INTERPRETING DESCRIPTIONS IN A PROLOG-BASED
KNOWLEDGE REPRESENTATION SYSTEM

Randy Goebel
Logic Programming and Atrtificial Inteligence Group
Com Saence Department
University of Waterloo
Waterloo, Ontario
Canada N2L 3Gl

Abstract

Dencriptiona provide a syniactic device for abbreviating expres-
sions of a formal language. We discusa the motivation for descrip-
tions in a aystem called DLOG. We describe two approaches to
specifying their semantica, and & method for implementing their
use. We explain why some descriptiona should be given a higher
order interpretation, and explain how such descriptions cap be
interpreted in the simpler logic of Prolog. The essentin! ides is to
conatrain the domain of descriptions sc that ap extended unifien-
tion procedure can determine description equivalence within the
Prolog framework.

Introduction

A description is & syntactic device for shbreviating expressions
of a formal language. For example, “The king of America is an old
cowboy™ might be rendered in first order predicate calenlus as

Jevyllking—of —America(y)mx =y | Aold —cowboy(z)]

and paraphrased as “there o an z who is the unique king of Amer-
ica, and that 2 has the property ‘old-cowboy’.” This expreasion ¢an
be abbreviaied, in the classical waYy, a5
old —cowboy(tz [king~of —America{z)|}; we say that """ is used to
form a definite description. ln first order logic, predicate argu-
ments denote individual objects; the deacription operator ¢+ hans syn-
taclically “objectified” a portion of the original sentence.

The description operator has ¢realed a new syntactic object,
but the meaning or denctation of that object may not be well-
defined. In this particulsr case, the existence and uniqueness pro-
perties presupposed by the above description have been the isasue of
much debate {e.g., see [Kaplan75]).

Another example of descriptive abbreviation relaxes the unigue-
ness amsumption. For example, the expression “there is a person
who is an old cowboy, and who is a Republican” might be rendered
as 3Ir|person{z)Aoid boy(z)ARepublican(z)|. We might use
another description operator, say £ (read "an”), to provide the fol-
lowing abbreviations:

pereon{fx [old boylx)ARep {))).

ofd —cowboy(£x [person{z |ARepublican(z}]).

Republican £z [peraon(z JAcld —cowboy(z)]).

Each such abbreviation uses the description operator "£" to focus
sybitactic stiention on the predicate ‘‘person,” "old-cowboy,” and
“Republican,” respectively. Again we must be concerned with the
meaning of such deacriptions, It is somewhat natural 1o treat all of
the above abbreviations are zemantically synonymeous—that all
ansert the existence of an individual object with the three proper-
ties. But this creates the need to expiain their obvious syntactic
differences in some other way. One hint comes from Hilbert and
his use of description operators (c.g., see [LeisenringB®, Robin-
son79}}. Hilbert used the transformations

Ve L[z }okez~K(z))
3z l(z -Ke ()}

i

te simplify derivations. In other words, the transformations pro-
vided a computational advantage even though their mesnings are
identiesl. Robinmon nicely expresses the intuition:

“It would meem that Hilbert terms..do capture a certain
intuitive manoeuvre, which 13 worth formalizing: to iniro-
duce & unique name for an entity whose rriatence has Leen
established by some previous parl of an argument, so as to
continue with the argument and be able conveniently to
refer to it if need arises.” {Robinson74, p. 201]

This rationalization of the syntactic differences is related to the
object-orientation of Al representation systems, where the ahility to
refer to and manipulate objects is argued to be of conceptunl
advantage in specifying eymbolic representations of domains (¢.g.,
[Moore78, Schubert78, Norman?9, Bobrow77a, Bohrow?7h,
Hewitt80, SteelsB0, Attardisl]). {Descriptions have also been used
within the logic database literature (e.g., [Dilger78, Dahl80,
DahiB2]).}

In Al, part of the reluctance to adopt a logical mterpretation of
dencriptions must be attributed to the long-standing confusion and
controverasy about their meaning—Ilogicians do not generally agree
on the semantics of descriptive terms [e.g., see [Carroll?8]). The
reluctance 1o analyze descriptions in a logical framework probably
resulta from a traditional misunderstanding of the role of logic
[ef. [Hayes7T}.

