
Knowledge Acquisition for Constructive Systems 

Sandra Marcus , J o h n McDermo t t , and T ianran Wang 

Department of Computer Science 

Carnegie-Mellon University 

Pittsburgh Pennsylvania 15213 

Abstract 
Over the past ten years, significant progress has been made in 

understanding how the knowledge acquisition process for 
classification systems can be automated. But during this period 
little attention has been paid to the problem of how to automate 
the knowledge acquisition process for systems that solve 
problems by constructing solutions. This paper describes SALT, 
a tool designed to assist with knowledge acquisition for 
configuration tasks. SALT1 assumes a problem-solving strategy 
involving stages of generate, test, backup, modify, and re
generate. It exploits this problem-solving strategy to guide its 
interrogation of domain experts and to represent the knowledge 
they provide in a way that insures it will be brought to bear 
whenever relevant.2 

1. Introduction 
One of the great things about MYCIN [Shortliffe 76] and other 

such systems is that their domain knowledge is kept distinct from 
the knowledge of how and when to apply that knowledge. The 
separation is achieved by defining a problem-solving strategy for 
classification [Clancey 84] which completely determines the use 
to which the domain knowledge will be put. Although more 
recent work (eg, [Clancey 83], [Neches 84]) has shown that in the 
early systems the separation left something to be desired, even in 
its early form, the particular way in which it was achieved had 
important implications for knowledge acquisition. 

In general, a knowledge acquisition tool can provide two kinds 
of assistance: (1) it can make it easy for someone with a 
particular expertise to communicate that expertise, and (2) it can 
somehow organize (or proceduralize) the knowledge that is 
communicated so that ail of the knowledge that is relevant in a 
particular situation gets brought to bear. The MYCIN work 
suggested an approach to knowledge organization that has 
turned out to be quite powerful. The idea is to use a problem-
solving strategy appropriate to some possibly quite narrow 
problem type to define the roles that the problem-solver's 
knowledge can play. A number of knowledge acquisition tools 
that exploit this approach to knowledge organization in 
classification problem-solvers have been developed (eg, [Davis 
82], [Boose84],[Kahn84]). 

1kNowtedge Acquisition Language 

2We are grateful to Bob Roche, first domain expert for VT, who provided 
valuable assessments of feasibility and utility during the development of SALT and 
to Jeff Stout who consulted on explanation capabilities for SALT-generated expert 
systems We would also like to thank Allen Newell and Tom Mitchell for comments 
on an earlier draft of the paper. 

The work described in this paper extends this idea to another 
type of problem-solver; the work is a first attempt to define the 
roles knowledge can play in configuring electro-mechanical 
systems. Section 2 identifies the task demands and one strategy 
for solving the problem. Section 3 describes SALT, a tool for 
developing and maintaining knowledge-based configurers. 
Section 4 discusses SALT'S current usefulness and plans for its 
extension. 

2. A problem-solving strategy for 
configuration tasks 

SALT was developed as a knowledge acquisition tool for VT, an 
elevator system configurer. The input to the configurer was to 
include functional requirements for the completed configuration, 
preferences for specific parts and a description of the spatial 
structure within which the configured system must fit. The 
system's output was to consist of quantities, descriptions and 
model numbers of parts selected and a specification of spatial 
relationships among parts and between parts and structural 
landmarks. 

An isolated selection step might entail consulting a database of 
part specifications and selecting the least costly part whose 
specifications match the demands of the current partial 
configuration. An isolated layout step might consist of defining a 
distance between two parts as some algebraic function of the 
space available. What these steps have in common is that they 
are procedures for arriving at a piece of data needed to describe 
a configuration (a part type, a distance between two parts) by 
applying a relatively small class of methods (database lookups, 
calculations, assignment of constants) to other pieces of data 
(demands of the current configuration, available space). 

