
INTERPRETING DESCRIPTIONS IN A PROLOG-BASED
KNOWLEDGE REPRESENTATION SYSTEM

Randy Goebel
Logic Programming and Artificial Intelligence Group

Computer Science Department
University of Waterloo

Waterloo, Ontario
Canada N2L 3Gl

712 R Goebel

by using some appropriately defined description operator "K." Simi­
larly, descriptions of sets were seen to be useful. For example, the
expression "at least 12 CS courses" might suggest the use of an
expression like that in fig. 1. where the components grouped bv
the left brace must be written once for each set of twelve CS
courser. This is clearly a tiresome way to express the assertion,
and furthermore, would require extensive modification after any
new CS course was created (e.g., by adding an assertion like "CS-
course(CSl23)"). We would prefer something like

where "K" is another appropriate description forming operator.
Similar motivations have given rise to the following description

forms in DLOG.
Definite individuals. DLOG's definite individual provides a

shorthand syntax for referring to a unique individual whose name is
unknown. Intuitively, the variable binding symbol V can be read
as the English definite article "the." For example, we might refer
to "the head of Computer Science" as

If our description distinguished the intended individual, then we
need never know which individual constant actually names that
domain individual. We normally expect that the variable bound
with the symbol V appears somewhere in the formula that consti­
tutes the body of the description.

Indefinite individuals. When we need to refer to "any old a"
with some property specified by a formula ' (a) \ we can use an
indefinite individual. We use the variable binding symbol V as the
English indefinite article "a" or "an." For example, "a course with
course number greater than 300" might be referred to by the inde­
finite individual

As for definite individuals, we normally expect that the variable
bound with the symbol 'E' appears somewhere in the formula that
constitutes the body of the description

Definite sets. A definite set is used to refer to a set consisting
of all individuals that satisfy some property. The name "definite"
is used to correspond to its use in "definite individual." A definite
set is "definite" because it refers to all individuals in the current
knowledge base that satisfy the specified property. For example,
"the set of all numerical analysis courses" might be designated as

Here the braces "{ }" serve as the description forming symbol.
Indefinite sets. Indefinite sets are "indefinite" in the sense

that they refer to one of a set of sets. Like indefinite individuals,
they are intended to be used to refer to "any old set" that is an
element of the set of sets that satisfy the specified properties. For
example, the indefinite set

is the DLOG term that represents an arbitrary set that is a
member of the set of "all 3 element sets of courses."

Lambda constants. Lambda constants were introduced to cap­
ture a kind of individual occurring naturally in the DDB domain:
regulations. For example, in describing a typical degree program,
we must classify all kinds of requirements for that program, e.g.,
"nobody can register if they're under 16 years old" refers to a
regulation that uses the lambda constant

Figure 1. "...at least 12 CS courses"

In this way regulations can be placed in relation to other individu­
als and sets, e.g.,

program —prerequisite (BSc Majors,
first ,

says "one of the regulations for the first year of a BScMajors pro­
gram is that an individual be at least 16 years old."

Semantics of descriptions
We have suggested that there is more to the meaning of

descriptions than their denotation in a first order language. In
DLOG (and, we claim, in any representation system) there are at
least two aspects to the meaning of descriptions.

One important aspect is the traditional specification of denota-
tional semantics along Tarskian lines: given a well-defined class of
formal expressions, one specifies a systematic way in which expres­
sions and their parts can be attributed denotations in an interpre­
tation. Two assumptions underlying this methodology are (1) that
the expressions in question are being evaluated as to their truth;
and (2) that the denotation of complete expressions depends solely
on the denotations of their parts.

