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Abstract 
MORE is a tool that assists in eliciting knowledge from domain 

experts. Acquired information is added to a domain model of 
qualitative causal relations that may hold among hypotheses, 
symptoms, and background conditions. After generating 
diagnostic rules from the domain model, MORE prompts for 
additional information that would allow a stronger set of 
diagnostic rules to be generated, MORE'S primary value lies in its 
understanding of what kinds of knowledge are likely to be 
diagnostically significant. By formulating its questions in a way 
that focuses on such knowledge, it makes the most effective use 
of the domain experts' time.1 

I .The MORE system 
MORE elicits diagnostically significant knowledge from domain 

experts; it is similar in spirit to systems like TEIRESIAS [Davis 
82] and ETS [Boose 84]. Like these systems, MORE provides a 
mechanism for interviewing domain experts and makes use of 
several strategies for facilitating the interview process, MORE 
differs in that it takes a model-theoretic approach to the 
acquisition of diagnostic knowledge. It uses a qualitative model 
of causal relations together with a theory of how causal 
knowledge can be used to achieve more accurate diagnostic 
conclusions to guide the interview process. Thus, it can go 
farther in diagnosing weaknesses in a knowledge base than its 
predecessors. As these weaknesses are identified, MORE elicits 
from the domain expert information that can lead to stronger 
diagnostic conclusions. 

MORE evolved from our experience handcrafting MUD, a 
diagnostic system in the drilling fluids domain [Kahn 85]. In 
reflecting on the nature of our interactions with the drilling fluids 
experts, it seemed to us that we had used a set of quite broadly 
applicable knowledge acquisition strategies, MORE embodies 
those strategies. 

MORE has the capacity to build domain models from a fixed set 
of qualitative relations that may hold among hypotheses, 
symptoms, and background conditions. The content of any 
particular model is provided by a domain expert in response to Its 
prompts, MORE generates diagnostic rules from the domain 
model. After a rule is constructed, the user is asked to associate 

positive- and negative-support values with each rule. MORE'S 
procedure for constructing and evaluating rules is described 
elsewhere. [Kahn 84]. The focus of this paper is on the nature of 
the domain model MORE constructs and on MORE'S knowledge 
acquisition strategies. 

MORE plays three roles while interacting with a user. Its first 
role is as an information solicitor. As the user enters the names 
of hypotheses and symptoms, he is asked for additional 
information that may result in a stronger diagnostic assessment. 
Among other things, MORE will ask about events that may affect 
the expectation of the hypothesis occurring, the likelihood of 
seeing the symptom given that the hypothesis has occurred, and 
distinguishing characteristics of the symptom that may identify it 
as having been caused by a particular hypothesis. 

Once an initial knowledge base is built up, MORE looks for 
weaknesses in the rules it has generated. As a result of 
evaluating the diagnostic strength of these rules, MORE prompts 
for additional information that would allow a stronger set of 
diagnostic rules to be generated. For instance, if there is no rule 
assigning a high positive-support value to a symptom (S) that 
bears on hypothesis (H), MORE asks if there are distinguishing 
characteristics of (S) when it is caused by (H). This strategy is 
called symptom distinction, it is one of eight strategies discussed 
below. 

In it's third role, MORE looks for potential inconsistencies in the 
way a user has assigned confidence factors to diagnostic rules, 
determining if the assigned weight is appropriate given the 
weights of other rules already in the system. Although MORE does 
not have sufficient information to recommend precise value 
assignments, it knows enough to formulate expectations 
regarding the direction in which weights ought to vary across 
different rules. For instance, if background condition (C) is 
known to increase the likelihood of observing symptom (S) when 
hypothesis (H) occurs, then the negative-support of a rule whose 
evidential focus is (S) and just (S), should be lower than the 
negative-support of a rule whose evidential focus is (S) and (C). If 
the user assigns weights that violate this expectation, MORE 
issues a warning and asks the user if he wishes to change the 
weights of any of the conflicting rules. 