Deacriptive termn in DLOG

DLOG is a representation sysiem implemented in Prolog. It is
a “system” jn the sense that i provides a general representation
language (including various kinds of descriptions), a yuety evalua-
tion mechanism, a simple integrity maintenance scheme, and an
sbstract deseription of the intended semantics of the representation
language independent of implementation. Although originally
developed to to belp describe concepts in the Department Latabase
{DDB) domain, the DLOG system is domain independent in the
sense of traditional data base management systems.

The descriptions in DLOG are motivated by a desire for brevity
in describing undergradunte degres program requirements in the
DDB. For example, suppose that “CS115 or & 1.5 unit elective” is
a requirement. The desire is to avoid an expression like

requirement (BSeC'S,C5115)
V [z [requirement (BScCS x)
Aunita(z,1.5)Aclective{ BSOS 7))
in favour of something iike
requirement{B5:C5,
x|z =CS115
vz =wyelective (BSOS y)
Aunita{y,15)]])

712 R Goebel

by usmg some appropriately defined description operator "K' S|m|-
larly, ptonsofsdswemtobeuseﬁjl For example, the
ion "at least 12 CS courses" might suggest the use of an
like that in fig. 1. where the components grouped bv
the left brace must be written once for each set of twelve CS
courser. This is cleary a tresome way to express the assertion,
and furthermore, would require extensive modification after any
new CS oourse was (e.g., by adding an assertion like "CS-
course(CSI23)"). We would prefer something like
requirement (BSeCS,
xx|sect(z)
Acardinality —of(z}=12
AVy g€z DCT —~courae(y]]|)
where "K" is another appropriate description forming operator.
Similar motivations have given rise to the following description
forms in DLOG.
Definite individuals. DLOG's definite individual provides a
shorthand syntax for referring to a unique individual whose name is
unknown. Intuitively, the variable binding symbol V can be read

as the English definite article "the." For example, we might refer
to "the head of Computer Science” as

sz [head —o f(z ComputerSeience)|

If our description distinguished the intended individual, then we
need never know which individual constant actually names that
domain individual. We nomally expect that the variable bound
with the symbol V appears somewhere in the fomula that consti-
tutes the body of the description.

Indefinite individuals. \WWhen we need to refer to "any old a"
with some property specified by a formula '(a)\ we can use an
indefinite individual. We use the variable binding symbal V as the
English indefinite article "a" or "an." For & . "a course with
course number greater than 300" might be referred to by the inde-
finite individual

ez |course(x YAz |courae —no(x,,z) Ax=300)|

As for definite individuals, we nomally expect that the variable
bound with the symbol 'E' appears somewhere in the formula that
constitutes the body of the description

Definite sets. A definite set is used to refer to a set consisting
of all individuals that safisfy some pro . The name "definite"
is used to to its use in "definite individual." A definite
set is "definite” because it refers to all individuals in the current
knowledge base that satisfy the property. For example,
"the set of all numerical analysis courses" might be designated as

{z:coursef{z JAtopic —of (z,,NA)}

Here the braces "{ }" serve as the description forming symbol.
Indefinite sets. Indefinite sets are "indefinite” in the sense
that they refer to one of a set of sefs. Like indefinite individuals,
they are intended to be used to refer to "any old set" that is an
element of the set of sets that satisfy the specified properties. For
example, the indefinite set
1z, :eourac{z Acardinality—o f (X3}

is the DLOG term that represents an arbitrary set that is a
member of the set of "all 3 element sefs of courses.”

Lambda constants. Lambda constants were introduced to cap-
ture a kind of individual occuring naturally in the DDB domain:
regulations. For example, in describing a typical degree program,
we must dassify all kinds of requirements for that program, e.g.,
"nobody can register if they're under 16 years old" refers to a
regulation that uses the lambda constant

Az)[3zlage —of {z,,25)Azs216]]

requirement{BScCS C5115)
Aregquirement (HS5cCS,005215)
A

Arequirement{ B85 ,05442)
[

requirement{BScCS (IS 1IR)
Arequirement(B5eC’S ,C5215)
A

Aregquiresnent {508 ("H442)

Figure 1."...at least 12 CS courses"

In this way regulations can be placed in relation to other individu-
as and sefs, eg.,

program —prerequisite (BSc Majors,
first,

M, [3xglage —of(z |z)Ax,218|[)

says "one of the regulations for the first year of a BScVigjors pro-
gram is that an individual be at least 16 years old."

