
Learning procedures from examples and by doing

David M. Neves
Computer Sciences Department

University of Wisconsin-Madison
Madison, Wl 53706

Abstract
This paper describes a program that learns procedures b\ examining
worked-out examples in a textbook and bv working problems I wo
kinds of production (If-then) rules are created: working forward rules
that produce an action when a proceduie is executed and difference
rules that suggest operators from observed transformations. Dining
example learning, the program examines two states in an example, fig
tires out the operator that produced the second state and creates a pro
duction with some part ot the first line in the condition with the operator-
tor in the action. During learning b\ working problems, the progiam
generates its own example trace b\ problem solving and uses the same
example learning techniques.

Introduction
ALEX (Algebra example learner) is a program that learned to solve
simple linear algebraic equations b\ examining worked-out examples
and bv working test problems. The work (Neves, 1981) also included
learning simple list algorithms, such as sorting and reversing a list.
That work will not be reported here. An earliee version of the program
was presented in Ne\es.(1978).

Two important characteristics of these textbook examples (/ r / n condi
tions for learning, c. l . VanLehn, 1983) are that a. one procedure is
taught per example and b. there are no hidden variables (however
creating programs from examples or learning the commands of an
operating system often requires the learner to induce variables that are
not observable - Dieiterich, 1984).

The sub|ect mallei for learning comes fiom a high school textbook
(Stem and Crabill, 1972) on elementary Algebia. The particular section
of interest occurs after students are taught (in preceding chapters)
exponents, the Distributive Rule, factoring, and tractions I hev then
come to the first chapter in which the notion of solving an equation by
manipulating symbols is introduced. I will describe the contents of this
section to give an idea of what information is presented in this textbook,
and which information ALEX uses to learn.

The chapter on equation (solving tries to give an understanding of what
an equation is and what operations can be applied to it by using a
seesaw analogy with the equal sign at the fulcrum. Only operations
which preserve the balance of the seesaw can be applied to the equa
tion. ALEX does not use this information. A problem with analogy
here is that it is difficult to draw the correspondence between a weight
on a seesaw, and an operation on an equation for the novice user.
Which math operaiions preserve equation "weight"?

The next part of the chapter section teaches the legal operators of alge
bra by showing examples of how they work. These examples show how
to add a number to both sides of an equation, how to subtract a number
from both sides, how to multiply both sides by a number, and how to
divide both sides by a number. The example for adding to both sides
looks something like:

ALEX uses these examples to learn the legal operations in algebra.

Next, the book demonstrates the futility ot solving for the unknown bv
randomly plugging in numbers. ALEX does not use this information

f inal ly , the textbook presents a five step example that solves for the
unknown (in the equation "3x - 4 = 0") using legal operations, such
as adding a number to both sides of an equation. After this single
example six test problems are given and this section ends.

The goal ot this research is to demonstrate how learning can take place
by looking at the examples and b\ working the problems. Examples
especially are well suited for procedute instruction as thev contain steps
that will lead to the goal text (01 teacher) explanation, on the other
hand, can be misleading, incomplete, 0r false. Example learning will
not generally result in a complete procedure however. The student
must be prepared to use problem solving along with incomplete pro
cedures in working the problems at the end of a section. Working
problems can produce learning behavior b\ having the student (0f pro-
gram) generate an example trace through problem solving behaviou.

Basic ideas
Here I will describe some ot the basic ideas behind the ALEX pro-
gram. A more detailed explanation follows this section.

While learning from an example AEEX looks at two consecutive equa
tion lines at a time. The fust line is viewed as having some operation
applied to it to yield the next line The task ot the learner is to figure
out the operation that took place and why it was applied in that cir
cumstance. Once the system has this knowledge a working forward pro
duction rule is built with some part of the first line as the condition and
the operator as the action. When done with those two lines the pro
gram goes to the next pair of example lines, continuing until the end of
the example. At the end of the example the procedure is indexed with a
difference production rule. The condition of this rule is made up of the
difference between the first and last lines of the example. The action is
the procedure name.