1Mott of the work reported here was done while all three authors were at 

Carnegie-Meilon University. Gary Kahn is now at Carnegie Group Inc. 
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2. MORE's domain model 
As domain experts are interviewed by MORE, a representation of 

their responses is built into a 'domain model'. Each domain 
model built by MORE consists of five representational entities: 
hypotheses, symptoms, conditions, links, and paths. A 
hypothesis denotes an event whose identification will be the 
result of a diagnosis. A symptom is any event or state 
consequent to the occurrence of a hypothesis, and whose 
observation disposes toward the acceptance of the hypothesis. A 
condition is an event or state in the environment which is not 
directly symptomatic of any hypothesis but which can affect the 
diagnostic significance of some other event. Links are used to 
join entities in the model, including other links. A path is a special 
type of link that joins a hypothesis to a symptom. States or events 
represented as symptoms may also be hypotheses. Figure 2-1 
provides a schematic representation of the key representational 
objects and relations used by MORE. 

Five kinds of conditions can be represented in a MORE model: 
frequency-conditions, tests, test-conditions, symptom-conditions, 
and symptom-attributes. Frequency-conditions are used to 
represent anything that can affect the a priori expectation of a 
given hypothesis. Such conditions are assumed to be 
independent of observing any particular symptom. Thus, in a 
MORE model, they are linked directly to an affected hypothesis. 

Tests represent procedures or devices used to determinine the 
occurrence of a symptom; test-conditions represent events or 
states that bear on the accurate use of a procedure, device, or 
observation. Since the expected accuracy of a detection 
procedure may affect the evidential significance of a symptom 
with respect to any of its explanatory hypotheses, tests are linked 
directly to their corresponding symptoms. As test-conditions are 
conditions which affect the confidence in the results or accuracy 
of a given test with respect to a particular symptom, they are 
attached to the link joining a test and symptom. 

Symptom-attributes are specific characteristics of a 
symptom that tend to make it more or less likely to be caused by a 
particular hypothesis. An example would be the contiguity of 
datacheck reports for a disk, if the datachecks were on 
contiguous sectors this would indicate a radial scratch more 
strongly than if the datachecks were randomly distributed. 
Symptom-attributes provide a way of refining the description of a 
symptom into one of a number of subclasses, each subclass 
providing greater discrimination among causes of the symptom. 
Since these conditions refine a symptoms description with 
respect to the kind of thing which could cause it, they are 
attached to the path connecting the hypothesis and symptom. 

Symptom-conditions represent states or events which affect 
the likelihood of a symptom occurring if the hypothesis has. 
External events which could, for example, mask or preclude the 
realization of a symptom even if the hypothesis occurs are 
represented as symptom-conditions. Since these conditions 
affect the causal link between a hypothesis and symptom, they 
are attached to the path connecting the hypothesis and symptom. 

3. Strategies for improving diagnostic 
performance 

MORE'S suggestions on how to augment the existing knowledge 
base such that stronger and more accurate diagnostic 
conclusions can be obtained result from its use of eight different 

strategies: 

• differentiation 
• frequency conditionalization 
• symptom distinction 
• symptom conditionalization 
• path division 
• path differentiation 
• test differentiation 
• test conditionalization 

The differentiation strategy leads MORE to actively seek 
symptoms that provide leverage in distinguishing among 
diagnosable events, MORE scans its current domain model 
looking for pairs of hypotheses for which there is no 
differentiating symptom. When it finds such a pair, the user is ask 
for a symptom that will differentiate the pair of hypotheses. With 
respect to MORES model a symptom (S) is said to differentiate one 
hypothesis (H1) from another (H2) when there is a path from H1 to 
S, and no path from H2 to S. Since increased differentiation in the 
knowledge base also results from incorporating symptoms which 
are explainable by a set of causes different (at least in part) from 
those underlying previously reported symptoms, MORE also scans 
for triples of hypotheses (H1,H2,H3) for which there is no 
symptom which differentiates H1 from both H2 and H3. The 
identification of such symptoms makes it more unlikely that a set 
of symptoms could be explained erroneously by two co-occurring 
hypotheses. 