What makes this type of configuration task interesting is that 
steps which appear acceptable in isolation may result in 
unacceptable configurations when combined. The problem-
solving strategy we will focus on allows the configuring to 
proceed using the step sizes that are produced most naturally by 
configuration experts. It then employs other domain knowledge 
for spotting unacceptable configurations and deciding how to 
backtrack and effect a change that will avoid the original 
problem. This strategy has the following stages: 

1. Generate each piece of the configuration (parts and 
relationships) using an appropriate method. 

2. Identify constraints (ie, limits on configuration 
values). 

3. Compare each constrained value with its constraints. 
4. If a constraint is violated, determine what values 

could be changed to remedy the violation. 



638 S. Marcus et al. 

5. Choose the least damaging change or change 
combination that remedies the violation. 

6. Make the change and remove any values that 
depended on the old value. 

7. Return to the generate phase. 

This strategy defines a problem-solving shell to which more 
specific domain knowledge can be added. Three roles are 
specified: (1) a piece of knowledge can indicate how to determine 
the value of some piece of a configured system, (2) a piece of 
knowledge can indicate how to spot a constraint violation, and (3) 
a piece of knowledge can indicate how to remedy a constraint 
violation. 

Use of data-driven procedures in the first stage of the problem-
solving shell require knowledge that indicates how to determine 
the value of some piece of a configured system. Needed are the 
details of the appropriate method (eg, an algebraic formula for a 
calculation or parameters for a database lookup) along with any 
preconditions on the applicability of the method. Other 
configuration values used in specifying preconditions or methods 
define what values must already be available during configuration 
in order to apply this method. 

Steps 2 and 3 require knowledge that indicates how to spot a 
constraint violation. Wherever a criterion exists for deciding 
whether a configuration value is acceptable, the test must be 
specified. This requires a comparison of the configuration value 
to some reference value or set of values using tests such as less 
than, equal to, member of set. 

Steps 4, 5 and 6 define the need for knowledge that indicates 
how to remedy each potential constraint violation. Specific 
domain knowledge is needed to identify alternative changes to 
particular configuration values that alone or in combination might 
solve the constraint violation. Domain knowledge is also required 
to weight these potential "f ixes" according to their negative 
effect on the configuration. Once changes are implemented, 
these define the points to backtrack to. 

3. SALT 
SALT consists of two subsystems that share a knowledge base. 

One subsystem interviews the domain expert to elicit the three 
kinds of knowledge the problem-solver requires and builds up a 
representation of that knowledge which can be accessed both by 
itself and by the second SALT subsystem, the rule generator. 
The rule generator translates this representation into OPS5 rules 
that are then combined with the shell (the OPS5 interpreter plus 
some OPS5 rules) to form a configurer. SALT can help with 
knowledge acquisition because it knows the roles knowledge can 
play. The roles provide SALT with a way of focussing the experts' 
attention on the knowledge required to perform a task. Moreover, 
since a role defines the way in which a piece of knowledge is to 
be used, SALT can represent the knowledge in a way that insures 
that whenever it is relevant it will be brought to bear. 

3 . 1 . The in terv iew 
SALT was designed to be used by a domain expert with no 

background in Al. In order to avoid natural language issues, the 
expert is required to use a somewhat structured language. A 
three page document familiarizes the user with some of the terms 
and questions that will be used in the interview. Most questions 
are answered with yes or no, a name, or a selection from a menu. 
SALT makes it easy to edit the knowledge base as well as enter 
new knowledge. The user is asked to indicate the kind of 
knowledge to be entered or modified (method, constraint, or fix). 

Describing a new method involves filling in slots in a schema. If 

two methods presuppose the results of each other, SALT will ask 
the user to supply an "optimal" estimate for one. SALT will then 
use the original procedure as a constraint on the estimate and will 
ask the user how it limits the estimate. For any new method, the 
user will be asked if there are any constraints on its value. For 
any new constraint the user will be asked for potential fixes. 
When the user asks to work on a piece of knowledge previously 
entered, that knowledge is displayed. In cases where the request 
is ambiguous, SALT will supply additional information that 
distinguishes among the possible targets. Examples below are 
taken from a knowledge base for configuring elevators: 