Procedure knowledge
Procedural knowledge in ALEX is encoded as production rules (Newell
& Simon, 1972; Anderson, 1983). Rules in ALEX are coded in an
older version (OPS3) of the OPS family of production languages
(Forgv, 1979). I will use a less formal, more English-like presentation
of productions in this paper. Productions have been a popular medium
for learning since Waterman (1975) because ot their modularity. The
unit of knowledge is the production. A newly created production is
added to the set of productions already in production memory. There is
no need to look at the other productions in the set. Contrast this with a
programming language where the placement ot code has important
implications for what action is produced.

D. Neves 625

Pioduction system languages, such as OPS. are flat. That is, anv pro-
duction can apply at an\ point. To get some top-down control ol the
system some method must be developed that parimons the production
set so that only a few productions can apply The usual way this is
done (as is done in ALEX) is to group the productions in subroutines
(goals) by placing a goal name in the condition side ol the production
When a subroutine of productions is to be called that name is placed in
working memory.

In addition to partitioning there must be some method ol passing infor
mation to the subroutines and of passing back results. ALEX does this
b\ emulating a traditional progiamming language control structure in
its working memory. A subioutine call generates a new node in
memory. Thai node has attached to n several pieces ol information: the
name ol the subroutine, a list ot arguments, and the node ol the sub
routine that called it. When a subioutine finishes it attaches the lesult
to that subioutine node. e.g.

Call-145
name divide-both-sides
args (3x=2. 3)
calledby Call-144
result ?

Declarative knowledge
} acts are stored in working memory. During example learning the
example is stored in working memory. An example is made up ol
equation lines connected b\ a next relation. Each equation is
represented as a tree structure (propositions) with the top node being
the equation, the next level being the lelt side, the equal sign, and the
right side; the level after that contains terms Each side can contain 1
or more terms connected by a next relation. For example 3\ 4 - 2
would have 3X before -4 on the lelt and a 2 on the hight

Simple example learning
This section presents some ol the basic ideas behind example learning
without the complications described in the next section.

The production system has two kinds ol productions toi example learn
ing. It has difference pioductions which are used dining the learning
and it has working lorward productions which are the results of the
learning process. A dilleience production has some information about
the dilleience between two lines on the condition side ol the production
and has an operator (which will cause that difference) on the action
side. A working forward pioduction is part ol the subroutine ol pro
ductions. It is used when the subroutine is called, l o r example, work
ing forward pioductions to solve lor x are shown in Figure 1. These
productions will move numbers from the left hand side to the right, will
move terms with the unknown from the right side to the left, will com
bine like terms, and will halt when the value of the unknown is found.

When it is given an example the program starts at the first two lines and
computes the difference between them. From this difference it deter
mines which operation was applied to turn the first line into the second
line. It then calculates why that operator was applied and creates a new
working forward pioduction. After this it repeats the process on the
next pair of lines in the example, until the end of the example is
reached. At the end it creates a stopping production with the last line
as the condition of the production rule (as in P5 above). These steps of
example learning are called compute-difference, retrieve-operator,
create-condition, and create-production below.

PI It there is ,a number on the left hand side of an equation, then
subtract it from both sides.

P2. It there is a term with in it on the right hand side, then sub
tract it from hoth sides

P3. It there are two like temis on the left (or right) hand side, then
combine them.

P4. II the equation is then divide both sides by
num I

PS. II the equation is then STOP

Figure I. A working forward production system to solve for v.

Computing the difference.
The fust thing ALEX does is lo compute the difference between two
consecutive lines in the example. This dilleience is a list ol terms that
are in the first line but not in the second (i.e. terms that have been
removed) and a list ol terms that are in the second line but not in the
l i s t (i.e terms that have added). I;or example, the two lines below:

+ 4 : = 5
\ + 2 - 2 = 7

produce a dilleience ol (Add (2)) (Add (+ 7)) (Remove (+ 5)). The
actual terms ol the dilleience (e.g. (2)) are nodes in a network
representation ol the equation and contain othet information, such as
whether they are belore or after the equal sign.

