
Heuristics for Inductive Learning 
Steven Salzberg 

Applied Expert Systems, Inc. 
Five Cambridge Center 
Cambridge, MA 02142 

U.S.A. 
(617)492-7322 

Abstract 
A number of heuristics have been developed which greatly reduce 
the search space a learning program must consider in its attempt 
to construct hypotheses about why a failure occurred. These 
heuristics have been implemented in the HANDICAPPER system 
[Salzberg 1983, Atkinson & Salzberg 1984], in which they 
significantly improved predictive ability while demonstrating a 
remarkable learning curve The rationalization process has been 
developed as a verification system for the hypotheses suggested 
by the heuristics. Rationalization uses the causal knowledge of 
the system to ascertain whether or not a hypothesis is reasonable. 
If the hypothesis is not supported by causal knowledge, it is 
discarded and another hypothesis must be generated by the 
heuristics. The resulting learning system, by integrating causal 
knowledge w i th heuristic search, has quickly gone from essentially 
random predictive accuracy to a system which consistently 
outperforms the experts at predicting events in its problem 
domain. 

1. Introduction: why we need heuristics in 
inductive learning 

Inductive learning systems are often faced with a 
common problem, which is that of how to search a 
large space efficiently to find a new rule that will 
improve their performance [Mitchell 1983, Michalski 
1983]. In particular, this paper is concerned with 
systems that predict events in a given domain, and 
revise their rules whenever those predictions fail. The 
problem can be stated succinctly as: given that a set of 
events S occurred, that the system predicted a result R1, 
and that the actual result was R2, how can the system 
revise its own rules so that, in the future, it will predict 
R2 when it sees S or something similar to S? The reason 
this rule-revision process is difficult, as has been 
pointed out a number of times [e.g., Soloway& 
Riseman 1977, Salzberg 1983], is that the number of 
potential new rules can be astronomical if the domain 
is even mildly complex. Any event or combination of 
events in S could be hypothesized as the cause of the 
mistaken prediction. If the set of events S includes only 
ten items, over 1000 possible hypotheses exist, and as S 
increases, the number of hypotheses increases 
exponentially (to be precise, if n is the number of 
events in S, the number of hypotheses is 

Part of this work was dona at Yale Univtrsity under t h t support of contract 
F49620-82-K-0010 of t h t U.S. Air Force Office of Scientific Rasaarch. 

Therefore Al needs to apply its own special 
techniques to the problem of narrowing down the 
search space. One of the most well-known and most 
successful techniques for controlling search is through 
the use of heuristics [Lenat 1983], and one purpose of 
this paper is to describe some new, general heuristics 
that proved to be remarkably useful and efficient in an 
inductive learning system. These heuristics have been 
suggested in some instances by psychological research 
which points out certain heuristics that people 
commonly use when faced with the task of 
understanding a complex problem. The task of the 
learning system, HANDICAPPER, is to predict the 
winners of thoroughbred horse races. In earlier papers 
[e.g., Atkinson & Salzberg 1984], this system was 
described as one which kept track of horses and made 
predictions based on similarities between new horses 
and ones in its memory. The system has now been 
completely re-written and relies on an episodic 
memory which contains races it has seen previously, 
rather than horses. Because predictions are based on 
similarities between races, and because races have a 
large number of features (about 50) which can 
contribute to judgments of similarity, the number of 
possible hypotheses about what rules to change after a 
failure is much larger than in the earlier system. 
Therefore the heuristics currently used by 
HANDICAPPER had to be implemented before the 
system could perform even tolerably well. As we shall 
show, the system with its heuristics in place performs 
much better than that. 

The second major point of this paper is the 
introduction of a new technique, one called 
rationalization. Rationalization is an integral part of 
the learning algorithm of HANDICAPPER. Its purpose is 
to provide a check on the hypotheses generated by the 
heuristics in the system. After a hypothesis is 
generated, it is passed to the rationalization module 
which checks the system's causal knowledge (this 
knowledge is hand-fed to the system) in an attempt to 
explain why the new hypothesis might be a reasonable 
correction to the system's developing model of the 
domain. Rationalization ascertains, via forward 
inferencing (i.e., forward in HANDICAPPER, but not 
necessarily in any system), that if the new hypothesis 



604 S. Salzberg 

had been present prior to the incorrect prediction, a 
correct prediction would have been made, and it also 
ascertains that this new hypothesis is consistent with 
what the system already knows. If a hypothesis is 
rejected by rationalization, then control is passed back 
to the heuristic search routines, which must then find a 
new hypothesis. This loop continues until a reasonable 
explanation of the failure has been found and added to 
the knowledge base. 

