
LEARNING BY DISCOVERING MACROS IN PUZZLE SOLVING 
Glenn A. Iba 

MITRE Corporation 
Bedford, MA. 01730 

ABSTRACT 
This paper proposes a model of learning by discovery. The 

model consists of a program which discovers macro operators 
while conducting a best first heuristic search in the domain of 
puzzles. This work extends some recent work on permutation 
puzzles (Korf, 1982) and operator-decomposable puzzles (Korf, 
1983), and is related to the earlier work on MACROPS (Fikes, 
Hart, and Nilsson, 1972). This work is part of a doctoral 
dissertation currently in progress at MIT, in which the model will 
be used to explore learning in conjunction with additional search 
paradigms and numerous alternative heuristics for macro 
generation and selection. The specific heuristic reported on here 
is that of using peaks of the evaluation function to segment the 
paths of the search tree in order to discover macros. The 
technique seems particularly valuable in difficult puzzles where 
only imperfect or approximate evaluation functions are available. 

INTRODUCTION 

This paper investigates a form of learning in the context of 
problem solving. A problem solving system (in this case a 
heuristic best-first search program) starts out with an initial set of 
operators, and learns by applying heuristic methods to discover a 
more powerful set of operators, herein called macro-operators. 
The techniques are general and powerful, and show promise of 
extension to other search and problem solving paradigms. 

Macro-operators (or macros) are a kind of super-operator 
which is composed of (or defined in terms of) more elementary 
operators. The composition process, by which a macro is formed, 
abstracts the defining sequence so that the new macro-operator 
looks like just another operator to the problem solving system. 
Thus a new macro enlarges the set of operators available during 
the search process. The fact that the new operator is defined in 
terms of other operators is incidental to the search process, and 
needs only to be invoked once a solution is found in order to 
convert the solution into its canonical form as a sequence of 
"primitive" (or initial) operators. This can be done by a 
straightforward process of macro expansion. 

The discovery of macro-operators is a very powerful 
technique in problem solving, as demonstrated by the STRIPS 
system (Fikes, Hart, and Nilsson, 1972), which learned a form of 
macros (MACROPS) in the format of a triangular table, and some 
recent work (Korf, 1982) (Korf, 1983) in applying the learning of 
macros to the solution of a specific class of puzzles (operator-
decomposable puzzles). 

The sense of macro employed here is somewhat more 
general than that of Korf, since it is applicable in any problem 
where operators are composable, i.e. where there exists a 
proceduro for abstracting a sequence of operator applications to 
form a macro-operator represented in a manner consistent with 
the previous operators. 

To illustrate the concept of macro, the familiar class of peg-
jump solitaire puzzles will be employed. In these puzzles, legal 
operators consist of jumping a peg over another peg into a hole. 
Movement is typically restricted to the horizontal and vertical 
directions. The peg jumped over is immediately removed. The 
goal is usually to reduce the number of pegs to exactly 1. A 
number of board shapes and starting configurations are possible, 
but perhaps the most famous is the Hi-Q puzzle, which has a 
board shaped like a plus sign, and starts out with a hole in the 
center (see diagram 1). The goal is to end up with a single peg left 
in the center hole. 

The basic operator can be represented in terms of the initial 
and final states of the 3 consecutive locations affected by the 
jump (see diagram 2a). Similarly, a macro composed from a 
sequence of jumps can be represented in terms of the initial and 
final states of those locations affected at any point in the 
sequence. Refer to diagram 2 for a set of particularly useful 
macros for this class of puzzles. By convention "o" represents a 
peg, "." a hole, and "•" a don't care. Don't care's can be bound 
to either holes or pegs, but the bindings must be consistent 
between initial and final states. In each macro it is possible to get 
from the initial state to the final state by a sequence of legal basic 
jumps, which form the "expansion" or proof of the macro. These 
macros are very similar to the packages presented in (Berlekamp, 
Conway, and Guy, 1982). It is interesting to note that essentially 
the same set of macros was discovered independently by different 
human problem solvers, suggesting that the discovery process 
may be convergent, and certainly is of psychological interest. 

The work presented here represents the first step in a more 
ambitious project to investigate learning by discovery of macros 
in a variety of puzzle and related domains (e.g. concept learning, 
and mathematical theorem proving). The advantage of choosing 
puzzles as the initial domain is that there already exists a well-
developed set of performance systems for carrying out search. 
The learning components are a natural extension of these 
performance systems. 

