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ABSTRACT 

This paper presents a scheme for learning complex descriptions, 
such as logic formulas, from examples with errors. The basis for 
learning is provided by a selection criterion which minimizes a 
combined measure of discrepancy of a description with training data, 
and complexity of a description. Learning rules for two types of 
descriptors are derived: one for finding descriptors with good average 
discrimination over a set of concepts, second for selecting the best 
descriptor for a specific concept. Once these descriptors are found, an 
unknown instance can be identified by a search using the descriptors 
of the first type for a fast screening of candidate concepts, and the 
second for the final selection of the closest concept. 

1. Introduction 

While the majority of the AI work on learning concentrates in 
error free domains, there is an acknowledged need for learning 
techniques directed towards noisy data [Dietterich and Michalski, 
1983], [Mitchell, 1982]. A problem of a major importance in 
learning from data with errors is the choice of the preference criterion 
for ranking competing descriptions. The criteria such as maximum 
likelihood, minimum error, or minimum estimated entropy which are 
generally used for inference from noisy data, suffice for inferring 
simple parametric models, but are not well suited to learning in rich 
spaces of symbolic descriptions used in A I . These criteria minimize 
the discrepancy between a description and the training observations. 
If the language used to form descriptions is sufficiently rich to express 
the training data, such criteria will rank a description that exactly 
matches the training observations as better or equal to any other 
description. For example, if the space of descriptions includes 
predicate calculus expressions, a concept A represented in the training 
set by three instances, whose parameter "length" assumes values 4.6, 
5.2, and 5.7, might generate a description: (length(A) - 4.6 OR 
length(A) • 5.2 OR length(A) - 5.7). Any errors in the training 
data will be represented in such an overspecified description along 
with possible regularities. A version of this problem known as the 
"curse of dimensionality" appears even with simple vector models when 
the number of dimensions is not specified, [Kanal, 1974]. 

One way of preventing the inference process from generating 
overspecified descriptions is to include some measure of description 
complexity in the preference criterion, to bias it towards simple 
descriptions. This idea is well known in philosophy of science 
(Occam's razor), and various measures of complexity (or simplicity) 
were proposed in AI literature [Michalski and Stepp, 1983], 
[Michalski, 1983], [Mitchell, 1980], [Buchanan and Mitchell, 1978]. 
A specific question is the trade-off between the complexity of a 
description and the discrepancy with data. A criterion objectively 
combining these two measures by relating both to Kolmogorov'g 
complexity [Kolmogorov, 1968], was introduced in [Segen, 1980] and 
called minimal representation criterion. 

In this paper we apply the minimal representation criterion to 

derive general rules for learning concept descriptions from noisy 
training data. These rules can be used to learn symbolic descriptors, 
such as logic formulas, as well as parametric models. In Section 2 of 
this paper we summarize the minimal representation criterion, in 
Section 3 we apply it to derive selection rules for two types of 
descriptors: concept specific descriptors and globally useful system 
descriptors, and to decide which descriptors should be used with 
default values. In Section 4 we show how to apply both types of 
descriptors to classify instances using bottom-up and top-down 
strategies. 

2. Minimal Representation Criterion 

Consider the problem of rinding a program for a Turing machine, 
to generate a given finite sequence of observations. While there are 
infinitely many programs for any such sequence, it seems reasonable 
to chose the shortest program since it represents the least commitment 
and minimum redundancy. If we treat a program to be a randomly 
generated binary sequence with O's and l's having equal probability, 
then the shortest program is also the most probable one. The problem 
of selecting a probability model P(y) from a sequence of observations 

can be recast as a case of the above problem by 
establishing an isomorphism between the class of probability 
distributions and a subset of programs for a Turing machine [Segen, 
1980]. Selecting the shortest program in this subset corresponds to 
finding a probability distribution minimizing the expression 

(1) 

where S(P(y)) is the number of bits needed to specify the probability 
distribution P(y). A l l the logarithms used in this paper are in the 
base 2. The above criterion for estimating the probability 
distribution has been called the minimal representation criterion. Its 
main difference from the maximum likelihood criterion (equivalent to 
seeking a minimum of comes from the term 
which is a measure of a complexity of the specification of the 
probability distribution P(y). Including it in the criterion in effect 
penalizes more complex distributions. 

Properties of the minimal representation criterion were treated 
formally in [Segen, 1980]. It has been applied to discover patterns in 
a continuous signal and in a symbol sequence, and to such problems 
as selecting the number of clusters. 

3. Choosing Concept Descriptors 

The problem of selecting a single descriptor for each concept can 
be stated as follows: Given is a training set T, consisting of a set of 
instances and a concept assignment for each of the 
instances: Also given is a space F of functions, which we call 
descriptor functions or descriptors, defined on the domain of 
instances. A descriptor can be any computable function with a 
probability distribution defined on its range of values. For each of the 
concepts we want to select a descriptor that is most 
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helpful in deciding whether an instance with unknown concept 
assignment should be assigned to this concept. 

We approach the descriptor selection indirectly, as a problem of 
estimating the conditional p r o b a b i l i t y w h i l e its form is 
restricted to: 

(2) 

Descriptor selection is a part of the task of finding the estimate of this 
form, for which we will use the minimal representation criterion. If 
the instances and their concept assignments in the training set are 
independent, we can write the logarithm of the probability of the 
concept assignments given in the training set T as 

(3) 

where are the instances assigned to concept C/. 
Choice of the best descriptor for a given concept Ci can be treated as 
a single concept problem. In this case: 
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the product. Also, the order imposed by the above proportion will be 
preserved if we take a logarithm of the right hand side. We will call 
the result an evidence towards the concept Ci based on the facts f\ 

(11) 

The evidence provides the same ordering of concepts as the probability 
but its much less expensive to compute, since evaluation of a 
descriptor changes the evidence only for a subset of all concepts. This 
subset is known a priori for each descriptor and it can be much 
smaller than the set of all concepts known to the system. Therefore, 
we can provide links from each s-descriptor to the affected concepts 
and update only the evidence for these concepts after evaluating the 
descriptor. An expression similar to (11), but without the above 
feature, was presented in [Charniak, 1983]. The decision for 
switching from evidence accumulation to evaluating s-descriptors can 
come in two ways: either evidence for some concept reaches a given 
threshold, or after evaluating some number of s-descriptors the 
concepts are sorted and tested in order of decreasing evidence. 

If the range of a descriptor is a small set of discrete values 
we can set a weighted link from each outcome vml to 

each concept Ci for which fm is informative, with the weight of the 
link equal to A firing outcome simply adds 
link weights to the evidence of corresponding concepts. Such an 
organization clearly resembles models of neural nets, and it can be 
carried out in a parallel architecture such as Thistle [Fahlman, 
Hinton, and Sejnowski, 1983]. 

5. Concluding Remarks 

The methods proposed here for learning of descriptors apply to 
both parametric models and logic formulas. They are particularly 
simple for predicate descriptors since their probability can be 
estimated as frequency. While we have not discussed domain specific 
descriptor generators, many of the generation schemes presented in AI 
literature [Dietterich and Michalski, 1983] [Cohen and Feigenbaum, 
1982], [Michalski, 1983] are compatible with the methods of this 
paper. A side result that might become important for large systems is 
the automatic assignment of a default status to some descriptors. The 
most important direction for future work lies in developing 
incremental learning strategies, needed for both time and storage 
efficiency. 
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