Another important aspect, often overshadowed by concerns of
the former, is the intended meaning of such formal expressions
when they are being formed (e.g., by a user), during their use in
assertions (e.g., when adding facts to a knowledge base), and during
their use in queries (e.g., when requesting that facts be verified
with respect to a knowledge base). In this regard, the use of
descriptive terms impinge on philosophical problems associated with
names and their use (e.g., [Donnellan66, Brinton77, Katz77, Lin-
sky77)). A most common example is the difference between
referential and attributive use of descriptions. The issue is whether
a description is intended to refer to a known referent (referential),
or unknown referent (attributive). Apparently only a few Al
researchers have considered the problem (e.g., |Schubert76,
Ortony77]). These and related issues are further discussed in [Goe-
be!84, Goebel85]

R. Goebel 713

Approaches to specifying DLOG's semantics

To attempt a coherent description of a Prolog-based mechanism
for proving existential formulas in DLOG, one must first select a
methodology for specifying the meaning of descriptions. The most
common method is Russell's contextual definition [Kaplan75j. Con­
textual definition is essentially macro definition, e.g., any string of
the form is replaced with

The meaning of the description is specified by the logic from which
the definition is taken.

A related issue is the meaning of descriptive terms when their
proof-theoretic preconditions fail. For example, a constructive
proof of will produce a referent of the description in

but what does the latter mean when a proof of the
former fails? Under one popular theory [Kaplan75, p. 215], the
meaning of such descriptions whose logical preconditions fail have
been specified by convention, e.g., a failing description refers to a
designated null constant that lies outside the domain of discourse.

First order semantics
One possible choice for the description defining language is first

order logic. The overwhelming advantage of first order semantics
is simplicity; an abstract, implementation independent specification
of semantics is worthwhile in that it provides a simple way to
understand the complexity of the actual system.

Using first order logic, most of the intended meaning of DLOG
descriptions can be specified in a relatively straightforward way.
The individual descriptions (definite and indefinite) are specified as
above; sets can be axiomatized with a set relation and a set
membership relation (DLOG set theory is finite, thus very sim­
ple). However, lambda terms rely on semantic notions foreign to
first order logic; their definition here requires the use of meta
language concepts.

Contextual definitions for set descriptions are defined as fol­
lows. The sentence

(1)
contains no set variables—the term \ describes a set con­
sisting of all individuals a such that is true. In a first order
language that distinguishes set variables X1 X2, X3,..., the defini­
tion of sentence (1) is rendered as

This can be read as "there is a set X1 that has property Φ, and all
individuals x, in the set have property ¥." Because the only defin­
ing property of a definite set is the property attributed to each of
its members, its uniqueness is easy to establish. In contrast to
definite individuals, there is only one extension for each definite set
so a further specification of uniqueness is not required.

The contextual definition of indefinite sets can be approached
in a similar way. We can view

as having the definition

This says that "some set X1 that has the property O and whose
elements each have property also has property Φ." Intuitively,
the indefinite set construction specifies a set that fits the descrip­
tion, similar to the way that an indefinite individual specifies an
individual that fits its description.

DLOG lambda constants provide the user with a method of
asserting axioms about unary predicate abstractions, intuitively
interpreted as regulations. For example, the assertion

can be interpreted as asserting that the property is true of the
regulation named by). These terms are useful because
they allow a user to assert relations about properties. Intuitively,
lambda constants are most reasonably interpreted as a special kind
of constant, indexed for retrieval by the terms they appear with.
However, they cannot be manipulated without the definition of an
application mechanism. This definition relies on a meta relation
satisfies, which is defined in terms of the provability meta relation
derivable (cf. [Bowen82]). The satisfies meta predicate then pro­
vides a method for testing whether an individual satisfies the rela­
tion denoted by a DLOG lambda constant. That is,

For any individual constant a of a DLOG database DB,
holds in DB. An

assertion of the form
) (2)

is interpreted to mean that, in the current database,
(3)

is derivable. Indeed (2) is a clumsy alternative to (3), but by using
lambda constants in this way, we not only provide a way of assert­
ing axioms about regulations, but also a way of using those regula-
tions in question answering. The satisfies predicate provides the
mechanism for applying lambda constants as unary predicates of
the current database.