Retrieving the operator
When the dilleience is calculated it is plated in working memory
Then the difference productions are called. These productions contain
dilleience information in the condition side and supply an operator that
produces that dilleience on the action side. One ol the pioductions
matches the difference and returns an operator A dilleience produc
tion to recognize adding to both sides looks like.

131. 11 (Add (+ Num 1)) and Numl is on the left and (Add (+
Num2)) and Num2 is on the right and Numl equals Num2,
Then the operator is add-to-both-sides and the argument to the
operator is Numl .

If the two lines in the example are:

then production D1 (above) will fire and assert that the operator used
was add-to-both-sides with an argument ol 5.

Making the condition side
I will talk more about this stage later. The condition side ol the work
ing forward pioduction to be created will contain some (or all) ol the
first ol the two equation lines being looked at. In the least we must
include the argument of the operator, plus some context information.

Making the working forward rule
Once we have an operator and condition side a working forward pro
duction can be built and stored in production memory. A sample rule:

R l . 11 (- Numl) is on the left side, then add-to-both-sides(Num1)

626 D. Neves

The shipping and difference rules
When ALEX reaches the last line of the example it creates a stopping
production with the line as the condition side and the action ol return
ing from the current production system subroutine. It also computes
the difference between the first and last lines and create a difference
production with the difference as the condition and the operator name
as the action.

Details of ALEX
The above description is a basic introduction to learning from exam
ples. In actual practice there are complications, such as skipped steps,
and inability to retrieve an operator after calculating the difference
between two lines.

Figure 2 shows the top level of ALEX. Two lines are worked on at a
time. In the description above, this step was described as if the lines
were compared and an operator was retrieved. However, ALEX actu
ally uses a means-ends subroutine.

T1. Start with the first 2 lines of the example.

T2. Represent both lines.

T3. Call means-ends(linel,line2).

T4a If not at the end of the example then look at the next two lines and
goto T2.

T4b If at the end of the example then create a difference production
with the difference of the first and last lines of the example as the
condition, and the name of the routine being learned as the ac
tion. Stop.

Figure 2. The top-level of the example learner.

Means-Ends routine
The means-ends routine places problem solving capabilities within the
learning program. This routine (shown in Figure 3) takes two lines as
input. Its goal is to apply operators to the first (and successively gen
erated lines) until the second line is reached.

The routine is modeled after the Newell, Shaw, and Simon (Newell and
Simon, 1972) General Problem Solver (GPS) program. GPS is given
operators, a table of connections (a table connecting differences to
operators that produce those differences), a start and a goal state.
ALEX has no table of connections, but instead uses difference produc
tions which connect operators to a group of changes (the difference).

The means-ends routine below computes the difference between the two
lines of the example and calls get-apply. Get-apply retrieves an opera
tor (by using a difference production) that will reduce the difference
between the two lines. After retrieving an operator get-apply applies
the operator to the first line and returns the result (a new line for the
first line). Now means-ends is called recursively with the new line to
see if the goal line is reached. If this recursive call is successful (i.e.
the goal line was reached) ALEX creates a working forward production
with some part of the first line as the condition, and a call to the opera
tor as the action. If the recursive call to means-ends fails then ALEX
calls get-apply again to get and apply a different operator.

Inputtwo lines

M1 Compute the difference between the two lines.

M2a If no difference, return success.

M2b If there is a difference, call get-apply.

M3a If get-apply is successful call means-ends(new line, goal line).

M3b If get-apply failed and this is an example, then trv a simple
transformation.

M3c If the simple transformation failed then return failure.

M3d If the simple transformation was successful then build a working
forward production, build a difference production, return the new
line.

