
Selectively Generalizing Plans for Problem-Solving 

Steven Minton1 

Computer Science Department, Carnegie-Mellon University 
Pittsburgh, PA 15213, USA 

Abst ract 
Problem solving programs that generalize and save plans 
in order to improve their subsequent performance 
inevitably face the danger of being overwhelmed by an 
ever-increasing number of stored plans. To cope with this 
problem, methods must be developed for selectively 
learning only the most valuable aspects of a new plan. 
This paper describes MORRIS, a heuristic problem solver 
that measures the utility of plan fragments to determine 
whether they are worth learning. MORRIS generalizes and 
saves plan fragments if they are frequently used, or if they 
are helpful in solving difficult subproblems. Experiments 
are described comparing the performance of MORRIS to a 
less selective learning system. 

1 Introduction 
Building problem-solving programs that improve their 

performance by generalizing and re-using past solutions is 
one of the goals of machine-learning research. It has been 
demonstrated that generalized solution sequences, or 
plans, can be produced by analyzing the constraints 
inherent in solution instances [3,8]. This method of 
learning has been successfully employed in domains as 
diverse as game-playing [6] and mathematical 
problem-solving [7]. 

One drawback to learning plans is that the number of 
stored plans may increase quickly as the problem-solver 
gains experience. Furthermore, the applicability 
conditions of long plans tend to be highly specific. 
Searching through the space of stored plans to find one 
that is best-suited to the current problem may be as 
expensive as searching through the original search space. 
This leads to the following paradox: as the system gains 
experience it gradually becomes swamped by the 
knowledge it has acquired. In some cases performance 
can eventually degrade so dramatically that the system 
operates even more poorly than a non-learning system. 

One of the earliest and best-known plan learning systems 
was the STRIPS problem solver [4,3]. Having solved a 
problem, STRIPS produced a parameterized version of the 
solution, called a Macrop, by generalizing constants while 
maintaining the dependencies among the steps in the 
solution. The Macrop might subsequently be used-either 
in whole or in part-to aid in rapidly solving similar 

problems. This paper explores how the degradation 
problem manifests itself in STRIPS-like learning systems. 
Moreover, two methods are considered whereby a 
heuristic problem-solver may selectively save fragments of 
generalized solutions in order to stave off degradation. 

2 STRIPS and MACROPS 
The generic* term "macro-operator" will be used 

hereafter to refer to a parameterized sequence of operator 
applications, eg.: 

Constants are denoted by capitalized strings, and variables 
by lower case strings. The macro-operator shown above 
describes a series of actions for getting the keys and 
unlocking, opening, and going through a door.2 

A STRIPS problem-space consists of a world model, 
represented by a set of well-formed formulas (wffs) in the 
predicate calculus, and a set of operators. Each operator 
includes an add-list, a delete-list and a precondition wff. An 
operator is applicable if its precondition wff is satisfied. 
Applying an operator simply involves making the changes 
indicated in the add and delete lists. 

STRIPS, like many other problem-solvers, searched 
through the space of operator sequences in order to solve 
a problem. Means-ends analysis [1] was used to guide the 
search. Once a sequence of operators that solved the 
problem was found, STRIPS produced a Macrop by 
replacing the problem-specific constants in the operator 
sequence with problem-independent parameters. Any 
subsequence of the Macrop could then be used as a 
composite operator during future planning. 

Fikes et al. [3] described a series of 5 problems that 
STRIPS solved more rapidly when Macrops were learned 
after each trial. They claimed that "the search tree sizes 
[were] all smaller when Macrops were used and the 
Macrops allow longer plans to be formed without 
necessarily incurring an exponential increase in planning 
time". 

The author is supported by an AT&T Belt Laboratories Scholarship 
2STRIPS's Macrops also included information helpful for monitoring 

execution of the operator sequence in the real world. 



S. Minton 597 

There appear to be two distinct factors that can 
contribute to the effectiveness of macro-operators in 
problem-solving. First, since macro-operators represent 
sequences of operators, the preconditions and 
postconditions of the individual operators can be compiled 
into aggregate preconditions and postconditions for the 
macro-operator as a whole. Therefore it can be quicker to 
test whether a macro-operator is applicable than to test 
whether the corresponding sequence of operators is 
applicable.3 . Even more importantly, the use of macro-
operators can bias the order in which the search space (of 
operator sequences) is explored. If relevant Macro-
operators tend to be considered before relevant operators, 
then previously successful paths will generally be explored 
before other paths. This experiential bias can be a 
significant source of heuristic power. 

