correctness of the user-suggested NOR-gate 
c i rcui t , L E A P must show the equivalence between the composed 
specification for this circuit and the original specification of the 
circui t being implemented. Thus, i t seeks to veri fy tha t 

or in th is case 

L E A P verifies that the composed specif ication meets the 
or ig inal specif ication by determining a sequence of algebraic 
t ransformat ions which, when applied to the composed 
specif ication, w i l l yield the or ig ina l specif icat ion. Each t rans form 
has a precondition which describes the class of s i tuat ions to which 
it can be appl ied, and a postcondition which specifies the result 
of the t ransformat ion. The two transforms tha t w i l l be used for 
the current example in the c i rcui t domain are given below. 

3 . S t e p 3 : D e t e r m i n i n g t h e G e n e r a l i s e d C o m p o s e d 
S p e c i f i c a t i o n 

Given the ver i f ica t ion tree shown above, the next step is to 
determine the genera) class of expressions for wh ich th is sequence 
of ver i f ica t ion steps w i l l correct ly apply . Th is is essentially a 
prob lem of v iewing the t ransformat ion sequence as a 



578 T. Mitchell et al. 

propagat ing the precondi t ion of each t ransform in the sequence, 
to determine the necessary condi t ions on the s ta r t ing expression 
Th is process is described in greater detai l in 12). The sequence 
shown below i l lustrates th is back-propagat ion, and indicates the 
resul t ing general isat ion of the composed specif icat ion. 

C O M P U T I N G T H E 
G E N E R A L I Z E D C O M P O S E D S P E C I F I C A T I O N 

Not ice t ha t the f i na l expression in the above sequence 
describes the generalised composed specif ication for wh ich the 
ver i f ica t ion w i l l correct ly app ly . F r o m i t , we see tha t the 
i m p o r t a n t feature of the t w o submodule specif ications P1 and P2 

{ the t w o lef tmost N O R gates in f igure I I - l ) is t ha t they both 
compute the negation of some boolean function, wh i le the 
specif ications of the t h i r d component cannot be generalised. 

G E N E R A L I Z E D S P E C I F I C A T I O N S O F S U B M O D U L E S 

4 . S t e p 4 : D e t e r m i n i n g t h e G e n e r a l i s e d O r i g i n a l 
S p e c i f i c a t i o n 

Hav ing determined the generalised specif ications of the c i rcu i t 
submodules, the RHS of the new rule can now be fo rmed. 
However, L E A P must also produce a corresponding general isat ion 
o f the o r ig ina l func t iona l specif icat ion in the ru le L H S . T h i s 
generalised or ig ina l speci f icat ion can be computed in a re lat ive ly 
s t ra igh t fo rward manner , e i ther by reapply ing the sequence of 

generalized composed specif ication Fo l lowing either of these two 
approaches, the result is that the new or ig inal specif ication 
becomes 

Compar ing the generalized or ig inal specif icat ion above w i t h the 
or ig ina l specif icat ion of the circui t imp lementa t ion in f igure 11-1, 
it is seen tha t a general isat ion of the or ig ina l specif ication has 
been achieved f rom a conjunct ion of d is junct ions to a conjunction 
of any boolean functions. 
5 . S t e p 5 : F o r m i n g t h e N e w I m p l e m e n t a t i o n R u l e 

We have shown in the last few paragraphs how the or ig ina l 
speci f icat ion of a c i rcu i t module as wel l as the func t iona l 
specif ications of each of the submodules P. in its imp lementa t ion 
could be generalized. The f ina l step is to fo rm the new 
imp lementa t ion rule which is based on these generalized 
specif ications. The precondit ions for this new rule are formula ted 
to require (1) t ha t the funct ion to be implemented match the 
generalised or ig ina l speci f icat ion, and (2) t ha t the inpu t signals 
satisfy the constra ints tha t are determined as shown in the 
previous subsection The r ight -hand side of the new rule is 
fo rmu la ted so tha t i t produces the submodules w i t h their 
corresponding submodule specifications P i . For the present 
example, the new implementa t ion rule formed in th is 
f a s h i o n * * * * * * * is shown in f igure 11-3. 

I l l D i s c u s s i o n 

T h e previous section describes in some deta i l how L E A P 
captures t ra in ing examples f rom its users, and how i t forms 
genera] rules f r o m these examples. Th i s section discusses more 
broadly the arch i tec tura l issues invo lved in designing knowledge-
based systems t h a t can incorporate such learning methods In 
par t i cu la r , we discuss the major design features of L E A P tha t 
appear impo r t an t to the design of Learn ing Apprent ice Systems 
more general ly. Three design features tha t have a major impact 
on the capabi l i t ies of L E A P are: (1) the in teract ive nature of the 
problem solving system, (2) the use of analyt ic methods for 
general izing f rom examples, and (3) the separation of knowledge 
about when an imp lementa t ion technique can be used f rom 
knowledge about when it should be used. 