2. The heuristics 

First, let me just list the heuristics developed for 
HANDICAPPER. A number of the heuristics in the list 
below have been designed but not implemented, and 
they are marked N.I. All will be explained in the text 
that follows. 

1. Unusualness 
2. Inconsistency 
3. Uncertainty 
4. Conservatism 
5. Strength adjustment 
6. Faultiness(N.I) 
7. Occam's Razor (N.I.) 
8. Ambivalence (N.I.) 
9. Proximity 

An example application of each heuristic will be given 
along with its explication, and, wherever appropriate, 
evidence for the psychological validity of the heuristics 
will be presented. 

2.1 Unusualness 

One of the first things that people look for when 
trying to explain an unexpected event is something 
unusual in the situation. Unusual feature are simply 
features that do not occur as often as other features 
within a given context. The following example will 
help to illustrate. If, while I were sitting in my office, 
one of the window panes suddenly shattered, I would 
expect to find a rock or some other dense object that 
had hit it with considerable force. If no such feature, 
which my default causal model requires, were present 
to my senses, I would look for other unusual features. 
Perhaps one of my office mates had just clapped his 
hands loudly - if that were the only unusual event just 
prior to the window's breaking, then I might have to 
give serious thought to whether or not it could have 
caused the window to break. If he clapped his hands 
together another time and another window broke, 
then I would begin to feel strongly that something 
about his clapping action was breaking the windows. 
To clarify this example a bit more, let me discuss for a 
minute what I meant above by the phrase "default 
causal model." Before using Unusualness to locate a 
feature in the current scene which might have caused 

the window to break, I had to consult my knowledge of 
physical actions to see what actions normally result in 
broken windows. The body of knowledge which I call a 
default causal model is undoubtedly very large, but it 
can be organized so that searching it is very efficient. 
In this case, I would look at an entity in memory 
representing the action "glass breaking," and then 
trace backwards down whatever causal links I had 
attached to that entity to find possible causes. (The 
cause might also be found by looking elsewhere in a 
frame-like structure [Minsky 1975], if the processing 
model were using such structures.) If none of those 
causes were present in the current scene, then I would 
have to turn to my heuristics to find a potential cause. 
In the example above, I might have considered the 
possibility of a sonic boom after consulting my default 
causal model, although I would immediately discard it 
since I had not heard any loud booms when the 
window broke. Having failed to find a match between 
the suggestions of my causal model and the realities of 
the scene, I would use heuristics to decide that the 
clapping of someone's hands, which occurred 
immediately before the window broke, might have 
been the cause. 

Unusualness is determined in HANDICAPPER by 
keeping statistics on how frequently every feature 
appears on any horse. In other words, the program 
keeps track of such things as how often the values of 
horses change, how often they get new jockeys, and so 
on. When a prediction fails, and the causal model 
cannot suggest an explanation, the feature of the 
predicted winner which is the most unusual is chosen as 
the first candidate to explain why that horse lost. 
Likewise, the most unusual feature of the unexpected 
winner is chosen to explain why it won. The most 
unusual feature out of a set of feture is the one which 
occurs least often. If a horse or a race has a particularly 
unusual feature (according to some threshold), then, 
that feature will be chosen as a likely cause of the 
failure. In future races, if that feature appears again in 
a similar context, it will be monitored closely to see if 
the earlier hypothesis about it was correct. 