An example will illustrate. The experimental DDB domain
requires the description of degree requirements, which can often be
expressed as lambda constants, e.g., the assertion

enrolment —requirement (BScCS, (4)

states that "an enrolment requirement of the BScCS degree is that
the candidate's age is greater than or equal to sixteen." The
lambda constant format allows the requirement to be asserted and
queried, and the satisfies predicate provides the mechanism to
pose a query like

(5)

that can be read as "Has John satisfied an enrolment requirement
for the BScCS program?"

Notice that, in the DDB domain, degree requirements are most
naturally conceived as conditions which must be satisfied. Since
degree programs are distinguished by their various requirements, it
is most straightforward to describe degree program requirements as
relations on degree names and conditions to be satisfied—in DLOG,
as lambda terms.

Of course there are alternatives to the use of this special term.
For example, the meaning of sentence (4) might be rephrased in.
terms of a standard first order language as

(6)

where we would use BScCS as the name of a degree program and
modify the predicate satisfies to correspond more closely to our
intuition regarding what one must do with degree requirements.
This alternative has a more straightforward meaning since there
are no "special" forms. But now there is no way of asking what
the requirements of the BScCS program are, short of providing
another non-first order primitive for manipulating sentences. For
example, to answer the equivalent of query (5) in the alternative
notation, we require an operation that retrieves a sentence of the

714 R.Goebel

form (6) from the current database, and then returns the conse­
quent of that sentence as an answer

Lambda terms can be manipulated with a standard (sorted)
proof procedure to answer existential queries about requirements;
they are simply retrieved and bound to existential lambda variables
as in normal answer extraction. Furthermore, they can be used in
conjunction with the satisfies predicate to determine if an indivi­
dual has satisfied a particular requirement.

The case for higher order semantics
The clear disadvantage of first order semantics is an inability to

directly deal with higher order concepts. Though DLOG domains
are restricted to be finite and no abstraction is permitted in the
DLOG proof mechanism, the specification of certain DLOG expres-
sions in a first order way is contorted and mitigates against the
desired semantic simplicity. This is most obvious in the way that
lambda terms must be explained in terms of meta relations.

One alternative is to use a second-order intensional logic, as
used by Montague to explain such concepts as "obligation,"
"event," and "task " For example, Montague's formalization of the
concept of obligation [Montague74, p. 151ff.] corresponds well with
the use of lambda terms in the DDB application of DLOG.

Montague's system provides a natural semantics for DLOG's
lambda terms, and is obviously powerful enough to be used to
describe the rest of DLOG's descriptive terms (individuals, sets).
Only DLOG lambda terms require this treatment, but Montague's
system provides a rather more uniform treatment of DLOG's
semantics than is possible in weaker systems.

The complete picture of Montague's system requires careful
study, but the essence can be explained in a relatively straightfor­
ward manner. An essentia) concept is the classification of individu­
als into categories of two different kinds. Each n place predicate
constant has an associated type <s0,su ' ' ' Sn-1-> that indicates
the kind of object that can appear in each term position: , —1
specifies a standard* individual; s, -0 specifies a proposition; and
Si specifies a Si,-place predicate.**

For example, a predicate constant P of type <—1,1> takes
individual constants in its first position and unary predicates in its
second. In the Department Data Base domain, the satisfies predi­
cate constant has type <—1,1>, e.g., the assertion

satisfies(/red,Xx [completed (x ,cs 115)])
has an individual constant 'fred' in the first argument position, and
a lambda constant in the second argument position. The first
denotes an individual object (the person with name 'fred'), and the
second denotes a predicate specifying the property of "x complete
ing the course CS115."

The meaning of the above assertion is assigned in a way that
introduces the second and most important difference of Montague's
system. The assignment of truth values to sentences is an
inherently two phase process. As Montague explains [Montague74,
p. 157], an interpretation assigns intensions to symbols, and a
model assigns extensions. Extensions include the standard objects
well-known from traditional Tarksian semantics, as well as sets of
sequences of individuals. Intensions are functions from possible
worlds to the universe of individuals. They are introduced in order
to distinguish the sense or abstract meaning of a predicate from its
denotation in a particular possible world.