1 METHOD ENTER A METHOD FOR DETERMINING A VALUE 
2 CONSTRAINT ENTER A CONSTRAINT ON A VALUE 
3 FIX ENTER A REMEDY FOR A CONSTRAINT VIOLATION 
4 SYNONYM ENTER A SYNONYM 

ENTER YOUR COMMAND [EXIT]: 1 

THE VALUE REQUIRING A METHOD? car-buffer-model 

THERE ARE MULTIPLE METHODS TO DETERMINE CAR-BUFFER-MODEL 

1 PRECONDITION 
2 PRECONDITION 

SPEED < 200 
SPEED>= 200 

SPECIFY THE ONE YOU WANT TO WORK ON (0 FOR NEW) [0 ] : Z 

The information for the candidate requested is then displayed: 

METHOD 
1 NAME: 
2 ENTITY TYPE: 
3 OBJECT NAME: 

4 OBJECT PROPERTY: 
5 CONSTRAINT TYPE: 
6 PRECONDITION: 
7 METHOD: 
8 TABLE NAME: 
9 COLUMN OF NEEDED VALUE: 

10 PARAMETER TEST: 
11 ORDERING COLUMN: 
12 OPTIMAL: 

CAR-BUFFER-MODEL 
OBJECT 
CAR-BUFFER 

MODEL 

ACTUAL 
SPEED >= 200 

DATABASE LOOKUP 
BUFFER 
MODEL 
STROKE>= MINIMUM-STROKE 
HEIGHT 
SMALLEST 

ENTER YOUR COMMAND [EXIT]: 8 Oi l -buffer 

Specifications are entered by typing the number of the line and 
the new value desired. The display is then refreshed with the 
change. The parameter test in line 10 states that for the value 
retrieved the entry in the table column "stroke" must be greater 
than or equal to the value of "minimum-stroke" which must be 
supplied by another method. Some lines are dependent on 
others; if the user had specified calculation for the method, lines 
8 through 12 would be replaced by a line asking for the formula. 
The schema for specifying constraints is very similar to the 
method schema. An example of a fix schema is shown below: 

FIX 
1 VIOLATED CONSTRAINT: 

2 CONSTRAINED VALUE: 

3 VALUE TO CHANGE: 
4 CHANGE TYPE: 
5 STEP TYPE: 
6 STEP SIZE: 
7 RATING OF UNDESIRABILITY: 
8 REASON FOR UNDESIRABILITY: 

MAXIMUM-BUFFER-LOAD 

BUFFER-LOAD 
BUFFERQUANTITY 

INCREASE 
BYSTEP 
1 
4 
CHANGES MINOR EQUIPMENT 

SELECTION/SIZING 



S. Marcus et al. 639 

ENTER YOUR COMMAND [EXIT]: 

Requesting help for the rating of undesirability as shown above 
will display the menu below: 

1 NO PROBLEM 

2 INCREASES MAINTENANCE REQUIREMENTS 
3 MAKES INSTALLATION INCONVENIENT 
4 CHANGES MINOR EQUIPMENT SELECTION/SIZING 
5 VIOLATES MINOR EQUIPMENT CONSTRAINT 
6 CHANGES MINOR CONTRACT SPECIFICATIONS 
7 REQUIRES SPECIAL PART DESIGN 
8 CHANGES MAJOR EQUIPMENT SELECTION 
9 CHANGES THE BUILDING DIMENSIONS 

10 CHANGES MAJOR CONTRACT SPECIFICATIONS 
11 COMPROMISES SYSTEM PERFORMANCE 
12 VIOLATES SAFETY CODE 

ENTER YOUR COMMAND [EXIT]: Z 

Typing "7 " will substitue that value for rating of undesirability and 
will fill in the appropriate reason in the next line. 

values, depending on the boundary that was crossed, that will 
lead to an acceptable solution. Our plan is to test the applicability 
of SALT on a range of constructive tasks including scheduling 
tasks. Some scheduling tasks require coming up with initial 
plans, recognizing unexpected situations that make the plans 
infeasible and making the minimally disruptive changes that make 
the plans acceptable once more. SALT appears to be well-suited 
to building schedulers of this sort. 