M4a If means-ends failed, go to M2b (i.e. call get-applv again).
M4b If means-ends was successful then build a working forward pro-

duction and return the new line.

Figure 3. The means-ends subroutine.

Skipped Steps

One major reason for using means-ends to work through an example is
that the book might have skipped steps in its presentation. For exam
ple, suppose two steps in an example are 2x - 4 = 10 and 2x = 14.
Several steps have been skipped. The full example is:

2x - 4 = 10
2x - 4 + 4 = 10 4- 4
2x + 0 = 10 + 4
2 x = 1 0 + 4
2x = 14

The means-ends routine fills in the skipped steps by applying operators
until the second line (2x = 14) is reached. These generated steps are
used in the learning process just as though they were there in the origi-
nal example.

The novice user must fill in the skipped steps. The expert algebra
problem solver probably has an operatoi (add-to-both-sides-&-simplify)
that goes directly from the first to the second line above. This is an
important operator to have because it gives purpose to the add-to-both
sides operator. Adding to both sides seems counter-productive because
it takes the problem solver away from the goal of solving for the unk
nown by introducing two new terms. However, once simplification is
done, it is seen that the operator is the first step in moving a term from
the left to the right hand side of the equation. Skipped steps are a sig
nal for the novice user (as they were to an earlier version of ALEX) to
treat the skipped steps as a subroutine to be learned. This subroutine is
indexed by a difference production created from the first and second
lines of the example,

Creating new transformation
So far I have described get-apply as retrieving an operator and applying
it to the line. Sometimes a new transformational operator is being
learned, such as in the example teaching to add to both sides below.

x = 2, argument is 5
x + 5 = 2 + 5

In this example there is no operator to be recognized. Instead one is
being taught. What ALEX does here (when it does not retrieve an
operator) is to construct a new operator with calls to primitive symbol
manipulating functions such as "insert-after". The operator created
above is a single production that inserts its argument in the left side of
the equation and in the right side of the equation. Also a difference

D. Neves 627

production is created so the operator will be recognized in the future.

ALEX only creates a new transformation operator when learning from
an example. It is too dangerous to allow it to try to construct operators
while problem solving because non-legal operators could be generated,
Even when learning from examples it is possible to learn such opera
tors. For example, ALEX could learn an operator (from 2x - 4 = 0 ,
2x = 0 + 4) that moves a number from the left to the right, inverting
its sign. It could also learn to delete equal terms on opposite sides of
the equal sign from (3-4 = 5\ - 4, 3 = 5x) These are operators
that can be proven valid mathematically, however their use may mask
ignorance.

Creating he Condition side
Cieatmg the condition side of the production is difficult, and ALEX has
some problems here. Learning from examples is often associated with
concept learning. Anderson, Kline, & Beasley (1980) call this
of a production by applying it to different situations. 11 an operator is
seen to apply in several different situations a general condition side can
be constructed. If a production fites when it should not have fired,
then it is punished and clauses have to be added to the condition to
make it more specific. These tuning capabilities can take some time.
ALEX does not have them Instead, ALEX has several heuristics which
do a good, but not perfect, |ob in cieatmg condition sides for produc-
tions. These are described below

Working forward productions call an operator with some arguments.
The condition side of the working forward production must contain
those arguments. The condition creator does a breadth-first search from
the equation node of the first of the two lines looking for the argument.
When it finds the argument it places it, along with some of its context
(the path from the equation node to the argument) in the condition side.
This procedure is outlined below.

1. Find a path from the current line to the argument. This path will
be included in the production. Often this path leads from the
equation node to a term within the equation. Sometimes the
argument may occur elsewhere in the example (such as at the
start of the example in the adding-to-both sides example). The
program now tries to specify enough of the path to make it
unique, i.e. to distinguish this path from other potential paths
from the equation node.

a. If there is no other path ol this length (from the current equa
tion node to the argument) then quit.
b. Otherwise check to see if the type (i.e. ISA property) of the
argument is unique. If so, include the ISA property in the condi
tion and quit
c. Otherwise, check to see if the argument is in a special location
in its list (i e. first location, last). If so, include that information
and quit.
d. Otherwise, put in absolute location information.