Semantics of descriptions

We have that there is more to the meaning of
descriptions than their denotation in a first order language. In
DLOG (and, we claim, in any representation system) there are at
least two aspeds to the meaning of descriptions.

Ore important aspedt is the traditional specification of denota-
tional semantics along Tarskian lines: given a weldefined dass of
formal expressions, one specifies a systematic way in which expres-
sions and their parts can be attributed denotations in an interpre-
tation. Two assumpiions underlying this methodology are (1) that
the expressions in question are being evaluated as to their truth;
and (2) that the denotation of complete expressions depends solely
on the denotations of their parts.

Another important aspedt, often overshadowed by concems of
the former, is the intended meaning of such formal expressions
when they are being formed (e.g., by a user), during their use in
assertions (e.g., when adding facts to a base), and during
their use In queries (e.g., when requesting that facts be verified
with respect to a knowledge base). In this regard, the use of
descriptive terms impinge on philosophical associated with
names and their use (e.g., [Donnellan66, Brinton77, Katz77, Lin-
sky77)). A most common is the difference between
referential and attributive use of descriptions. The issue is whether
a description is intended to refer to a known referent (referential),
or unknown referent (attrlbutlve) Apparently only a few Al
researchers have considered the problem (eg., [Schubert76,
Ortony77]). These and related issues are further discussed in [Goe-
be!84, Goebel85]

Approaches to specifying DLOG's semantics

To attempt a coherent description of a mechanism
for proving existential formulas in DLOG, one must first select a
for specifying the meaning of descriptions. The most
common method is Russells contextual definition [Kaplan75j. Con-
textual definition is essentially macro definition, e.g., any string of
the form @{ex W2)]) is replaced with
3zVy[[¥y}ms =y |ad(z)].

The meaning of the description is specified by the logic from which
the definition is taken.

A related isste is the meaning of descriptive terms when their
proof-theoretic preconditions fail. For example, a constructive
proof of 3= &{z)a¥(=) will produce a referent of the description in
H{E¥(x)]), but what does the latter mean when a proof of the

er fails? Under one popular theory [Kaplan75, p. 215], the
meaning of such descriptions whose logical preconditions fail have
been specified by convention, e.g., a failing description refers to a
designated null constant that lies outside the domain of discourse.

First order semantics

Ore possble choice for the description defining language is first
order logic. The overwhelming advantage of first order semantics
is simplicity; an abstract, mplementahon independent specification
of semantics is worthwhile in that it provides a simple way to
understand the complexity of the actual system.

Using first order logic, most of the intended meaning of DLOG
descriptions can be specified in a relatively straightforward way.
The individual descriptions (definite and indefinite) are specified as
above; sefs can be axiomatized with a set relaton and a set
membership relation “g" (DLOG set theory is finite, thus very sim-
ple). However, lambda terms rely on semantic notions foreign to
first order logic; their definition here requires the use of meta
language concepis.

Contextual definitions for set descriptions are defined as fol-
lows. The sentence

($idza¥z,)H
contains no set variables—the term {x:é(x,)}\ desaibes a set con-
sisting of all individuals a such that ¥e) is true. In a first order
that distinguishes set variables X; X3, Xj,..., the defini-
tion of sentence (1) is rendered as
3X, [${X)AVE) [z € X =¥{z,])]
This can be read as "there is a set X; that has property ®, and all
individuals x, in the set have property ¥." Because the only defin-
ing property of a definite set is the property attributed to each of
its members, its uniqueness is easy to establish. In contrast to
definite individuals, there is only one extension for each definite set
so a further specification of uniqueness is not required.
The contextual definition of indefinite sefs can be approached
in a similar way. We can view
P{z X ¥z)AMAX D
as having the definition
AX \¥a, [[z e X, ¥z YA X JAP(X)
This says that "some set X; that hes the property O and whose
elements each have property ¥, also has property ®." Intuitively,
the indefinite set construction fies a set that fits the descrip-

tion, similar to the way that an indefinite individual specifies an
individual that fits its description.