Unfortunately, a problem solver that uses macro-, 
operators in this manner may find that as the number of 
macro-operators increases, the experiential bias gradually 
disappears. In the extreme case, if eventually every 
operator sequence that the problem-solver might 
conceivably consider in solving a problem becomes a 
macro-operator, then the ordering advantage will have 
been effectively negated. 

In practice, however, only a subset of these sequences 
become macro-operators. For any given domain, the 
crucial issue is whether or not the use of macro-operators 
will effectively compress the search space associated with 
that domain. If a small set of macro-operators can be 
generated that "cover" the relevant problems in the 
domain, then search will be confined within this smaller 
space. For example, Korf's Macro Problem Solver [5] is 
powerful enough to generate a set of macros that 
completely eliminates search, unfortunately, his technique 
only works for domains that exhibit operator 
decomposability. With STRIPS, every unique 
subsequence of all previously acquired solutions Is a 
potential macro-operator; the STRIPS technique for 
generating macro-operators does not have strong domain 
requirements, but neither does it guarantee that the search 
space will be adequately compressed. Indeed, it has been 
our experience that even in small domains, the STRIPS 
approach can quickly lead to an explosion of macro-
operators. For example, in STRIPS even "useless" 
operator sequences, such as STACK(x, y) followed by 
UNSTACK(x, y), can become macro-operators due to 
STRIPS's methods of generating and editing solution 
sequences. 

3 MORRIS: A Selective Learner 
To avoid being swamped by too many macro-operators, a 

problem-solver can endeavor to retain only those macro-
operators that are most useful. MORRIS ("the finicky 
learner") is a heuristic problem-solver in the STRIPS 

3Clever methods for storing macro-operators and ordenng f 
preconditions may also effect the efficiency of the search, although 
attention has been given to these issues 

tradition4 that demonstrates the importance of selective 
learning. Currently MORRIS saves two types of macro-
operators, s-macros and t-macros. S-macros, or "scripts", 
are frequently used operator sequences. T-macros, or 
"tricks", are operator sequences for solving difficult 
problems. 

3.1 S-Macros 
The strategy of retaining only the most frequently used 

macro-operators was suggested by Fikes et. al. [3], but 
never implemented in STRIPS. MORRIS accomplishes this 
by maintaining a record of the problems solved and their 
generalized solutions. Each time a new solution is 
acquired, it is compared to the previously acquired 
solutions in order to locate common subsequences. When 
two unifiable subsequences are found, the more general of 
the two subsequences is added to the list of s-macros. 

A limit is maintained on the number of s-macros kept 
active by the system. Once this limit is exceeded, the s-
macros that were least-used during their lifetimes are 
deleted from the active set. The net result of this process 
is a set of relatively short macro-operators, which is 
desirable, since the time cost of evaluating whether a 
macro-operator is applicable can grow exponentially with 
the number of preconditions it has5. 

3.2 T-Macros 
T-macros are macro-operators that represent "non-

obvious" solutions to difficult problems. The notion of 
non-obviousness is defined by MORRIS'S heuristic 
evaluation function, called Hdiff. Hdi f f is used to estimate 
the progress that an operator (or macro-operator) makes 
with respect to the current set of goals. At each node in 
the search tree, MORRIS collects the relevant set of 
operators (and macro-operators) for extending the current 
path and evaluates them with respect to Hd j f f. Since 
MORRIS employs a best-first search through the tree, 
operators that appear to make the most progress are 
considered before less promising operators. 

In evaluating the progress made by an operator, Hd i f f 

takes into the account the number of goals that remain to 
be solved as well as the criticality of each of these goals. A 
criticality value is a difficulty estimate assigned to each 
literal (i.e. potential goal) in the domain [10]. Higher 
criticality goals are attacked before goals of lesser 
criticality. (Generally one literal is given a higher criticality 
value than another literal if achieving the first literal 
typically undoes the second literal.) 

Although patterned after STRIPS, MORRIS operates within a closed 
world, and therefore uses matching rather than theorem proving to test 
whether the preconditions of an operator are satisfied. 

5There is generally a linear relationship between the average number 
of preconditions and the length of a macro. 



598 S. Minton 

Occasionally the values given by Hdiff will be misleading; 
if the real solution path is estimated to be less promising 
than alternative paths, MORRIS may be led far astray in its 
search. For example, consider the situation depicted in 
Figure 1. Paths A and B appear to be productive, but 
eventually lead to dead ends. Path C, despite its 
unpromising rating at node No, actually leads to a solution. 
(The heuristic is of the hill-climbing variety; up Indicates 
apparent progress towards the solution.) In such cases, 
the mistaken estimate may be uncovered only after many 
alternatives have been explored, since MORRIS uses a 
best-first search to traverse the search space. 