2. Note which nodes in the network are equal and include this infor
mation in the condition.

3. Add any constraints of the operator to the condition. Each opera
tor needs a certain state configuration to operate successfully,
l i t i s information is included in the difference production for that
operator and is added to the working forward production being
built. For example, canceling two terms requires that thev be
equal but of opposite signs (+ 5 + -5).

4. Generalize the condition by deleting all constants.

The performance system
ALEX uses two methods to work problems in the textbook. When it is
given a problem to solve it first tries to use its working forward produc-
tions to solve the problem If the goal is reached then the problem is
solved and the system halts. It the working forward rules are not suffi
cient to solve all the problem it will halt at some point, short of the
goal Here the problem solving (means ends) component takes over
and suggests an operator to try next. If this operator leads to the goal
then a working forward production is built so that problem solving will
not have to be done in the future. ALEX starts out with slow problem
solving behavior, gradually working its wav to fast expert (working for-
ward) behavioi with experience in working problems The perfor
mance system will be discussed in more detail later

Traces of algebra learning
This section describes how ALEX dealt with the 5 examples in the text
book .

Learning to add to both sides
ALEX first learns the legal Algebra operations, such as adding a
number to both sides. It is given an example like:

It looks at the two lines and notes that two (+ 5)'s have been intro-
duced. It does not have an operator that will do this transformation so it
makes one with its primitive list operations. It creates a single produc
tion procedure A l .

AI. If the goal is add-to-both-sides
argl is -equation, arg2 is =loadd
= Lterm is a left side term
= Rterm is a right side term

Then insert (+ =toadd) after = Lterm
insert (+ =loadd) aftei = Rteim
return from add-to-both-sides

ALEX also creates a difference production (1)1) with the difference in
the condition side and the add-to-both-sides name in the action side.

D l . If the goal is get-action
(Add (+ =Lterm)) (Add (+ =Rterm))
(= Lterm equals = Rterm)
= Lterm is a left side term, -Rterm is a right side term

Then the operator is add-to both-sides
the argument is =Lterm

Learning to divide both sides
ALEX next learns how to divide both sides by a number with the fol
lowing example.

No operator is found that will transform the first line to the second so
the system must construct an operator (A2).

A2. If the goal is divide-both-sides
arg2 is =div
= Lterm is a left side term
= Rterm is a right side term

Then replace =Lterm with (/ "L term =div)
replace = Rterm with (/ =Rterm -div)
return from divide-both-sides

628 D. Neves

The problem with production A2 is thai it is dividing terms on both
sides and not the sides themselves. The example is ambiguous because
there is only one term on a side. The production will not generate an
error until it is applied to a side with more than one term. In that case
it wil l divide just one term, as in:

It turns out this is an error generated by novice Algebra solveis as well
(Davis & Cooney, 1978).

The difference production created for dividing both sides (D2) shows
some propositions (under consitions) on the action side. These are pio
positions that are needed in order for the operator to successfully apply
(i.e. in order to divide you need something to divide). When a working
forward production is created from this rule these propositions are
added to the condition side of that newly created rule. This is step 3 of
the condition creation routine explained above.
1>2. II the goal is get-action

ALEX also learns how to subtract both sides of an equation by a
number and how to multiply both sides b\ a number. These produc-
tions are similar to the ones above for addition and division.

Learinig to solve for \
ALEX now knows the legal operators of Algebra. It next is given an
example to learn when to use these operators in solving for the unk
nown.

Lines J and 2 are processed first. The difference production for
subtract-both-sides fires, suggesting a number was subtracted from
both sides of the equation. The operator is applied to line 1 and line 2
is leached. The hypothesis is confirmed. To compute the condition
side it searches the first line for a " 4 " , the argument to the operator it
found. It finds 4 on the left side of the equation and builds A4.