A . I n t e r a c t i v e N a t u r e o f t h e A p p r e n t i c e C o n s u l t a n t 

A fundamenta l feature of L E A P is tha t i t embeds a learning 
component w i t h i n an interactive prob lem-solv ing consul tant . Th is 
al lows i t to collect t r a in ing examples t ha t are closely suited to 
re f in ing i ts rule base. In par t icu lar , t r a in ing examples collected 
by a Learn ing Apprent ice "have two a t t rac t i ve propert ies: 

1. T r a i n i n g examples focus only on knowledge tha t is 
missing f r om the system. The need for the user to 
intervene in prob lem solving occurs only when the 
system is missing knowledge relevant to the task at 
hand , and the resul t ing t ra in ing examples therefore 
focus specif ical ly on th is missing knowledge. 

• • " • • • N o t i c e that in this rule, there are no final constraints that must 
be satisfied by the input signals. This is because the left-most circuit 
modules in the figure are defined so abstractly, that they pose no 
constraints on the signal formats of their inputs. 
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such as Meta-DENDRAL 4 and INDUCE-PLANT [5], 
in which training examples are complete problem 
solutions By working with training examples that are 
single steps, LEAP circumvents many difficult issues of 
credit assignment that arise in cases where the training 
example corresponds to a chain of several rules. 

While to first order, LEAP acquires training examples that 
correspond to single rule inferences, this is only approximately 
true We expect that LEAP will encounter training examples in 
which its existing rules will correspond to finer-grained decisions 
than the user thinks of as a single step For instance, the 
system may have a sequence of rules to implement a serial-
parallel converter by first selecting a shift register, then a general 
class of shift registers (e.g dynamic), and only then a specific 
circuit, while the user may think of the whole series of decisions 
as a single step, implementing the converter with a specific 
circuit. 

In such cases, LEAP could just go ahead and learn the larger-
grained rule that will follow from the user's training example, but 
doing so could cause a number of problems One problem is 
that it will result in a rule set with rules of greatly varying 
grain. Such inconsistency in grain is likely to lead to redundancy 
and lack of generality in the rules. A second potential problem 
associated with large-grain training examples is that our 
analytical methods of generalization may be too expensive to use 
on steps of large grain. Since the methods depend on 
constructing a verification of the step, there is reason to fear the 
cost may grow very quickly as the size of the step gets large 
compared to the size of the transformations used in the 
verification process. 

Thus, the question of how to handle grain size mismatch may 
be an important issue for future research One possible direction 
would be to develop methods for examining a training example 
that corresponds to a large step, then determining which existing 
rules correspond to parts of this inference step, leaving only the 
task of acquiring the missing finer grain rules 

B. Use of Ana ly t i ca l Methods for General ization 

A second significant feature of the design of LEAP is that it 
uses analytical methods to form general rules from specific 
training examples, rather than more traditional empirical, data-
intensive methods. LEAP's explain-then-generalize method, based 
on having an initial domain theory for constructing the 
explanation of the example, allows LEAP to produce justifiable 
generalizations from single training examples. This capability is 
particularly important for LEAP since it is not at all clear how 
LEAP could tell that two different training examples involving 
different circuit specifications and different resulting circuits, were 
in fact two examples of the same rule. 

One significant advantage of the analytical methods involves 
learning in the presence of error-prone training data. An issue 
that seems central to research on Learning Apprentice Systems, 
and one that LEAP must confront immediately, is that the users 
who (unwittingly) supply its training examples are likely to make 
mistakes. In particular, since we hope to first introduce LEAP 
to a user community of university students who are themselves 
learning about VLSI design, the issue of dealing with error-prone 
examples is a major one. Our initial plan for dealing with this 

that it explain an example circuit before it can generalize it, 
LEAP will be a very conservative learner Since it will be 
unable to verify incorrect circuit examples that it encounters, 
there is little danger of it learning from incorrect 
examples******** This method of dealing with errorful data is 
attractive, but may be insufficient if we need to include empirical 
learning methods along with analytical methods for generalisation 