For instance, in the MUD domain, both an influx of water and an 
insufficient use of emulsifier can have the same effects on 
measurable mud properties. However, an increase in mud 
volume is usually associated with the former. While this effect 
can also result from a hydrocarbon influx, other shifts in mud 
properties distinguish hydrocarbon from water influxes. Thus, 
the knowledge base can be further differentiated by adding the 
fact that an increase in volume is a confirming observation with 
respect to a water influx. 
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Path d i f fe ren t ia t ion is another means of finding symptoms 
with greater diagnostic significance. Under this strategy, MORE 
asks if a symptom, which may result from one of several causes, 
does so via (at least partially) non-overlapping causal pathways. 
Intermediary events on non-overlapping portions of these 
pathways are expected to have greater diagnostic significance 
than symptomatic events on shared pathways. Thus, if there is a 
link to S from both H1 and H2, MORE asks about the existence of 
more proximal symptomatic events which lie on the the causal 
path from H1 to S, but not on the path from H2 to S. Such 
symptoms would be associated with stronger positive-support 
values as there are fewer hypotheses which could explain their 
occurrence. 

In the MUD domain, for example, an increase in plastic viscosity 
in an oil mud can result from either shale or water contamination. 
These effects, however, do not result in entirely the same way. 
Shale contamination causes an increase in plastic viscosity by 
increasing the percentage of solids in the mud system; water 
causes an increase by its behavior in a partially emulsified 
solution. The mud engineer can determine which of these 
mechanisms accounts for increased plastic viscosity through the 
use of additional tests. These tests measure the amount of 
unemulsified water and the solids content of the mud. Positive 
results on these tests provide stronger confirmation of the 
respective causes than does the shared symptom of increased 
plastic viscosity. 

Path d iv is ion similarly requires eliciting a symptomatic event 
that lies on a causal path from the diagnosable event to an 
already reported symptom. In this case, however, the new 
symptom is selected such that it is more expected, given the 
cause, than the former more distal symptom. Path division is 
attempted when no rule with a symptom (S) immediately linked to 
a hypothesis (H) has a high negative-support value. When this is 
recognized, MORE prompts for a symptomatic event (S2) that lies 
on the causal pathway from H to S, such that S2 is more 
proximally caused by H and causes S. As such, the failure to 
observe the new proximal symptom will be of greater 
disconfirmatory value ceteris paribus than failing to observe 
symptoms later in the causal chain. 

An increase in bentonite, for example, can be considered an 
intermediate step between shale collapsing into the bore hole 
and a change in viscosity. Thus, as expected, it was found that 
the failure to observe an increase in viscosity is less 
disconfirmatory with respect to shale contamination than the 
failure to observe a significant increase in free bentonite through 
the use of a methylene blue test. 

Symptom condi t iona l izat ion requires seeking out events 
that effect the likelihood that a symptom will occur, given that the 
hypothesis has. Negative-support values typically vary with the 
expectation that a diagnosable event will indeed give rise to a 
particular symptom. This expectation can be low if, for instance, 
the appearance of a symptom requires the cooccurence of an 
unlikely background condition. 

For example, some viscosity effects normally associated with 
salt contamination of a water based drilling fluid will appear only if 
the fluid has not been pretreated with surfactant thinners. If there 
has been a pretreatment of this kind, the failure of viscosity 
symptoms to appear cannot count as evidence against the 
hypothesis of salt contamination. However, if one knows that the 
system has not been pretreated in this way, then the 

disconfirmatory significance of failing to observe these viscosity 
symptoms is much greater than it would be otherwise. 

Symptom d is t inc t ion seeks to further distinguish a symptom 
so it may more closely be identified with a particular cause. Under 
this strategy MORE asks about symptom-attributes which are 
capable of dividing a symptom into finer classes, with each class 
more likely to be associated with one particular cause (or 
hypothesis) than any other. As a symptom is distinquished by 
characteristic attributes, the number of explanatory hypotheses 
goes down, and the positive support contributed by the 
observation of such a symptom goes up. Similarly, if a symptom 
is always characterized by a certain attribute when it is caused by 
a particular hypothesis (H), then the observation of the symptom 
without these characteristic attributes should lead to a stronger 
disposition to reject H. For instance, both an influx of water and 
an increase in low specific gravity solids can cause a decrease in 
density. However, if density has decreased rapidly, it is more 
likely to have been due to an influx of water. 