DLOG lambda constants provide the user with a method of
asserting axioms about unary predicate abstractions, intuitively
interpreted as regulations. For example, the assertion

R. Goebel 713

Pz, W)

can be interpreted as asserting that the property @ is true of the
regulation named by xz,¥{z,’). These terms are useful because
they allow a user to assert relations about properties. Intuitively,
lambda constants are most reasonably interpreted as a spedal kind
of constant, indexed for retrieval by the terms they appear with.
However, they cannot be manipulated without the definition of an
application mechanism. This definition relies on a mefa relation
satisfies, which is defined in terms of the provability meta relation
derivable (cf. Bowen82)). The satisfies meta predicate then pro-
vides a method for testing whether an individual safisfies the rela-
tion denoted by a DLOG lambda constant. That is,

¥a,[oatis fics(z | sz, ¥)mderivable (DB ¥z ,))]

For any individual constant a of a DLOG database DB,
sutis fica(a,).x,ﬂ:,)) holds if and only if Wa) holds in DB. An
assertion of the form

- @

eatia fiea{ahx P(z,)
is interpreted to mean that, in the current database,

#{a))
is derivable. Indeed (2) is a dumsy altemative to (3), but by using
lambda constants in this way, we not only provide a way of assert
ing axioms about regulations, but also a way of using those regula-
tions in question answering. The satisfies predicate provides the
mechanism for applying lambda constants as unary predicates of
the current database.

An example will illustrate. The experimental DDB domain
requires the description of degree requirements, which can often be
expressed as lambda constants, e.g., the assertion

enrolment —requirement (BScCS, @)
Az [Aylage ~of (z w)Ap=16]])

states that "an enroiment requirement of the BSACS degree is that
the candidate’s age is greater than or equal to sixteen." The
lambda constant format allows the requirement fo be asserted and
queried, and the satisfies predicate provides the mechanism to
pose a query like

Az [enrolment —requirement (BSeCS x) ®)

Asatéafica(John)| ?

that can be read as "Has John satisfied an enrolment requirement
for the BSACS program?"

Notice that, in the DDB domain, degree requirements are most
naturally conceived as conditions which must be satisfied. Since
degree programs are distinguished by their various requirements, it
is most straightforward to desaribe degree program requirements as
relations on degree names and conditions to be satisfied—in DLOG,
as lambda terms.

Of course there are altematives to the use of this spedial term.

For example, the of sentence (4) might be rephrased in.
terms of a standard first order language as
¥z |satis fied —requirementaz BS:CS) (6)

D3yloge ~of (s ¥)AvELE])

where we would use BScCS as the name of a degree program and
modify the predicate satisfies to comespond more dosely to our
intuition regarding what one must do with degee requirements.
This altemative hes a more straightforward meaning since there
are no "special" forms. But now there is no way of asking what
the requirements of the BSoCS program are, short of providing
another non-first order primitive for manipulating sentences. For
example, to answer the equivalent of query (5) in the altemative
notation, we require an operation that refrieves a sentence of the

714 RGoebel

fom (6) from the cument database, and then retums the conse-
quent of that senence as an ansner

Lambda tems can be manipulated with a standard (sorted)
proof procedure to answer existential queries about requirements;
they are simply retrieved and bound to existential lambda variables
as in nomal answer extraction. Furthemmore, they can be used in
conjunction with the satisfies predicate to determine if an indivi-
dual hes satisfied a particular requirement.

The case for higher order semantics

The dear disadvantage of first order semantics is an inability fo
directly deal with higher order conoepts. Though DLOG domains
are resfricted fo be finite and no absfraction is pemitted in the
DLOG proof mechanism, the specification of certain DLOG expres-
sions in a first order way is contorted and mitigates against the
desired semantic simplicity. This is most obvious in the way that
lambda terms must be explained in terms of meta relations.

Ore altemative is to e a second-order intensional logic, as
ued by Montague b explain such conoepls as "obligation,"
"event," and "task " For example, Montague's formalization of the
concept of obligation [Montague74, p. 151ff] comesponds well with
the use of lambda terms in the DDB application of DLOG.