2.2 Inconsistency 

When a program uses a reasonably large set of 
feature and rules to make its predictions, as programs 
in real world domains often do, it is quite possible that 
it can use rules to support its predictions that are 
inconsistent with one another. In other words, two of 
the reasons for the same decision may be contradictory 
in some way, in which case it is possible that neither of 
the rules should have been used in the first place. A 
learning program must remember these inconsistencies 
when they arise and avoid making the same mistakes 
again. The argument could be made that such 
contradictions could be noticed beforehand and 



S. Salzberg 605 

avoided. To notice everything of this nature, though, a 
program would have to check every possible 
interaction beforehand. With a large feature set, one 
does not want to have to examine how all features 
might conceivably interact: for one thing, it will often 
be the case that two features which are inconsistent 
will never appear together precisely because of their 
contradictory nature, and thus any time spent worrying 
about them is wasted. Furthermore, if there are many 
feature, the amount of wasted work might be 
prohibitively expensive. It seems better, rather, to let 
prediction failures guide the emendations to rules and 
memory. 

An example of inconsistency and how it is used 
in HANDICAPPER can be found in [Salzberg 1983]. In 
summary, that example describes how a horse with two 
good features lost, because the interaction between 
those features was bad. The horse in question was (1) 
dropping down in value, which is good because it 
means the horse will be competing against easier 
competition, and (2) recently bought by a new owner, 
which is usually good because the new owner must 
have seen something good in the horse to buy it. 
However, since the owner dropped the horse to a lower 
class of race soon after buying it, exposing himself to a 
financial loss, something must have been wrong with 
the horse, so despite the two good features, the horse 
lost the race. 

2.3 Uncertainty 

If you have to decide which of many features 
was responsible for a prediction failure, and you think 
your reasoning was sound in using each of those 
features, then another heuristic available for choosing 
one is the uncertainty heuristic. The Uncertainty 
heuristic says to choose the feature you know the least 
about and assign responsibility for the failure to that 
feature. The amount you know about each feature 
depends, for example, on how many times you have 
seen it. The rationale for this rule is that if you do not 
know very much about a feature - if you know very 
little about what it causes, what causes it, what other 
features usually appear with it, etc. - then it is more 
likely that it caused something unexpected (i.e., the 
prediction failure) than some other feature with which 
you are more familiar. The Unusualness heuristic is 
based on a similar principle. 

To illustrate, let's take an example. Suppose the 
domain is the stock market, and the task is to predict 
the movement of stock in a high technology company. 
Suppose further that the stock was predicted to 
increase 10 points, and that in fact it only increased 5 
points. Among the many features considered relevant 
to the prediction were: (1) the announcement of a 
new product by the company, (2) the election of a new, 

more conservative President of the U.S., and (3) a 
steadily increasing market for the products the 
company had been producing. Of these three factors, 
(1) and (3) might be quite familiar, occurring with 
regularity in stock market analysis and having fairly 
consistent effects. On the other hand, (2) only happens 
very infrequently: new Presidents are only elected 
once every four or eight years, and only half of those 
(on the average) are more conservative than their 
predecessors. So although the business community, 
and the stock market experts in particular, might 
believe that a more conservative President should 
boost prices in high technology stock (perhaps because 
he will give more money to the defense industry), it is 
quite possible that the opposite will occur, or that, as in 
this example, the effect will not be as large as 
expected. The reason is that we were simply less 
certain about the effects of a new conservative 
President on stock prices because we were basing our 
knowledge on very few experiences. 

Features single out by the Uncertainty heuristic, 
then, are chosen precisely because they have not been 
observed many times. It is possible for HANDICAPPER, 
after a feature has been assigned credit for a failure by 
the Uncertainty heuristic, to observe that feature many 
more times and no longer be uncertain about it, but 
the first few times a feature is observed one cannot be 
certain whether or not its effects will recur consistently. 