The complexity of Montague's complete system can be perplex­
ing, the essence of the system provides a rich specification language
for DLOG's complex objects. Some of the complexity dissolves
because of the simplicity of DLOG theories: they are finite, and the

* Here "standard individual" means the usual notion of an individual in a
first order model.
•• See |Montague74, p. 150|. The notion of predicate used in this context is
sometimes called a "relation in intension."

intended interpretation is over a highly restricted domain. This
simplicity constrains the number of possible worlds that can serve
as interpretations for DLOG theories (thus, for example, providing
a restricted interpretation of "□"). In the DDB example, the
intended interpretation together with partial knowledge of each
particular student identifies the intended possible world for seman­
tic interpretation.

In Montague's second order logic, the meaning of DLOG
lambda expressions is given by expressing them as unary predicate
constants. For example, the DLOG formula

(10)
is written as

(11)
In general, the Φ syntax is shorthand for

Montague uses the symbols 'A' and V for 'V and '3', respectively.
He also uses brackets where parentheses arc typical, e.g., P[x] for
P(x). In addition Montague employs the symbols HP and Φ', read
as "the" and "necessarily," respectively. These latter symbols are
used to form names of predicates. DLOG's lambda symbol 'X'
plays the same role as Montague's "" symbol.

Formula (11) is intended to mean "a requirement of the BScCS
program is to bear the relation completed to the course CS115."
The intensional semantics provides a way of admitting different
intensions for the completed relation, e.g., completing a course
might have different meanings in different passible worlds. In the
case of DLOG, the particular possible world in which symbols are
assigned extensions is fixed to be the Departmental Database.

The second order power of Montague's logic provides the
expressive ability to assert relations on predicates: it is the property
of completing CS115 that bears the requirement relation to the
program BScCS, and not any particular extension of the property.

Again, the application of lambda terms can be explained with
the aid of a relation called satisfies. However, in Montague's
language satisfies is a predicate constant of type <—1,1> and is
interpreted (in a possible world t in a structure <I,U,F>) as a
relation <I,U,<I,U» where / is the set of possible worlds and U
the universe of possible individuals. (So <1 ,U> is a unary relation,
<I,U,U> is a binary relation, etc.)

Computing with descriptions by extended unification
The mechanism for manipulating DLOG descriptions is imple­

mented in the Horn clause logic of Prolog. Adopting one of the
above approaches to semantics means to adopt the corresponding
view of what the DLOG proof procedure is doing. The simplest
way to view the DLOG proof procedure is as a Horn clause prover
extended with meta relations to handle the non-Horn features of
DLOG. However, we speculate that the theoretical foundation of a
higher-order proof procedure based on unification due to Jensen
and Pietrzykowski [Jensen75] will provide the corresponding view
for the Montague system. Here the intuition is to consider the
DLOG implementation as a restricted implementation of their unif­
ication procedure for general type theory. We have not yet investi­
gated the possibility of adapting Jensen and Pietrzykowski's pro-
cedure for use in an intensional logic.

Instead of extending Prolog's Horn clause theorem prover to
handle the expressions that arise from any method of contextual
definition, the unification algorithm can be augmented to provide
the correct matching of descriptive terms. As others have observed
(e.g., (Clark78, van Emden84]), any assertion of the form

R.Goebel 715

where the xi 1<i<n are new variables not occuring in the original
formulas. In DLOG, the equality expressions arising from this
transformation are determined from within unification. In a sense,
some of the complexity of derivation is off-loaded to the "pattern
matcher" (cf. [Reiter75]).

The idea of extending a resolution proof procedure's power by
augmenting unification was first suggested by Morris [Morris69],
who proposed that equality be manipulated with so-called "E-
unification." There have been many other related proposals includ­
ing Stickel [Stickel75], Morgan [Morgan75], and Kahn [Kahn8l], Of
related interest is the representation language KRL [Bobrow77a,
Bobrow77b, Bobrow79), which relies on a complex "mapping" pro­
cess on several different kinds of object descriptions called
"descriptors." We argue elsewhere that KRL's mapping can best be
understood as a elaborated unification scheme [Goebel85].