Montague's sysiem provides a natural semantics for DLOG's
lambda terms, and is obviously powerful enough to be used to
desaibe the rest of DLOGSs descriptive terms (individuals, sefs).
Only DLOG lambda terms require this treatment, but Montague's
sysem provides a rather moe uniform treatment of DLOGs
semantics than is passble in weaker systems.

The complete picture of Montague's sysem requires careful
study, but the essence can be explained in a relatively straightfor-
ward manner. An essentia) is the classification of individu-
als into categories of two different kinds. Each n place predicate
oconstant hes an assodated type <Sp,S,' "' Sy.1-~ that indicates
the kind of object that can appeer in each tem position: , —1
specﬂi&s a standard* individual; s, -0 specifies a proposition; and

S species a S;place predlcate

For example, a predicate constant P of type <—1,1> takes
individual constants in its first position and unary predicates in its
second. In the Department Data Base domain, the satisfies predi-
cate constant hes type <—1,1>, eg., the asserion

satisfies(/red, Xx [completed (x ,cs 115))

hes an individual constant 'fred’ in the first argument position, and
a lambda constant in the second argument position. The first
denoies an individual object (the person with name 'fred’), and the
seoond denotes a predicate specifying the property of "x compete
ing the course CS115"

The meaning of the above assertion is assigned in a way that
introduces the second and most important difference of Montague's
system. The assgnment of truth vaues to semiences is an
inherently two phase process. As Montague explains [Montague74,
p. 157], an interpretation assgns intensions to symbds, and a
model assigns extensions. Extensions indude the standard objects
welHanown from traditional Tarksian semantics, as well as sefs of
sequences of individuals. Intensions are functions from possble
worlds to the universe of individuals. They are infroduced in order
to distinguish the serse or abstract meaning of a predicate from its
denotation in a particular possie world.

The complexity of Montague's complete system can be perplex-
ing, the essence of the system provides a rich specification language
for DLOG's complex objects. Sare of the complexity dissoves
because of the simplicity of DLOG theories: they are finite, and the

Eﬁmmww'mmmmdmmaha
- Se 74 p. 150, The nolion of predicaie Leed in this coniexd s
mm%a‘@aﬂhmwr

intended interpretation is over a highly restricted domain. This
simplicity consfrains the number of worlds that can senve
as interpretations for DLOG theories (thus, for example, providing
a restricted interpretation of "o"). In the DDB example, the
intended interpretation together with partial knowedge of each
particular student identifies the intended possble world for seman-
tic interpretation.

In Montague's second order logic, the meaning of DLOG

lambda expressions is given by expressing them as unary predicate
constants. For example, the DLOG formula

requirement{BSeC'S hx [compleled{x CS5115)}) (10)
is written as
requirement{B5eC8 Feompleted (2 C5115)) 11)

In general, the @ syntax is shorthand for
TQAuD @ |u |-

Montague uses the symbas ‘A’ and V for 'V and '3', respectively.
He also uses brackets where parentheses arc typical, eg., P[x]for
P(x). In addiion Montague employs the symbols HP and @', read
as "the" and "necessarily," respectively. These latter syrrbols ae
Lsedtoformramsofpredicat&s. DLOGSs lambda symbd X'
plays the sare role as Montague's ™ symbol.

Formula (11) is intended to meen "a requirement of the BSACS
program is to beer the relation completed to the course CS115."
The intensional semantics a way of admitting different
intensions for the completed relation, e.g., completing a couse
might have different meanings in different passble worlds. In the
e of DLOG, the particular world in which symbols are
assigned extensions is fixed to be the Departmental Database.

The second order power of Montague's logic provides the
expressive ability to assert relations on predicates: it is the property
of completing CS115 that bears the requirement relation to the
program BScCS, and not any particular extension of the property.

Again, the application of lambda terms can be explained with
the aid of a relation called satisfies. Howewer, in Montague's
language satisfies is a predicate constant of type <—1,1> and is
interpreted (in a possible word t in a structure </,U,F>) as a
relation </,U,<l,U» where / is the set of possible worlds and U
the universe of possible individuals. (So <7 ,U> is a unary relation,
<[,U,U>is a binary relation, etc.)