Both symptom-conditions and symptom-attributes are 
represented in M O R E S domain model as conditions attached to 
the path joining the hypothesis and symptom. This permits 
similar attributes to have different effects with respect to different 
hypotheses. 

In test d i f fe ren t ia t ion MORE seeks to determine if there are 
procedures or observational instruments that can detect the 
existence of the symptom with greater accuracy. If there are, the 
expectation is that reference to them will increase the evidential 
significance of the symptoms on which they bear. Tests, as 
represented in MORE'S model, are attached by a link directly to the 
symptom whose evidential significance may be affected. The 
significance of changes in pH level, for instance, differ slightly 
depending on whether pH is measured by litmus paper or the 
more accurate pH meter. 

Similarly, in pursuing tes t cond i t iona l iza t ion , MORE inquires 
about conditions which can affect the confidence in the results or 
accuracy of a test. These conditions are represented as test-
conditions in the model and are attached to the test whose 
accuracy they modify. 

Finally, MORE will, under certain conditions, engage in 
f requency-cond i t iona l i za t ion . With this strategy, MORE looks 
for conditions that affect the expected likelihood of a hypothesis' 
occurrence. These are represented as frequency-conditions in 
the domain model, and are attached directly to the hypothesis 
they modify. Frequency-conditions are mapped into rules which 
will enhance or diminish the measure of belief provided by a set 
of symptoms, depending on whether these conditions increase or 
diminish the expectation of the hypothesized cause. For 
instance, in the MUD domain, an increase in viscosity often results 
from drilling through one of a number of contaminants, some of 
which may be expected, others unexpected, in the location being 
drilled. Thus, one would like the evidential significance of a 
symptom, such as an increase in viscosity, to be dependent on 
local knowledge about the likelihood of encountering various 
contaminants. 

4. A little concreteness 
MORE seeks diagnostically significant information by prompting 

its user with questions such as: 
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1. Are there any conditions under which the problem 
referred to by SHALE-CONTAMINATION would be more 
or less likely to occur? 

2. Are there any conditions that affect the accuracy (or 
confidence) of observing INCREASEINVISCOSITY? 

3. Are there any distinguishing features of 
DECREASE-IN-DENSITY which would make it more or 
less likely to be caused by WATER-INFLUX? 

4. Can you provide a symptom associated with 
WATER-INFLUX that cannot be explained by 
SHALE-CONTAMINATION? 

The above questions are driven respectively by strategies of 
frequency conditionalization, test conditionalization, symptom 
distinction, and differentiation, MORE uses a number of heuristic 
rules in deciding when it is appropriate to pursue one strategy or 
another [Kahn 84]. 

As diagnostic knowledge becomes available, MORE maps it into 
its underlying domain model. For example, in discussion above, 
several hypotheses, symptoms, and conditions relevant to the 
diagnosis of drilling fluid problems were mentioned. These 
included three hypotheses (shale contamination, water influx, 
and salt contamination), five symptoms (an increase in low 
specific gravity solids, an increase in viscosity, a decrease in 
density, an increase in unemuslified water, and an increase in 
chlorides), two symptom attributes (a gradual and a rapid 
decrease of density), a symptom condition (the use of an oil 
mud), a frequency condition (the expection of salt formations), 
and finally, a test (a high MBT reading). Within the current 
implementation of MORE, each of these is represented as a 
separate data structure linked within a network of causal relations 
as illustrated in figure 4-1. 

currently being used to build systems to diagnose computer disk 
faults, computer network problems, and circuit board 
manufacturing problems. These efforts should give a good 
indication of the power of MORE'S strategies. 
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5. Concluding remarks 
MORE assists in knowledge-base construction using the eight 

strategies described above. In the course of its development, 
MORE has been applied to parts of the drilling fluids domain as 
well as to sample diagnostic problems provided by a physician. 
Our next step is to use MORE to develop a number of knowledge-
baaed consultation systems in a wide variety of domains, MORE is 