ALEX has learned when to use subtract-both-sides when solving for x.

ALEX now examines lines 2 and 3. A difference production for
delete-terms fires. This difference production was learned in previous
chapters as part of instruction on simplification (it is given to the ALEX
program). Delete-terms takes as input two equal terms, but having dif
ferent signs, and deletes them. A5 is built from lines 2 and 3.:

Note here that the production is a bit loo specific. It will not f it two
like terms are on the right hand side of the equation.

Lines 3 and 4 show another arithmetic operation in progress. A pro
duction that is veiy similar to A.5 above is created

Lines 4 and 5 demolish ate when to divide both sides by a number. A
difference production for divide-both-sides fues and A6 is built.

there is a term on the left and a term in on the right
;dividing both sides requites there be something on the
;right hand side to divide

Then divide-both-sides(+ =numl)
The problem with A6 is that it is too general. There is a possibility that
the rule could fire if there were moie than I term in either side of the
equation.

The last two lines of the example suggest another simplification opera-
tor. Two numbei s are canceled. Production A7 is built.

After finishing this example ALEX has 6 (including the stopping pio
duction) working forward productions that will solve the same problem
shown to it as well as other similai problems. In addition it has the 4
working forward pioductions which are legal operations in Algebra and
their 4 ditfeience productions. Solve lor x also has a difference pio
duction associated with it.

Learning b\ doing

just the working forward productions built from the example. Others
will require some problem solving. During that problem solving new
learning can take place.

Problem c is very similar to the example and is solvable with the exist-
ing productions. Both sides of the equation are divided by 4, then the
two 4's on the left are canceled to yield x = 7/4.

Problem d is very nearly solved also. The problem comes with the too
general production that divides both sides by a number. For the first
step either both sides can be divided by 5 or 7 can be subtracted from
both sides. Because OPS production system conflict resolution prefers
productions with larger condition sides the incorrect (division) pioduc
tion is picked. If the subtracting-from-both-sides routine is executed
(i.e. after backing up from the other production application) the prob
lem is solved. The division production needs some discrimination tun
ing (Anderson, Kline, & Beasley, 1980) which would compare the
problem state during a successful invocation of the production with the
failure state. See the discussion at the end of the paper.

D. Neves 629

Summary
ALEX learned to solve simple equations from two pages in a textbook.
It first learned the torn legal operators by looking at examples showing
what they do. ALEX then learned when to use those operators (as well
as when to use simplification operators) by going through an example
solving for x. ALEX was then given six problems to solve. Two of the
six problems can be solved with the working forward productions built
during example learning.

Al.LX needed to use problem solving to solve two of the other three
problems. As it found an operator that would get it to the goal it
created a working forward production so that it would not have to prob
lem solve again in similar situations. The third problem used a pro
duction built dining a previous problem and did not need problem solv
ing.

The last problem was too hard for ALEX. The solution
involves some steps that take one awav from the goal of solving for
This problem is difficult for human beginners as well.

Problems
Creating the condition side
There were both good and bad points on the development ol the condi
tion side of the productions The worst part was that there was no facil
ity for changing the condition side given feedback on how the produc
tion did. This resulted in many productions that were too specific and a
couple that were too general. One way to correct the general rules is to
use a discrimination procedure (Anderson, 1983) on the general rule.
In order for discrimination to work the aberrant rule must be first be
identified. One way of identifying the aberrant rule is to use a check
procedure (substitute the correct answer for the unknown and see
where equation equality is violated). Unfortunately, checking is is not
taught until the next section of the equation chapter. The rule can also
be identified by comparing its application with one in an example. If it
is fired in a very different situation then it is a candidate tor change. In
the case of dividing both sides above, the rule flies when there are two
terms on the left hand side. This looks different from the equation in
the example which has a single term on the left

Once a bad rule has been identified it must be changed by comparing
the situation of incorrect application with a situation of correct applica
tion. In our case we have an instance of correct application in the
worked-out example. It we compare the example of dividing both sides

with the incorrect application in
Problem d) we notice that the left side has an extra term (the 7). We
change our rule (An) by adding that constiaint (see the proposition in
italics below).