While analytical generalization methods offer a number of 
advantages, they require that the system begin with a domain 
theory that it can use to explain/validate the training examples 
This requirement, then, constrains the kind of domain for which 
our approach can be used In the domain of digital circuit 
design, the required domain theory corresponds to a theory for 
verifying the correctness of circuits In certain other domains, 
such a theory may be difficult to come by For example, in 
domains such as medical diagnosis the underlying theory to 
explain/verify an inference relating symptoms to diseases is often 
unknown even to the domain experts. In such domains, the 
system would lack a domain theory to guide the analytical 
generalization methods, and would have to rely instead on 
empirical generalization methods that generalize by searching for 
similarities among a large number of training examples. In fact, 
our present methods for utilizing domain theories to guide 
generalization are limited to cases where there is a strong enough 
theory to "prove" the training example is correct. One important 
research problem is thus to develop methods for utilising more 
approximate, incomplete domain theories to guide generalisation, 
and for combining analytical and empirical generalization methods 
in such cases. One new research project that is interesting in 
this light is an attempt to construct a Learning Apprentice for 
well-log interpretation |13|. In this domain, the underlying 
theory necessary to learn new rules involves geology and response 
of well-logging tools. Since these theories as inherently 
approximate and incomplete, that research project must face the 
issue of generating and utilizing approximate explanations of 
training examples to infer general rules. 

C. Pa r t i t i on ing of Cont ro l and Basic Domain Knowledge 

A third significant feature in the design of LEAP is the 
partitioning of its knowledge base into (1) implementation rules 
that characterize correct (though not necessarily preferred) circuit 
implementations, and (2) control knowledge for selecting the 
preferred implementation from among multiple legal options 
This partitioning is important because it helps in dealing with 
the common problem that when one adds a new rule to a 
knowledge base one must often adjust existing rules as well. 

The first of these two parts of the knowledge base has the 
convenient property that its rules are logically independent; that 
is, when one adds a new implementation rule characterising a 
new implementation method, it does not alter in any way the 
correctness of the existing implementation rules. Thus, when a 
new implementation rule is added, the only portion of the 
knowledge base that might require an update is the control 
knowledge for selecting among alternative implementations. This 

• • • • • • " E v e n this it not quite true. Since its domain theory is only 
approximate (at will probably be true for Learning Apprentice Systems in 
general), there may be incorrect circuits that it succeeds in verifying (say, 
because is overlooks parasitic capacitances). 
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when combin ing sets of rules that may have been learned f rom 
various users by different copies of the Learning Apprent ice 
Wh i le the problem of combining mul t ip le rule sets learned f rom 
different sources is in pr inciple simply a mat ter of forming the 
union of the rule sets, in fact the result ing set of correct rules 
may be overly redundant and disorganized. Thus, we ant ic ipate 
tha t we may have to develop methods for merging and 
reorganizing sets of correct rules to make them more manageable. 

To date, we have only considered learning the f irst type of 
knowledge. In some sense, learning these rules is easier than 
learning the contro l knowledge, because the complex i ty of 
expla in ing a t ra in ing example is much less for implementa t ion 
rules than for control rules. To exp la in /ver i fy an example of an 
imp lementa t ion rule, the system need only veri fy the correctness 
of the c i rcui t f ragment ment ioned in the t ra in ing example. 
However, to learn a contro l rule tha t characterises when some 
imp lementa t ion is preferred, it is necessary to compare th is 
imp lementa t ion w i t h al l the a l ternat ive possibi l i t ies. Thus, the 
complex i ty of construct ing the explanat ions is qui te different in 
these t w o cases. In the longer te rm, we see learning of cont ro l 
knowledge as an impor tan t task for L E A P , and a task for wh ich 
i t can easily capture useful t ra in ing examples. 

I V C o n c l u s i o n 

We have presented the not ion of a Learn ing Apprent ice 
System as a f ramework for automat ica l ly acquir ing new knowledge 
in the context of an interact ive knowledge-based consultant The 
in i t i a l design of a Learning Apprent ice for V L S I design has been 
described. In part icular , we have detai led the methods tha t 
L E A P employs for learning new imp lementa t ion rules, and for 
generalizing both the left and r ight hand side of these rules. 
Whereas previous at tempts at automat ic knowledge acquisi t ion 
have met w i t h l i t t l e success, the proposed Learning Apprent ice 
System differs in two impor tan t respects. i t uti l izes more 
powerfu l ana ly t ica l learning methods, and i t is restricted to 
in teract ive knowledge-based systems which can easily capture 
useful t ra in ing examples. We are current ly complet ing our i n i t i a l 
imp lementa t ion of L E A P , and in tend to test i t on a user 
c o m m u n i t y of students in a V L S I design course to gather da ta 
and fur ther insights on th is i n i t i a l design. 
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