Returning to the handling of descriptive terms by augmenting
unification, we cite Rosenschein on the advantage of embedded
terms:

...the data object is kept small and "hierarchical" so that
where an exhaustive match must be performed, failure can
occur quickly. That is, deep, heterogeneous structures are
preferred to broad, homogeneous structures. For example,
{(){()()}} is better than {{}{}{}{}}!

We view Rosenschein's claim as support for the interpretation of
descriptions as embedded terms, rather than as their contextual
definition by rewriting.

The DLOG unification algorithm is invoked by the DLOG
derivable predicate, similar to the way Prolog's derivation pro­
cedure uses a built-in unification algorithm. Intuitively, whenever a
unification must be performed and there are special DLOG terms
to be matched, standard unification is intercepted, and DLOG unif­
ication is used. For example, suppose that the two terms Ex<P(x)
and Fred are to be unified. The applicable DLOG unify axiom is

where apply binds the symbol "Fred" to the lambda variable "x"
and invokes derivable.

The DLOG unification definition uses an organization similar to
the LOGLISP system of Robinson and Sibert [Robinson80, Robin-
son82]. LOGLISP consists of a logical proof theory embedded
within LISP, and allows the invocation of LISP by the theorem-
prover, and the theorem-prover by LISP. Similarly, the DLOG
derivable procedure can invoke the standard Prolog proof pro­
cedure, and both are accessible from with DLOG's unification
matcher.

In general, the correct "unification" of the DLOG extensions
requires a derivation procedure more powerful than that provided
by Prolog. For example, the equivalence of two lambda expres-
sions, e.g., can only be established if it can be
shown that follows from the current database. The
current DLOG unification procedure uses a local context mechan­
ism to derive this equivalence. It is also the case that disjunctive
terms require a more general proof mechanism, since a proof of

) cannot be handled by the current implementation,
although a special heuristic will use a notion of partial proof to
retrieve facts relevant to such a query [Goebel85|.
t |Roaenschein78, p. 634].

Bobrow and Winograd's description of KRL's matching frame-
work (see [Bobrow77a, §2.5]) also uses the notion of partial match.
Their discussion about what is deductive and what is heuristic is
sufficiently interesting to pursue here because DLOG already pro-
vides some of the features of KRL's "flexible" matching.

Recall that the basic data type of KRL is a frame-like structure
called a "unit." A unit is a collection of "descriptors" that attribute
various properties to the unit in which they appear. Of interest
here are the various ways in which units can be related by match­
ing their descriptors. For example, consider KRL's matching by
"using properties of the datum elements" [Bobrow77a, pps. 23-24]:

Consider matching the pattern descriptor (which Owns (a
Dog)) against a datum which explicitly includes a descriptor
(which Owns Pluto). The SELF description in the memory
unit for Pluto contains a perspective indicating that he is a
dog. In a semantic sense, the match should succeed. It can
only do so by further reference to the information about
Pluto.

This form of matching already exists in DLOG. For example, the
KRL descriptors (which Owns (a Dog)) and (which Owns Pluto)
might be rendered as and

, respectively If we have the fact that Pluto is
a dog (i.e., the assertion dog(Pluto)), DLOG unification will suc­
cessfully unify the above pair by recursively proving that
dog(Pluto) follows from the knowledge base.

Several other forms of KRL matching fall into similar
categories, where a recursive proof will provide the inferences
required to demonstrate the equality of descriptions. The only
clear instance in which partial matches arise are due to resource
limitations. Again the partial results determine whether the
current line of reasoning is to continue (perhaps given further
resources), or to be abandoned.
Concluding remarks

We have argued that there may be more to the meaning of
descriptions than their traditional Tarskian semantics, especially as
regards the way that they are manipulated within a logic-based
representation language. We briefly outlined the kinds of descrip­
tive terms included in the Prolog-based DLOG representation sys­
tem, and discussed various ways in which those terms could be
interpreted. Lambda terms, useful in a particular application, do
not have an obvious formal meaning and suggest the need for
higher-order semantics. Regardless of which semantic specification
is selected, the notion of extended unification can be used to mani­
pulate embedded descriptions. With some effort, the extended pro­
cedure can be viewed as providing either metalogical or higher-
order proof theory extensions.