5. Conclusion 
SALT is interesting if its problem-solving strategy is sufficiently 

specific to strongly constrain the roles that the knowledge it 
needs can play, while at the same time being sufficiently general 
to apply to a variety of problems. The fact that SALT'S strategy 
imposes three roles on the knowledge it uses does, in fact, 
provide substantial help both in focussing attention on what 
knowledge needs to be collected and in defining the conditions 
under which pieces of knowledge are relevant. There is some 
reason to believe that SALT'S strategy will apply to tasks that are 
apparently quite diverse, but this has yet to be demonstrated. 

3.2. Rule generation 
The rule generator can be revised as the shell is changed to 

make the problem solving strategy more robust and efficient. 
Because of this the exact form and numbers of rules produced is 
not stable. Currently, for every method or constraint schema, 
SALT writes at least one rule. For every constraint that has at 
least one potential fix, there is one rule written to make available 
at runtime all of the information in each fix schema. There are 
also one or more rules used to assess the ability of fix alternatives 
to produce a configuration acceptable up to the point of the 
original violation; these are generated using fix knowledge as well 
as that from the method and constraint schemas for contributors 
to the violation. In addition, a single rule is generated that 
matches synonyms to the schema name. All of these rules are 
written so that when they fire, they leave a trace describing how it 
was that they came to be applied and what they did; this 
information is used for explanation. 

4. SALT'S potential 
The first task SALT was given was to re-generate VT. The 

version of VT built by hand took about 3 worker-years to develop 
and consisted of about 1330 rules. About half of the effort and 
half of the rules belong to VT's I/O package and the shell that 
can use both the hand-coded and SALT generated rules. SALT 
was used to regenerate the remaining half of the rules (the 
knowledge base). Using the hand-coded VT as the knowledge 
source, it took about 11 hours to enter half of the knowledge that 
version had. Our domain expert then spent another 35 hours 
refining this knowledge and entering the remaining knowledge. 
The SALT rule generator took 20 VAX-11/780 cpu minutes to 
produce 636 rules. 

SALT was also used successfully to develop a system that 
could select elevator control cables. This task is done after an 
elevator system has been configured; the task requires using the 
layout and functional requirements for the wires to order cable(s) 
that meet local safety codes and are available in stock. The only 
change required to SALT was to provide it with a new piece of fix 
knowledge: the additional cost of repeating a fix. 

SALT makes the strong assumption that a task can be 
structured so that the domain expert can provide a method to 
establish initial values, a method to define the boundary between 
acceptable and unacceptable solutions, and a way of changing 

References 

[Boose 84] Boose, J. 
Personal construct theory and the transfer of 

human expertise. 
In Proceedings of the National Conference on 

Artificial Intelligence. Austin, Texas, 1984. 

[Clancey 83] Clancey, W. 
The advantages of abstract control knowledge 

in expert system design. 
In Proceedings of the National Conference on 

Artificiallntelligence. Washington, D.C., 
1983. 

[Clancey 84] Clancey, W. 
Classification problem solving. 
In Proceedings of the National Conference on 

Artificiallntelligence. Austin,Texas, 1984. 

[Davis 82] Davis, R. and D. Lenat. 
Knowledge-Based Systems in Artificial 

Intelligence. 
McGraw-Hill, 1982. 

[Kahn 84] Kahn, G., S. Nowlan, and J. McDermott. 
A foundation for knowledge acquisition. 
In Proceedings of IEEE Workshop on Principles 

of Knowledge-based Systems. Denver, 
Colorado, 1984. 

[Neches 84] Neches, R., W. Swartout, and J. Moore. 
Enhanced maintenance and explanation of 

expert systems through explicit models of 
their development. 

In Proceedings of IEEE Workshop on Principles 
of Knowledge-based Systems. Denver, 
Colorado, 1984. 

[Shortfiffe76] Shortliffe, E. 
Computer-Based Medical Consultation: Mycin. 
Elsevier, 1976. 


