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ABSTRACT 

This paper describes a program which simulates the 
discovery of the wave theory of sound, using several kinds of 
inductive inference that are triggered in the context of problem 
solving. The most novel of these is conceptual combination, 
which produces new concepts by combining existing concepts, 
represented as frame-like clusters of production rules. 
Combined concepts are not a linear amalgam of existing ones, 
since the conflicting expectations of the rules in the donor 
concepts must be resolved by a set of top-down and bottom-up 
procedures. The theoretical concept of a sound wave is produced 
by conceptual combination. The rule that sound consists of 
waves is produced by applications of other kinds of inductive 
inference: generalization and abduction. 

I THE DISCOVERY OF SCIENTIFIC THEORIES 

Artificial intelligence research on scientific discovery has 
primarily been concerned with discovery of laws. The programs 
in the BACON series have used heuristics to "discover" Kepler's 
third law of planetary motion, Snell's law of refraction, and 
other important laws from the history of science (Langley et 
al. 1983). But there is more to scientific knowledge than 
empirical laws: the greatest scientific achievements are theories, 
which unite empirical laws systematically, usually by 
postulating non-observable entities. A standard example is 
Newton's theory of gravity, which postulated a non-observable 
force in order to explain a wide variety of phenomena including 
Kepler's laws. 

This paper describes a program which has been used to 
simulate the discovery of a simple but important theory, the 
wave theory of sound. This theory has both central features 
which distinguish theories from laws: it postulates the existence 
of non-observable entities, sound waves; and it explains 
different classes of empirical phenomena, the propagation and 
reflection of sound. The discovering program is called PI, for 
"processes of induction". It solves problems by a process of 
rule firing and spreading activation; and in the course of 
problem solving various kinds of inductive inference are 
executed, including generalization, abduction, and conceptual 
combination. The wave theory of sound is generated in the 
course of attempts to explain why sound propagates and 
reflects. 

n PROBLEM SOLVING 

Space does not permit description here of the architecture 
and problem solving process of PI (see Holland, Holyoak, 
Nisbett, and Thagard, forthcoming). The most important data 
structures in PI are rules, similar to the production rules of 
Newell and Simon (1972), and concepts, similar to the frames of 
Minsky (1975). Rules can have any number of conditions and 

actions, each of which is represented using a kind of predicate 
calculus notation to allow for n-ary relations. 

At each timestep, the only rules considered for firing are 
those attached to active concepts. (Compare the architecture of 
Wallace 1983.) The spreading activation of concepts in PI is 
directed by its problem solving activity, working forward with 
concepts activated because they occur in the actions of fired 
rules, and backward by concepts activated through sub-goal 
formation. Unlike the ACT system of Anderson (1976), 
spreading activation is not automatic: concepts become active 
because rule firing or sub-goaling suggests their relevance to the 
current situation. Unused concepts suffer a gradual decline of 
degree of activation until they drop below a threshold and cease 
to be active. 

Parallelism is simulated by the firing of more than one rule 
and the activation of more than one concept at a timestep. At 
each timestep, the current state of the system is monitored and 
various kinds of inductive inference are triggered. Any number 
of such inferences can be made at a given timestep, allowing for 
the convergence of evidence in support of a conclusion. 

i n INDUCTION IN P I 

In current operation, PI triggers four kinds of induction: 
two kinds of generalization, instance-based and condition-based; 
abduction; and conceptual combination. (We use "induction" in 
the general sense of "forms of inference that expand knowledge 
in the face of uncertainty." Cf. Rescher 1980.) These four by no 
means exhaust the list of varieties of induction, and we are in 
the process of implementing additional mechanisms for rule 
learning and concept formation. Our description of 
generalization and abduction will be brief, for we want to 
concentrate on the more novel operation of conceptual 
combination which creates the theoretical concept of a sound 
wave. 

A. Instance-Based Generalization 

In instance-based generalization we infer that all A are B 
on the basis of instances of A that are also instances of B. In 
PI, such inductions are triggered when the short-term memory 
of the problem solving system contains the information that two 
or more objects are instances of the same two highly active 
concepts. It is not necessary to select from the huge space of all 
the generalizations that the system might be able to make, since 
only a small subset will be triggered by the current state of the 
system. Once generalization is triggered, the information stored 
with concepts makes possible evaluation of whether 
generalization is warranted, taking into account both number of 
instances and the variability of the relevant kinds (Thagard and 
Nisbett 1982). For example, you will require fewer instances 
to make a generalization about the combustion properties of a 
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kind of metal than you would to make a generalization about the 
color of a kind of bird, since birds are more variable with respect 
to color than metals are with respect to combustion properties. 
Variability judgments are made possible by the hierarchical 
organization of the frame-like concepts. 