THE POWER OF MACROS 

Macros derive their power from their ability to shorten the 
search process. Using macros it is possible to take "larger 
strides" through the search space, since applying a single macro 
may be equivalent to a large number of more primitive steps. The 
largest macros in diagram 2 (d,e, and f) are each equivalent to 6 
primitive steps. The result is that a solution may be found in a 



G. Iba 641 

significantly smaller number of search steps than would be 
required by a search using only the basic operator. 

The macro notion is very similar to the well known 
chunking phenomena of psychology. Chunks provide significant 
combinatorial benefits for representing knowledge and reducing 
memory burden. In an analogous manner, macros allow for more 
efficient search, as well as more economical representation and 
recall of solutions. 

Another aspect of macros is that they may be used to 
bundle up a lot of untidy details. In many puzzles, for example, It 
is necessary to pass through a number of "messy" states to get to 
the next "clean" state. Illustrations of this occur in the 15 puzzle 
and the Rubik's Cube, where it is frequently necessary to 
(temporarily) undo already satisfied subgoals in order to achieve 
the next subgoal. Macros provide a mechanism for getting 
through the mess to the next "good" state. With a macro, any 
messy intermediate states are hidden from the search process, 
since all that matters to it are the initial and final states of the 
macro. The obvious evaluation functions for puzzles such as 
these have the property that their values fluctuate up and down 
along a solution path. Macros can work especially well in 
conjunction with such imperfect evaluation functions, because 
the macro can aid the search process by guiding it past the 
intermediate messy (locally lower valued) states to the next good 
state. This observation directly suggests the learning heuristic for 
proposing macros which this paper describes: the peak-to-peak 
heuristic, where operator subsequences bounded by peaks in the 
evaluation function are proposed as candidate macros. This will 
be described in detail in the next section. 

As a concrete illustration of the power of macros, the Hi-Q 
puzzle (diagram 1), which is extremely difficult to solve by 
conventional search techniques (the final solution is 31 steps 
long), can be solved quite easily by applying the macros of 
diagram 2. The solution in this case is only 7 (macro) steps long. 

To concretely make the comparison, a best-first search strategy 
was implemented using the following 3 element evaluation 
function: 

1. minus the number of connected components of pegs 

2. minus the number of connected components of holes 

where these 3 elements are strictly ordered, so that when 
comparing two evaluation vectors, any given element comes into 
play only when the prior elements are tied. The components of 
pegs (and holes) are computed assuming orthogonal adjacency 
(so that diagonal relationships do not connect components). The 
intent of these heuristics is to keep the pegs close together in a 
solid mass. The negations are used since for each of the three 
elements a smaller absolute value is better, thus the highest 
attainable value is (-1 -1 -1) when there is but one peg left. These 
heuristics were the first that were tried out, and they performed 
beyond expectations. Although the problem was still intractable in 
terms of searching with the basic-jump alone, the same search 
process, using the macros of diagram 2, found the solution of 
diagram 3 which uses 6 macro steps and a basic-jump. The 
search process was almost a perfect straight line solution, with 
only one minor instance of backing upl Thus the use of macros 
converted an essentially intractable problem into one that was 
easily solved. An interesting side note is that the solution found 
by the program was one (macro) step shorter than the best 
solution I had found using the same set of macros. 

DISCOVERY OF MACROS 

The model of learning driving this research is a simple but 
potentially powerful one. It is fundamentally a variant of generate 
and test, where macros are proposed, and subsequently filtered 
by both a static and a dynamic filtering process. It is expected that 
the proposing methods will generate too many macros, including 
some good ones along with many poor ones. The static filter will 
evaluate macros solely on the basis of their description, and 
discard those that fall below a threshold. The remaining macros 
will be tried out by the search process on a trial basis. Statistics 
will be maintained on how well each macro performs dynamically, 
and periodically the underachievers will be purged. 

This paper explores one approach to the proposal of 
macros, and tests the learning effect with a "null" filter, that is, all 
candidate macros get accepted. The approach used, as part of a 
best-first search paradigm, is an implementation of the "peak-to-
peak" heuristic. During the search process, all partial search 
paths are examined for peaks in the evaluation function. A peak 
occurs when a node of the search path has a higher value than 
both the immediately preceding and immediately following nodes. 
When a peak is encountered, the path is searched in the reverse 
direction until either a prior peak is detected, or the beginning of 
the path is reached. In either case the subsequence thus 
delimited (all operators after the starting peak node and 
preceding the terminal peak node) is proposed and converted 
into a macro by the following procedure: 

1. Find the set of all locations used by any operator of 
the sequence. Call these the support locations. 

3. minus the number of pegs remaining 
2. Find the smallest rectangular window which contains 

all the support locations. 