2.4 Conservatism 

The Conservatism heuristic says to choose the 
new hypothesis which requires the smallest changes to 
the domain model. This heuristic partly explains why 
Ptolemaic astronomers preferred building epicycles to 
adopting Copemican theory. For one thing, it is usually 
simpler and easier to make a modification to an old 
theory rather than start over with a new one, and often 
that is the correct approach. However, when too many 
modifications have already been made, the old theory 
starts to be so cumbersome that throwing it out makes 
explanations simpler, and that is the point where 
Occam's Razor, another heuristic, should apply. On the 
other hand, when you have a reasonably simple theory, 
you usually want to modifiy it slightly rather than start 
from scratch. As was pointed out to me, this heuristic is 
equivalent to "trusting the known" while some of the 
others are more like "distrusting the unknown." Look 
at the Copernican model again, for example. After it 
was first suggested that the planets revolve in circles 
around the sun, evidence accumulated through the 
observations of Tycho Brahe that their motion was not 
circular. The correct solution, drawing upon the 
Conservatism heuristic, was to retain the heliocentric 
model but to posit elliptical, rather than circular, orbits 
for the planets. That solution, in fact, was suggested, 
by Johannes Kepler, and future astronomers used the 
modified model. 



606 S. Salzberg 

This heuristic has its basis in psychological data 
on biases [e.g., Nisbett & Ross 1980], which show that 
people tend to cling to beliefs once they have formed 
them. Much of the psychological data is designed to 
show that people cling to biases inappropriately, but as 
the example just given shows, the Conservatism 
heuristic can be useful. In HANDICAPPER this heuristic 
is implemented as an "unwillingness" to throw out old 
hypotheses unless no simple modification is workable. 
For example, a horse may be predicted to win because 
its speed rating has increased for the last two races and 
it placed second its last time out. Suppose the horse 
loses: the program could throw out its old beliefs 
about speed rating and recent performances, or it 
could modify those beliefs by making them weaker, or 
it could find entirely new reasons why the horse lost. 
The last is the preferred hypothesis formation 
technique, but when nothing new can be found, the 
program simply reduces the strength of the rules 
concerning speed ratings and recent performances. 
Unless something happens which indicates that those 
rules were completely off base in the first place, the 
Conservatism heuristic produces the most reasonable 
new hypotheses. A final note: over-reliance on this 
heuristic will result in hill climbing behavior, since small 
modifications to the current rule set will make a system 
hover around local maxima. 

2.5 Strength adjustment 

The strength adjustment heuristics (SAH) are 
weaker than the heuristics described so far, because 
they do not narrow down the search space as much. 
However, they are useful in HANDICAPPER in 
conjunction with the other heuristics. There are 
actually two main rules included as part of the SAH: (1) 
weaken features which were responsible for an 
incorrect match, and strengthen features which would 
have prevented the match; and (2) strengthen features 
which, if they had been stronger, would have resulted 
in a correct match, and weaken features which 
contributed to preventing the correct match. 
Carbonell [Carbonell 1983] and Hayes-Roth 
[Hayes-Roth 1983] use very similar heuristics as the 
bases for their learning algorithms. In fact, these 
heuristics are the basis of much of Al concept learning 
work in general. What is meant by a "match" in the 
above statements can be explained as follows: for any 
new race, HANDICAPPER tries to find the best match of 
that event with a previous event (for a more detailed 
description of the weighting algorithm, see [Salzberg 
1985]). Predictions are made based on the outcome of 
the earlier event Rule (1) above comes into play when 
an event is matched that predicts the wrong outcome: 
if the match had not occurred in the first place, 
another, perhaps better, prediction would have been 
made. Rule (2) applies when an event was present in 
episodic memory which would have led to the right 

prediction, but the new event failed to match it 
because the features the two events shared were not 
considered important enough. Any system that bases 
its learning on being reminded of events in episodic 
memory has to worry about how one event matches 
another; finding exactly the right event is the trick that 
will allow the system to make the best possible 
predictions. 

2.6 Faultiness 

One common phenomenon among people 
trying to figure out how some domain or object works 
is to place the blame for mistakes on things that have 
caused problems before. In other words, the Faultiness 
heuristic says to choose the feature which was at fault 
most recently or which is at fault most often. This 
heuristic could also be known as the "it always breaks 
on Mondays" heuristic, that is, the tendency we all 
have to attribute the blame to some feature we 
thought might have been at fault the last time 
something went wrong. There are times when this rule 
is wrong, of course, but there are also times when it is 
extremely useful at pointing out the precise problem 
with something while allowing you to ignore other 
features. 