B. Condition-based Generalization 

Condition-based generalization is performed by taking the 
intersection of the conditions of two rules, using two or more 
categories to create a new, broader category that contains the 
original categories as special cases (Cf. Hayes-Roth and 
McDermott, 1978). For example, from the rules: 

If x is a MacDonald's hamburger, it is greasy. 
If x is a Burger King hamburger, it is greasy. 

We can infer: 
If x is a hamburger, it is greasy. 

This kind of generalization is triggered in PI by noticing active 
rules that have the same actions and have conditions differing 
in only one place. 

C. Abduction 

Abduction involves the generation of hypotheses to provide 
potential explanations of puzzling phenomena (Peirce 1931-
1958; cf. Buchanan 1983). Explanation can be thought of as a 
kind of problem solving. In PI, requests for explanations are 
recast as different kinds of problems to be solved. If what is to 
be explained is a fact such as Fred's being late, then that fact is 
set as a goal to be reached by the system. If, on the other 
hand, what is to be explained is a general rule such as that 
people caught in traffic tend to be late, then a problem is set up 
with starting conditions consisting of a description of an 
arbitrary person x caught in traffic and a goal to be derived 
stating that x is late. An explanation is found when the 
corresponding problem is solved. Abduction is triggered only 
when the problem to be solved is one involving explanation, and 
search for explanatory hypotheses is constrained by the current 
state of activation. If the fact to be explained is why Reggie is 
ill-behaved, then the availability of the rule that children with 
learning disabilities are ill-behaved might give rise to the 
abduction that Reggie has a learning disability. 

D. Conceptual Combination 

Theoretical concepts are ones whose instances are not 
observable. Thagard (1984) described how theoretical concepts 
can be formed by combining existing concepts, through a process 
that accounts for several interesting psychological phenomena. 
That paper sketches how conceptual combination can be 
performed by reconciling slots in frames. PI uses essentially the 
same mechanisms of reconciliation, adapted to apply to rules 
rather than slots. The rules attached to concepts in PI have 
several properties found in frame slots, so the translation is 
straightforward. Slots in frames have slot-names; for example, 
the frame for SWAN has a slot named COLOR containing the 
value WHITE. Similarly, in PI the rule attached to the concept 
of swan that states, "If something is a swan, then it is white," 
is marked as concerning color. This property of a rule is called 
its topic 

Slots in frames can contain different kinds of values, 
including default and range values (Winston and Horn 1981). 
Another useful kind is an actual value, which unlike a default 
value may not be overridden. Similarly, rules can be assigned a 
status as expressing either actual or default values. In the rule, 
" I f x is a triangle, then x has three sides," the value of having 
three sides is actual rather than a default Most rules, 
however, will only express defaults. 

To combine two concepts, PI proceeds as follows. First, the 
expectations produced by the rules attached to the two concepts 
are compared. If no topic with conflicting values is found, as in 
a mundane combination such as "red apple", no further 
processing is required. If a conflict is found, however, this 
triggers generation of a new concept to represent the 
combination. PI reconciles conflicts by considering a number of 
different cases. The most straightforward occurs when one rule 
has a default status while the other has an actual status: we 
clearly want to give the actual value priority over the default. 
Several such cases have been described by Osherson and Smith 
(1981), in arguments showing that conceptual combination is 
not well captured by mechanisms of fuzzy set theory. For 
example, our expectations about something characterized as a 
"striped apple" is no simple linear amalgam of STRIPED and 
APPLE. PI creates the concept of STRIPED-APPLE by noticing 
that the "striped" property attached to the concept STRIPED 
has actual status, whereas the competing rule attached to 
APPLE, " I f x is an apple, then x is solid red," is only a default. 
The resulting rule, "I f x is a striped-apple, then x is striped," 
explains why people consider an object that is a striped apple as 
more "typical" of the new concept than of either of the donor 
concepts. 