Figure 1: Misleading Path Ratings 

The operator subsequence from node No to node N3 is 
locally anomalous. Its initial segment appears to make no 
progress, but the subsequence as a whole is rated as 
advantageous. Parameterizing and saving this 3-step 
operator sequence as a t-macro will enable MORRIS to 
avoid similar pitfalls in the future. If the goal at node No is 
encountered again, MORRIS will evaluate its relevant 
operators as usual, but now the saved t-macro will be 
among them. Consequently, a more accurate heuristic 
estimate of this path will be generated. This strategy helps 
MORRIS avoid states which, in hill-climbing terms, are 
local maxima. 

T-macros are also relevant to problems involving 
interacting goals. Many well-known problems fall into this 
class; for example, a robot planning problem might require 
the robot to move a box from a room and turn off the light 
to the room. If the robot first tries to turn off the light, it will 
not be able to move into the room to get the box. Because 
the two goals interact, ordering considerations are 
important. 

If MORRIS finds that re-ordering goals succeeds In 
solving a problem that could not be solved otherwise, it 
must be the case that that some interaction between these 
goals occurred. The eventual solution to such a problem 
will always include a locally anomalous subsequence. This 
happens because re-ordering goats corresponds to 
attacking a lower criticality problem before a higher 
crtticality problem (usually an unproductive undertaking), 
and consequently a low Hdiff rating is generated at that 
point. 
Once the solution is found, MORRIS identifies the goals 

involved in the re-ordering and constructs a t-macro in the 
normal fashion. T-macros of this type are particularly 

effective, since their use can be restricted to situations 
where the combination of these goals reoccurs.6 

4 Experimental Results 
In order to compare the effectiveness of MORRIS against 

a less-selective learner, a problem-solver called MAX was 
constructed that closely follows the STRIPS philosophy of 
saving all usable macro-operators. As does STRIPS, MAX 
generalizes the entire solution sequence whenever a 
problem is solved, and considers all composable 
subsequences to be potential macro-operators. MAX's 
procedures for saving, editing, and eliminating subsumed 
macro-operators are all modeled after those used by 
STRIPS with Macrops. 

Once an operator (or macro-operator) is determined to 
be relevant to the current goal, both MAX and MORRIS use 
the same method to instantiate the operators. The 
bindings necessary to produce the relevant additions are 
first substituted into the operator's precondition list and 
then a partial-matching process is instituted to find 
potential instantiations. Since the time cost of the 
matching process is sensitive to the ordering of the 
preconditions, the matcher re-orders the preconditions to 
decrease the cost. Furthermore, during the matching 
operation, partial instantiations with many unsatisfied 
conditions may filtered out if the number of potential 
instantiations grows exceptionally high. Each instantiation 
produced by the matcher is then evaluated by Hdjff. 

MAX and MORRIS are identical programs with respect to 
their method of exploring the problem space. Since both 
programs employ a best-first search, misleading heuristic 
estimates can be costly. The only difference between them 
is in the types and numbers of macro-operators saved. 

MAX and MORRIS were compared in a robot world 
consisting of 26 operators. This world is similar to the 
STRIPS experimental domain, but is richer in that many 
interacting problems can occur. There are 5 rooms, and 
operators for going to objects, going through doors, 
standing on, picking up, stacking, unstacking and putting 
down objects. Boxes can be pushed to various locations. 
Objects can be fixed and broken with various tools. Lights 
can be turned on and off, doors can be opened, closed, 
locked and unlocked. Food can be eaten. Sample 
problems include the following: "Go into room1 and lock 
the door to room1"; "Push boxA and boxB together and 
stand on BoxA"; "Take the keys from rooml to the 
room3". 

The experimental results for a sampling of problems from 
a series of 25 are shown in Table 1. The table includes 
results for MORRIS, MAX, and a non-learning problem-
solver that uses Hdjff but does not save any macro-
operators. (The non-learning program is a stripped down 
version of MORRIS). The timing data does not include the 
time taken to generalize macro-operators, only the time 
necessary to find a solution. Typically, the learning time is 
considerably less than the search time. 

6Presently, MORRIS does not attempt to fully analyse why the 
interaction occurred. In order insure that application of the t-macro is 
restricted to circumstances under which the interaction occurs, a 
slightly weaker form of generalization is used whereby identical 
constants in the goals are replaced by single variables. 



S. Minton 599 

* No so lu t i on generated w i th in 100 CPU seconds 

Table 1: Experimental Results 

Since small variations in the problems can cause large 
differences in performance for each of these systems, 
Table 1 is only partially indicative of their relative abilities. 
However, some points do stand out. 