2.7 Occam's Razor 

Occam's Razor is an old scientific heuristic, with a 
sound basis in human behavior. This heuristic claims 
that, given a choice among explanations, one should 
choose the simplest one, which usually means the one 
with the fewest conjunctive conditions (this rule often 
works in opposition to the Conservatism heuristic). 
There are many famous examples of this heuristic, most 
of them from the history of science, and probably the 
most famous one is the defeat of the Ptolemaic 
(geocentric) model of the solar system by the simpler, 
more elegant Copemican (heliocentric) model. 
Particular details of the former theory, such as 
epicycles, which were necessary to explain the 
retrograde motion of the planets in the geocentric 
model, were unnecessary in the heliocentric model. In 
fact, epicyclic movement was nicely explained by the 
Copemican model without any more complicated 
motion than the revolution of the planets around the 
sun. (Actually, this is not quite true. The Copemican 
model was originally more complicated than the 
Ptolemaic model, and it was Kepler who simplified 
things, by using elliptical orbits.) 

2.8 Ambivalence 

Ambivalence is a heuristic which says to look for 
the rule with the weakest or most ambivalent basis 
(here again the idea is to "distrust the unknown"). For 
example, I once predicted that an opponent of mine 



S. Salzberg 607 

was bluffing in a poker game, based on three factors 
which any experienced player will no doubt recognize: 
(1) the cards he had showing indicated that it was 
unlikely he had a good hand (the game was stud 
poker); (2) the cards I had showing were weak enough 
to lead him to believe that he might win, and (3) he 
avoided my eyes when I looked at him. It turned out 
that he was not bluffing, and I explained the failure by 
(3) above. Of the rules listed, (3) is the most ambivalent 
- the failure to make eye contact might mean that 
someone is bluffing, but it might also mean that he has 
a good hand and he does not want to give it away with 
his eyes. 

2.9 Proximity 

There is a wealth of psychological data 
pertaining to the proximity heuristic (summarized and 
explicated in [Nisbett & Ross 1980]). In fact, this 
heuristic is really two heuristics, the temporal proximity 
heuristic and the spatial proximity heuristic. The idea 
behind them both is the same: when looking for a 
place to assign responsibility for some event, choose 
the event closest in time (and prior) or closest in space 
(at the time of the event) to the event itself. 

For example, spatial proximity is most useful 
when questions of physical causality are involved. If 
some physical object behaved in an unexpected way, 
then perhaps you should look for some other physical 
object near it as the cause. When you notice a scratch 
on your car door in a parking lot, the first thing you are 
likely to do is to look at the car next to you. If that car is 
parked closely, and if its door is in a position to indicate 
that it would have hit yours where the scratch is, then 
you attribute responsibility to the person who last 
opened the door of the other car. If some paint from 
the other door has scraped off onto yours, and the 
colors match, then you will probably feel quite certain 
that the other car has caused the scratch. Spatial 
proximity is a heuristic that is used often not only 
because it works, but also because it is easy to use. It is 
only natural when something unexpected happens for 
a person to look around for possible causes. Objects in 
physical proximity to the unexpected event are likely to 
be the first candidates in the search for explanations. 

Meteorologists' attempts to explain tornadoes 
are a classic example of the joint use of the temporal 
and spatial proximity heuristics. The actual causes of 
tornadoes are not yet well understood, so groups of 
meteorologists in Texas and Oklahoma (part of the U.S. 
"tornado belt") spend their time chasing around 
storms to find out exactly what happens before a 
tornado. They keep track of all the meteorological 
cues they can while on a "hunt," including visual 
observations as well as measurements of pressure, 
temperature, wind speed and direction, humidity, and 

more. They hope that by tracking all the events that f i t 
some relevancy criterion which occur in the proximity 
(temporal and spatial) of a tornado, they will be able to 
isolate the set(s) of events that cause the tornado. 
Since they do not have a good causal model of how a 
tornado develops, the temporal and spatial proximity 
heuristics are the best tool they have for focusing their 
observations. 