The best part of how condition creation was done was that the program
did not need many examples in ordei to form rules that would work.
The textbook only provides a single example of solving an equation in
this section. It is not unreasonable to expect that students (or program)
have learned something about generalization in the mathematics domain
before coming into equation solving. Experience with simplification
shows that particular number constants are not important and neither
are terms not directly involved in the simplification.

Goal .sensitive differences
During problem solving ALEX made use of the fact that arithmetic
operators were sensitive to the changes they eventually produced. For
example, to get rid of a number one can add its inverse. ALEX can
learn to index operators this way it skipped steps are used. Another
way of learning to index operators in this manner is to observe how
well each operator gets one closer to the goal when either going
through an example or problem solving. It an operator takes one away

630 D. Neves

(torn the goal (such as adding to both sides ol an equation) then follow
the example until at a state that is closet to the goal. The is analogous
to an inquisitive student saying "Why was that operator applied? It
doesn't seem to help get me to the goal." As the example is followed
one of the steps will be closer to the goal than the original step (see the
skipped steps example above for such a sequence). The original opera
tor is then indexed by the change it eventually brings about.

Conclusion
One of the main results ol this research is to show how learning, prob
lem solving, and performance can be combined into a single system.
Learning from examples creates working forward productions that can
be used in the performance system. While learning one must some
times problem solve to fill in skipped steps. Also, as new procedures
are being learned they are indexed by their changes (i.e. a difference
production is created). This means that the learning system can then
recognize more complex examples and the problem solving system can
bring to bear high level operators to work on difficult problems.

Footnote
Special thanks go my Ph.D. committee at Carnegie-Mellon (H.A.

Simon, chairman; D. Klahr, J. Greeno, and J. Larkin) for all their
help in the area of learning and instruction as well as encouragement
throughout. Thanks also to Jola Jakimik and to an anonymous
reviewer. The ALEX program was run on a KL10 computer and was
made up of about 70 OPS productions and 25 pages of UCI Lisp code.

References
Anderson, J.R. The architecture of cognition. Cambridge, MA: Har

vard University Press, 1983.
Anderson, J.R., Kline, P., & Beasley, C M . Complex learning

processes. In R.E. Snow, P.A. Federico, and W.E. Montague
(Eds.), Aptitude, learning, and instruction. Cognitive process ana
lyses. Hillsdale, NJ: Lawrence Erlbaum, 1980.

Davis, E.J. & Cooney, T.J. Identifying errors in solving certain linear
equations: Some findings and some suggestions. AERA paper,
1978.

Dietierich, T.G. Learning about systems that contain state variables.
Proceeding of the 1984 AAAI, 96-100.

Forgy, C. The OPS4 Reference Manual. Department of Computer
Science, Carnegie-Mellon University, 1979.

Neves, D.M. , A computer program that acquires algebraic procedures
by examining examples and by working on test problems.
Proceedings ol the Second National Conference of the Canadian
Society (or Computational Studies ol Intelligence, 1978, 191-195.

Neves, D.M. , Learning procedures from examples. Ph.D. Disserta
tion, Department of Psychology, Carnegie-Mellon University,
1981.

Newell, A. & Simon, H. Human problem solving. Englewood Cliffs,
NJ: Prentice-Hall, 1972.

Stein, S.K., & Crabill, C D . Elementary algebra. A guided inquiry.
Boston, Houghton Miff l in Company, 1972.

Waterman, D.A. Adaptive production systems. Proceeding of the
Fourth IJCAI, 1975. 296-303.

VanLehn, K., Felicity conditions for human skill acquisition: validat
ing an Al-based theory. Rep. No., CIS-21, Xerox Palo Alto
Research Center, 1983.