The benefits attributable to MORRIS'S strategy of 
selectively saving macrops are revealed by the smaller 
number of branches • relevant operators and macro-
operators • that were evaluated by MORRIS during each 
search as compared to MAX. Saving fewer macro-
operators did not hurt MORRIS'S overall performance. 
Consider, for example, that in solving problem 10 MAX and 
MORRIS followed the same path to the solution, but MAX 
evaluated more alternatives along the way. The problem 
with MAX is that it gradually loses the efficiency advantage 
provided by Hdi f f. Whenever Hdi f f indicates the correct 
branch, MAX will waste considerable time instantiating 
many macro-operators, in effect, performing look ahead. 
Whenever Hdi f f is wrong, MORRIS will be as well prepared 
as MAX assuming the appropriate t-macro has been saved. 

Compared to the non-learning problem-solver, MORRIS 
generally performed better. Admittedly, the sequence of 
problems was arranged so that the smaller problems were 
presented first. In many cases, the t-macros learned while 
solving these earlier problems were necessary for solving 
later, more difficult problems. Once a wrong path was 
taken by the non-learning program, recovery was 
Impossible to achieve if the number of alternatives was 
very high, as was typically the case in complex problems. 

In the later stages of the experiment, the contrast 
between MAX and the non-learning program became 
evident: if the non-learning program could find a solution 
to a problem, it generally did so more quickly than MAX. 
Because MAX was busy performing look-ahead at each 
node (by evaluating all the relevant macro-operators), it it 
could not take full advantage of Hd i f f In pruning the search. 

Overall, the results confirm our expectations. MORRIS'S 
t-macros appeared to extend the heuristic advantage 

provided by Hd i f f, resulting in a significant improvement in 
problem-solving ability. S-macros were more frequently 
useful, but resulted in less significant gains. Occasionally 
the extra time necessary to test for the applicability of s-
macros slowed MORRIS down enough so that the non-
learning system performed more efficiently, In either case, 
the extra computational expense incurred by saving these 
macros was more than offset by their benefits. We have 
yet to perform extensive experiments comparing t-macros 
and s-macros. 

5 Conc lus ions 
The approach to learning embodied in MORRIS Is rather 

unusual, since we have focused on the issue of "What to 
learn?" rather than "How to learn?". This issue can be 
crucial for a macro-operator learning system; if the 
acquisition of macro-operators is unbridled, the size of the 
search space defined by the set of macro-operators may 
grow rapidly, approaching the size of the original search 
space. 

The two strategies MORRIS employs for evaluating the 
worth of a macro-operator have been found to be effective 
in controlling the learning process. Using these strategies, 
MORRIS maintains a balance between its reliance on 
knowledge, and its reliance on search. 

In the future we hope to improve MORRIS by having it 
explicitly reason about the utility of control knowledge in 
order to direct its learning. We suspect that as machine-
learning becomes better understood, the problem of 
deciding what is worth learning will assume greater 
importance. 

6 Acknowledgements 
The author thanks Jaime Carbonell for his many 

contributions to this research. 

R e f e r e n c e s 
1. Ernst, G. and Newell, A.. GPS: A Case Study in 
Generality and Problem Solving. Academic Press, 1969. 
2. Pikes, R. Monitored execution of Robot Plans 
produced by STRIPS. Proceedings IFIP Congress, 1971. 
3. Fikes, R., Hart, P. and Nilsson, N. "Learning and 
Executing Generalized Robot Plans." Artificial Intelligence 
3,4(1972). 
4. Fikes, R. and Nilsson, N. "STRIPS: A new approach to 
the application of theorem proving to problem solving." 
Artificial Intelligence 2 (1971). 
5. Korf, Richard E. Operator Decomposabllity: A New 
Type of Problem Structure. Proceedings AAAI-83,1983. 
6. Minton, S. Constraint-Based Generalization. AAAI 
Proceedings, 1964. 
7. Mitchell, T., Utgoff, P. and Banerjl, R. Learning by 
Experimentation: Acquiring and Refining Problem-Solving 
Heuristics. In Machine Learning, Carbonell, J., Michalski, 
R. and Mitchell, T., Ed.Tioga Publishing Co., 1983. 
8. O'Rorke, Paul. Generalization for Explanation-based 
Schema Acquisition. Proceedings AAAI, 1984. 
9. Porter, B. and Kibler, D. Learning Operator 
Transformations, AAAI Proceedings, 1984. 
10 . Sacerdoti, E. "Planning in a Hierarchy of Abstraction 
Spaces." Artificial Intelligence 5 (1974). 