3. Which heuristic to use first? 

The question of how to decide the best order in 
which to apply these heuristics (in a given domain after 
a particular prediction failure) remains an open 
problem. My suggestion, and the implementation I 
have chosen for HANDICAPPER, is to apply them in 
order of usefulness. The advantage of this approach 
should be clear: the most useful heuristics are the ones 
which most often suggest a good hypothesis for why a 
failure occurred, while less useful heuristics will suggest 
hypotheses not quite as good (where "good" means 
they frequently make correct predictions in the future). 
For the current implementation, I was guided by 
experts in deciding which heuristics were the most 
useful, and the performance of the program (described 
later) supports the ordering chosen. 

A more objective method of determining 
usefulness would be to have the program initially use 
the heuristics randomly, giving them all weights but 
starting with the weights equal. As time went by, the 
weights could be adjusted so that the heuristics which 
succeeded most often were assigned the greatest 
values. If the context in which a heuristics was used 
successfully were saved along with the fact that the 
rule worked, then even more specific knowledge about 
when the heuristic is applicable would be available. In 
this way, over time, a program would be able to apply 
its heuristic knowledge more and more appropriately, 
and the hypotheses it chose to explain its failures 
would steadily improve. 

4. Rationalization 

Once the heuristics have selected a feature as the 
potential cause of a prediction failure, that feature is 
passed to the rationalization module, which checks to 
make sure that the hypothesis is consistent with the 
program's causal knowledge. Rationalization works by 
forward chaining from the feature itself until a 
stopping point or dead end is reached. All features are 
connected in a bi-directional network which expresses 
how they may cause each other, and which includes 
other facts about horse racing. Stopping points in the 
network are explicitly marked: most of them are facts 
like "the horse is more likely to w in" or "the horse is 
more likely to lose." Other features point to these 
facts, and the rationalization module forward-chains 



608 S. Salzberg 

(breadth first) until it either reaches one of these facts 
or it cannot chain any more (markers are placed to 
prevent looping). Here is an example of a 
rationalization that HANDICAPPER produced, for the 
horse Gallant Herb, in a race which it had predicted a 
different horse would win: 

GALLANT-HERB has been dropping down in value of the last five 
races, therefore 
the competition this horse is running against is gradually getting 
easier, therefore 
the performance of this horse should be improving, therefore 
this horse is better than others at this level, therefore 
this horse will win over others at this level. 

The important role of rationalization in the 
overall learning/explanation algorithm is that if 
HANDICAPPER fails to find a rationalization for some 
feature, it must return to the heuristics to find another 
hypothesis. In other words, suppose the heuristics 
suggest a feature that caused a horse to lose. If the 
rationalization module cannot find an inference chain 
which leads to the same conclusion, then control is 
passed back to the heuristics, which attempt to suggest 
another feature as the cause of the loss. This control 
loop continues until a good hypothesis is found or until 
the heuristics cannot suggest anything more (if this 
latter instance occurred, HANDICAPPER would consider 
the failure to be anomalous, but it has not happened 
yet). Rationalization, then, is the manner in which 
causal knowledge is used to insure that hypotheses 
generated by the system are plausible explanations of 
the observed results. 

5. HANDICAPPER's performance 

HANDICAPPER has been tested on a base of 46 
races, and then re-tested on another 41 races. Initially 
it has no episodic memory, and the first race is used to 
establish one. The program's initial knowledge is 
constrained to a list of approximately 70 features, with 
no knowledge of how good or bad each feature is, and 
to the heuristics described in this paper. As processing 
continues, it makes generalizations whenever it makes 
a correct prediction, and it constructs new rules when it 
fails. Generalizations are of the form: if features A, B, 
and C occur on one horse, then that horse has a 43% 
probability of winning against a set of horses none of 
which have those same features. Since it began with 
very little knowledge, its performance on the test 
database was at first poor, but it quickly improved and 
easily outperformed the experts (a group of experts 
publish their predictions daily in the Daily Racing Form, 
the standard horse racing newspaper) over the entire 
set of races. 

In the course of running through all 45 races (no 
prediction was made on the first race), HANDICAPPER 
predicted 11 out of 45 correctly, or 24.4%. The experts 

were only correct 11.7% of the time. If one considers 
the first 15 races as "training" races, HANDICAPPER 
does even better: 10 out of 30 correct, or 33.3%, which 
indicates that the program was learning. On the 
second database of 41 races, which came from a 
different track, the program (with no tuning to 
account for the differences in data from a different 
track) did slightly worse, but still substantially better 
than the experts. Apparently the heuristics described 
here, coupled with the rationalization procedure, 
combine to produce an algorithm which learns very 
successfully despite the complexity of the domain. 