Finally, it is important for representation systems to exploit the
computational as well as the traditional denotational meaning of
descriptions. The proceduralists have been saying this for years;
we claim that logic can contribute to an understanding of the com­
putational use of certain kinds of descriptions.

Acknow lodgements
David Poole suggested many improvements to an earlier draft of
this paper. Richard Robinson pointed out the relationship between
DLOG's lambda terms and Montague's formalization of obligation.

References

[Attardi8l] G. Attardi and M. Simi (1981), Consistency and
completeness of Omega, a logic for knowledge
representation, Proceedings of the Seventh
International Joint Conference on Artificial
Intelligence, August 24-28, The University of British
Columbia, Vancouver, British Columbia, 504-510.

716 R.Goebel

|Bobrow77a] D.G. Bobrow and T. Winograd (1977), An overview of
KRL-O, a knowledge representation language, Cognitive
Science 1(1), 3-46.

[Bobrow77b] D.G. Bobrow and T. Winograd (1977), Experience
with KRL-O, one cycle of a knowledge representation
language, Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, August 22-25,
MIT, Cambridge, Massachusetts, 213-222.

(Bobrow79j D.G Bobrow and T. Winograd (1979), KRL, another
perspective, Cognitiw Science 3(1), 29-42.

[Bowen82| K. Bowen and R.A. Kowalski (1982), Amalgamating
language and metalanguage in logic programming, Logic
Programming, A.P.I.C. Studies in Data Processing 16,
K.L. Clark and S.-A. Tarnhmd (eds.), Academic Press,
New York, 153-172.

[Brinton77] A. Brinton (1977), Uses of definite descriptions and
Russell's theory, Philosophical Studies 31, 261-267.

(Carroll78) J.M. Carroll (1978), Names and naming: an
interdisciplinary view, Research Report RC7370, IBM
Watson Research Center, Yorktown Heights, New York,
October.

[Clark78] K.L. Clark (1978), Negation as failure, Logic and Data
Bases, H. Gallaire and J. Minker (eds.), Plenum Press,
New York, 293-322.

[Dan 180] V. Dahl (1980), Two solutions for the negation problem,
Proceedings of the Logic Programming Workshop, July
14-16, Debrecen, Hungary, S.-A. Tarnlund (ed), 61-72.

[Dahl82] V. Dahl (1982), On database systems development through
logic, ACM Transactions on Database Systems 7(1),
102-123.

[Dilgcr78] W. Dilger and G. Zifonun (1978), The predicate
calculus-language KS as a query language, Logic and
Data Bases, H. Gallaire and J. Minker (eds.), Plenum
Press, New York, 377-408.

[Donnellan66] K.S. Donnellan (1966), Reference and definite
descriptions, Pfiilosophical Review 76(3), 281-304.

[van Emden84] M.H. van Emden and J.W Lloyd (1984), A logical
reconstruction of Prolog II, Proceedings of the Second
International Logic Programming Conference, July 2-
6, Uppsala University, Uppsala, Sweden, 115-125.

[Goebel84) R.G. Goebel (1984), DLOG: a logic-based data model for
the machine representation of knowledge, ACM
SIC ART Newsletter 87, 45-46 [reprinted, with
corrections, from ACM SIC ART Newsletter, 86, 69-71],

[Goebcl85] R.G. Goebel (1985), A logic-based data model for the
machine representation of knowledge, Ph.D.
dissertation, Computer Science Department, The
University of British Columbia, Vancouver, British
Columbia, (accepted with revisions in February), 247
pages.

[Hayes77] P.J. Hayes (1977), In defence of logic, Proceeding of the
Fifth International Joint Conference on Artificial
Intelligence, August 22-25, MIT, Cambridge,
Massachusetts, 559-565.