642 G. Iba 

3. Using this window take a "snapshot" of the puzzle 
state at the start of the sequence. Mark the non-
support locations (the complement of the support set 
relative to the window) as don't cares. 

4. Take a similar "snapshot" of the puzzle state at the 
end of the sequence, again marking (the same set) 
don't care's. 

5. Form a macro using the first snapshot as the macro's 
initial state, and the second snapshot as the macro's 
final state. 

The snapshot process abstracts the macro away from the specific 
locations, and provides the possibility of the macro applying in a 
variety of positions and orientations, just like the basic-jump 
operator. Note that the matcher automatically tries out all 
rotations and reflections of each macro, just as it does with the 
basic-jump. 

The evaluation function used was the same one discussed 
in the previous section. The learning process was tested out on a 
smaller version of the puzzle (see diagram 4). This puzzle was 
solved in 6 steps using the basic-jump operator alone. During this 
search two macros were proposed and created, though they were 
not immediately incorporated in the search. A second pass was 
taken on the same puzzle, this time incorporating the new macros 
to study the effect of learning. The second solution was 
discovered in less time, with fewer nodes expanded. The solution 
used the Three-in-a-Row macro twice to find a 2 (macro) step 
solution (diagram 5). The comparison of the first and second 
passes is summarized in Table 1. The two macros proposed 
during the first pass are listed in diagram 6. 

Pass 
1 

Pass 
2 

Runtime 
(sec) 

6.3 

5.0 

Realtime 
(sec) 

00 

27 

| Nodes 
expanded 

15 

3 

i Nodes 
Evaluated 

34 

17 

So lu t i on 
Length 

0 

2 

Macros 
Generated 

2 

! 0 

CONCLUSION 

Macros are a powerful technique in problem solving, and 
the discovery of macros is an interesting form of learning worthy 
of additional study. The peak-to-peak heuristic for discovering 
macros has been successfully applied to small problems in the 
class of peg-jump puzzles, and generates some interesting and 
useful macros. Further study is called for to gauge its usefulness 
on larger problems, and to determine the ratio of good to poor 
macros generated by this technique. 

The major limitation of the technique is that increasing the 
number of operators will increase the branching factor of the tree, 
and thus tend to slow down the performance system in its search. 
It is not clear whether the benefits of new macros will normally 
compensate for the increased search cost. Further work is 
required to evaluate this tradeoff. 

Future work will explore techniques for filtering macros so 
that only the most promising will be learned. Additional 
experimentation will be carried out with related search paradigms 
such as GPS to explore goal-related heuristics for generating 
macros. 

To the extent that macros are strongly analogous with 
theorems in mathematics and concepts in concept learning, the 
success of this research effort may shed significant light on 
issues of learning in these domains. It may be the case that 
powerful general heuristics for learning and discovery of 
composite structures may apply equally well in all three areas. 

REFERENCES 

[1] Berlekamp, E., J.Conway, and R. Guy, Winning Wavs. vol.2, 
New York: Academic Press, 1982, pp. 697-704. 

[2] Fikes, R., P. Hart, and N. Nilsson, "Learning and Executing 
Generalized Robot Plans", Artificial Intelligence 3:4 (1972) 
251-288. 

[3] Korf.R., "A program that learns to solve Rubik's Cube", in 
Proc. AAAI-82. Pittsburgh, PA., 1982, pp. 164-167. 

[4] Korf.R., "Operator Decomposability: A new type of problem 
structure", in Proc. AAAI-83. Washington, D.C., 1983, pp. 
206-209. • 

[5] Laird.J., P. Rosenbloom, and A. Newell, "Towards Chunking 
as a General Learning Mechanism", in Proc. AAAI-84. Austin, 
Texas, 1984, pp. 188-192. 

The results indicate that interesting learning has taken 
place. Performance was uniformly better on the second pass. 
Moreover, at least one macro (Threeina-Row) has been learned 
which is known to be useful in solving related problems. For 
example, using the macros learned from the experience with this 
small problem (Diagram 4), this same best-first search procedure 
could solve diagram 7 in a straight-line fashion (diagram 8), 
whereas without the macros, the problem remains combinatorially 
intractable. This Is an interesting example of transfer learning. 

Table 1 