Most rule conflicts will not be so easily reconciled. If 
working memory describes instances of the donor concepts 
which suggest a resolution, then a new rule can be formed in a 
fairly bottom-up manner. For example, suppose you are 
forming the concept of a Canadian violinist, with conflicting 
expectations (derived from bad movies) that Canadians are 
rugged, lumberjack types, whereas violinists are considerably 
more refined. In such a situation, PI consults instances of 
concepts with properties of the relevant type. If it has some 
examples of Canadian violinists, it uses their properties to 
resolve the conflict. Thu6 if the instances of Canadian violinists 
are all refined, then the new rule attached to the concept 
CANADIAN-VIOLINIST will express this expectation. 

A more top-down mechanism can proceed without any 
instances. In combining the concepts of feminist and bank 
teller, PI encounters conflicting expectations about how political 
a feminist bank teller will be. One natural way of reconciling 
the conflict is to notice that feminists are much less variable in 
their political views than are bank tellers, so that we would 
expect feminist bank tellers to have the political attitudes of 
feminists rather than those expected much less reliably of bank 
tellers. (Cf. Tversky and Kahneman 1983). To assess 
variability, PI uses much the same mechanism that plays a 
crucial role in instance-based generalization. 

The simple mechanisms so far described will not always 
suffice to reconcile conflicting rules. A more sophisticated 
version would consider whether either of the new possible rules 
would make possible the solution of any problems. 

Conceptual combination is akin to the biologically inspired 
crossover operation of Holland (1984), although it combines more 
complex structures. It is thus more like the schema composition 
of DeJong (1982). Contrast the heuristics of Lenat (1983) 
which produce new concepts by mutating a single concept, not 
by combining two concepts. 

IV SIMULATION OF THE DISCOVERY OF 
THE WAVE THEORY OF SOUND 

Using these kinds of induction, the program PI simulates 
the discovery of the wave theory of sound. The first systematic 
discussion of the wave theory of sound is due to the Roman 
architect Vitruvius (1926 pp. 138f.), writing around the first 
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century A.D. We have no detailed information about how 
Vitruvius or his predecessors actually discovered the wave 
theory of sound, but the text suggests that discovery occurred in 
the context of trying to explain why sound propagates and 
reflects, and that it depended on noticing a crucial analogy with 
water waves. Similarly, in one simulation, PI is set the problem 
of explaining why sound propagates and reflects. In the latter 
case, this amounts to solving the problem of starting with an 
arbitrary example of sound x and explaining why x reflects. 

To get things going, the concepts SOUND and REFLECTS 
are activated. Activation of the latter concept leads to 
activation of several rules concerning reflection, including the 
information that water waves reflect and rope waves reflect. 
The presence of these rules on the active list then triggers a 
condition-based generalization that all waves reflect. This new 
rule then provides the basis for the abduction that x is a wave, 
since that in conjunction with the rule that all waves reflect 
would explain why x reflects. But now we have active messages 
that x is a wave and that x is sound, triggering both the 
generalization that all sounds are waves and the conceptual 
combination of sound-wave. Generalization succeeds because x 
was chosen arbitrarily, so that consideration of number of 

instances and variability is irrelevant 

In PI conceptual combination only produces a new 
permanent concept when combination requires the resolution of 
some conflict, as in the striped apple and feminist bank teller 
examples. The text of Vitruvius shows that the combination of 
the concepts of sound and wave did require resolution of 
conflicting expectations: he remarks that sound spreads 
spherically whereas water waves spread out in a single plane. 
PI resolves this conflict by supposing that sound waves will 
inherit the more specific property of sound. The result is the 
newly-stored theoretical concept of a sound wave, containing the 
information that a sound wave is a kind of wave as well as 
numerous new rules formed from those attached to the concepts 
of sound and wave. Having formed the rule that sound consists 
of waves, PI is able to deduce why the sound x reflects, so the 
problem of explaining why sound reflects is solved. 

This is clearly not the only way in which the fortunate 
confluence of ideas concerning sound and waves might have 
occurred. Another simulation takes into account the Greeks' 
strong interest in stringed instruments. PI is set the problems 
of explaining why sound reflects and propagates. It reaches a 
solution by rule firing and spreading activation, via associations 
from sound to music to 6tringed instruments to vibrations to 
waves. 

The wave theory of sound was not the only one that the 
Greeks constructed. Democritus recommended a particle theory 
of sound, which PI discovers using rules about the behavior of 
balls. However, like most of the Greeks, PI rejects this theory 
because it cannot explain how sounds can pass through each 
other with little interference. 

Thus the discovery of the concept of sound waves and of 
the wave theory of sound can be simulated using conceptual 
combination and other methods of induction occurring in the 
context of problem solving. 
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