[Hewitt80] C. Hewitt, G. Attardi, and M. Simi (1980), Knowledge
embedding in the description system Omega,
Proceedings of the First American Association of
Artificial Intelligence Conference, August 18-21,
Stanford University, Stanford, California, 157-163.

[Jensen75] DC. Jensen and T. Pietrxykowski (1975), Mechanizing
to-order type theory through unfication, Theoretical
Computer Science 3(2), 123-171.

[Kahn8l] K. Kahn (1981), UNIFORM - a language based upon
unification which unifies (much of) LISP, PROLOG and
ACTl, Proceedings of the Seventh International Joint
Conference on Artificial Intelligence, August 24-28,
Vancouver, British Columbia, 933-939.

|Kaplan75] D. Kaplan (1975), What is Russell's theory of
descriptions?, The Logic of Grammar, D. Davidson and
G. Harman (eds.), Dickenson, Encino, California, 210-
217.

[Katz77] J.J. Katx (1977), A proper theory of names, Philosophical
Studies 31, 1-80.

[Leisenring69] A.C. Leisenring (1969), Mathematical Logic and
Hilbert's E-symbol, MacDonald Technical & Scientific,
London, England.

|Linsky77] L. Linsky (1977), Names and descriptions, The
University of Chicago Press.

[Montague74] R. Montague (1974), On the nature of certain
philosophical entities, Formal Philosophy, R.H.
Thomason (ed.), Yale University Press, 148-187
[reprinted from The Monist 53(1960), 159-194).

[Moore76| R.C. Moore (1976), D-SCR1PT, a computational theory
of descriptions, IEEE Transactions on Computers C-
25(4), 366-373.

[Morgan75] C.G. Morgan (1975), Automated hypothesis generation
using extended inductive resolution, Advance Papers of
the Fourth International Joint Conference on
Artificial Intelligence, September 3-8, Tblisi, USSR,
351-356.

[Morris69] J.B. Morris (1969), E-resolution: extension of resolution
to include the equality relation, Proceedings of the
lntemationl Joint Conference on Artificial
Intelligence, May 7-9, Washington, D.C., 287-294.

|Norman79] D.A. Norman and D.G. Bobrow (1979), Descriptions:
an intermediate stage in memory retrieval, Cognitive-
Psychology 11(1), 107-123.

[Ortony77] A. Ortony and R.C. Anderson (1977), Definite
descriptions and semantic memory, Cognitive Science
1(1), 74-83.

[Reiter75] R. Reiter (1975), Formal reasoning and language
understanding systems, Proceedings of the First
Conference on 'theoretical Issues in Natural Language
Processing, June 10-13, MIT, Cambridge,
Massachusetts, 175-179.

[Robinson79] J.A. Robinson (1979), Logic: Form and Function,
Artificial Intelligence Series 6, Elsevier North Holland,
New York.

[Robinson80] J.A. Robinson and E.E. Sibert (1980), Logic-
programming in LISP, Report 8-80, School of Computer
and Information Science, Syracuse University, Syracuse,
New York, December.

[Robmson82] J.A. Robinson and E.E. Sibert (1982), LOGLISP: an
alternative to PROLOG, Machine Intelligence, vol. 10,
J.E. Hayes, D. Michie, and Y-H Pao (eds), Ellis-
Horwood, 399-419.

[Rosenschein78] S.J. Rosenschein (1978), The production system:
architecture and abstraction, Pattern-Directed
Inference Systems, D.A. Waterman and F. Hayes-Roth
(eds), Academic Press, New York, 525-538.

[Schubert76] L.K. Schubert (1976), Extending the expressive power
of semantic networks, Artificial Intelligence 7(2), 163-
198

[Steels80] L. Steels (1980), Description types in the XPRT-system,
Proceedings of the AISB-80 Conference on Artificial
Intelligence, July 1-4, Amsterdam, Holland, (STEELS
1-9).

[Stickel75] M.E. Stickel (1975), A complete unification algorithm for
associative-commutative functions, Advance Papers of
the Fourth International Joint Conference on
Artificial Intelligence, September 3-8, Tblisi, USSR,
71-76.