From a theoretical standpoint, more work needs 
to be done the bases of these heuristics. Certain 
underlying assumptions are common to several of 
them, and it might be the case that there is a smaller 
set of more general heuristics which could be isolated. 
The question of whether a system could learn the 
heuristics needs to be examined, as well. The next steps 
in the development process must be first of all to 
implement the remaining heuristics, and then to apply 
the algorithm to other, perhaps even more complex 
domains. Success in other domains will lend greater 
support to the claim that the application of general 
heuristics must be an integral part of inductive learning 
algorithms. 

Acknowledgements 

Thanks to David Atkinson for many months of 
useful discussions and exciting ideas on inductive 
learning. Thanks also to Eduard Hovy and Larry 
Birnbaum for incisive and enlightening comments on a 
draft of this paper. At APEX, thanks to Jim Stansfield 
for additional comments and suggestions. 

References 

Atkinson, D. and Salzberg, S. 
"The Use of Causal Explanations in Learning." 
Proceedings of CSCSI-84, London, Ontario, 1984. 

Carbonell, J. 
"Learning by Analogy: Formulating and 
Generalizing Plans from Past Experience." In 
Michalski, R., Carbonell, J., and Mitchell, T. (eds.), 
Machine Learning, Tioga Publishing, 1983, pp. 
137-162. 

Dietterich, T., and Michalski, R. 
"A Comparative Review of Selected Methods of 
Learning from Examples." In Michalski, R., 
Carbonell, J., and Mitchell, T. (eds.), Machine 
Learning, Tioga Publishing, 1983, pp. 41-82. 



Hayes-Roth, F. 
"Learning from Proofs and Refutations." In 
Michalski, R., Carbonell, J., and Mitchell, T. (eds.), 
Machine Learning, Tioga Publishing, 1983, pp. 
221-240. 

Lenat, D. 
"The Role of Heuristics in Learning by Discovery: 
Three Case Studies." In Michalski, R., Carbonell, J., 
and Mitchell, T. (eds), Machine Learning, Tioga 
Publishing, 1983, pp. 243-306. 

Michalski, R. 
"A Theory and Methodology of Inductive 
Learning." In Michalski, R., Carbonell, J., and 
Mitchell, T. (eds.), Machine Learning, Tioga 
Publishing, 1983, pp. 83-134. 

Minsky, M. 
"A Framework for Representing Knowledge." In P. 
Winston (ed.), The Psychology of Computer Vision, 
New York: McGraw-Hill, 1975. 

Mitchell, T. 
"Learning and Problem Solving." Computers and 
Thought Lecture, Proceedings of IJCAI-83, 
Karlsruhe, West Germany, 1983, pp. 1139-1151. 

Mitchell, T., Utgoff, P., and Banerji, R. 
"Learning by Experimentation: Acquiring and 
Refining Problem-Solving Heuristics." In Michalski, 
R., Carbonell, J., and Mitchell, T. (eds.), Machine 
Learning, Tioga Publishing, 1983, pp 137-162. 

Nisbett, R.E. & Ross, L. 
Human Inference: Strategies and Shortcomings of 
Social Judgment. New Jersey: Prentice-Hall, Inc. 
1980. 

Salzberg, S. 
"Generating Hypotheses to Explain Prediction 
Failures." Proceedings of AAAI-83, Washington, 
D.C., 1983, pp. 352-355. 

Salzberg, S. 
"Pinpointing Good Hypotheses with Heuristics." In 
W. Gale (ed.), Artificial Intelligence and Statistics, 
1985 (forthcoming). 

Soloway, E. and Riseman, E. 
"Levels of Pattern Description in Learning." 
Proceedings of IJCAI-77, Cambridge, 
Massachusetts, 1977, pp. 801-811. 

Sussman, G. 
A Computer Model of Skill Acquisition. New York: 
American Elsevier, 1975. 

S. Salzberg 609 