Computing with descriptions by extended unification

The mechanism for manipulating DLOG descriptions is imple-
mented in the Hom dause logic of Prolog. Adopting aone of the
aboe to semantics mearns to adopt the comesponding
view of what the DLOG proof procedure is doing. The simplest
way fo view the DLOG proof procedure is as a Hom dause prover
extended with meta relations to hande the norHHom features of
DLOG. However, we specuiate that the theoretical foundation of a
higher-order proof procedure besed on unification due to Jensen
and Pietrzykowski [Jensen79] will provide the comesponding view
for the Montague system. Here the intuition is to consider the
DLOG implementation as a restricted implementation of their unif-
ication procedure for general type theory. We have not yet investi-
gated the possibiity of adapting Jensen and Pietrzykowski's pro-
cedure for use in an intensional logic.

Instead of extending Prolog's Hom dause theorem prover to
hande the expressions that arise from any method of contextual
definition, the unification algorithm can be augmented to provide
the comrect matching of descriptive terms. As others have observed
(e.g., (Clark78, van Emdend4]), any assertion of the form

Higty, L)

where t;, 1%1%n are terma, can he rewritten as

B(z12g 3 JCx ™ AZA - - AT, -,
and implications

Higty, -)CERARA - AP,
can be rewritien as

Hzrzy @,)T 8= AN - Az, ™,

AVANA - - AW,
where the X, 1<i<n are new variables not occuring in the original
fomulas. In DLOG, the equality ions anising from - this
transformation are determined from within unification. In a sense,
sare of the complexity of derivation is ofHoaded fo the "pattem
matcher" (cf. [Retter75]).

The idea of extending a resolution proof procedure's power by
augmenhng unification wes first suggesied by Monis [I\/Ioms69]
that equalty be manipulated with so-caled "
unlﬁcatlon " There have been many other related proposals |ndud-
ing Stickel [Stickel75], Morgan [Morgan75), and Kahn [Kahn8l], Of
related interest is the representation language KRL [Bobrow773,
Bobrow77b, Bobrow79), which relies on a complex "mapping"” pro-
&s on several different kinds of object descriptions caled
"descriptors." We argue elsewhere that KRL's mapping can best be
understood as a elaborated unification scheme [Goebel8].
Retuming to the handling of descriptive terms by augmenting
unification, we cite Rosenschen on the advantage of embedoed
.the data object is kept small and "hierarchical” so that
where an exhaustive match must be performed, failure can
oocur quickly. That is, deep, structures are
prefered to broad, homogeneous structures. For example,
{(XOOR is better than {{}{}{}{}}!

We view Rosenschein's daim as support for the interpretation of
descriptions as embedded terms, rather than as their contextual
definition by rewriting.

The DLOG unification algorithm is invoked by the DLOG
derivable predicate, similar to the way Prolog's derivation pro-
cedure usss a built-in unification algorithm. Intuitively, whenever a
unification must be and there are spedal DLOG terms
to be matched, standard unification is intercepted, and DLOG unif-
ication is used. For example, suppose that the two terms Bx<Py
and Fred are to be unified. The applicable DLOG unify axiom is

uni fy(£z &{x), Fred j=apply{hx Pz), Fred)

where apply binds the symbd "Fred” to the lambda variable "x"
and invokes derivable.

The DLOG unification definiion uses an organization similar to
the LOGLISP system of Robinson and Sibert [Robinson80, Robin-
son82]. LOGLISP consists of a logical proof theory embedded
within LISP, and allows the invocation of LISP by the theorem-
prover, and the by LISP. Simiary, the DLOG
derivable procedure can invoke the standard Prolog proof pro-
cedure, and both ae acoessble from with DLOG's unification
matcher.

In general, the comect "unification” of the DLOG extensions
requires a derivation procedure more powerful than that provided
by Prolog. For example, the equivalence of two lambda expres-
sions, e9., Az #{z) and Ay Hy) can only be estabished if it can be
shoan that vz ${z)m#(z) folows from the curent database. The
current DLOG unification procedure uses a local context mechan-
ism to derive this equivalence. It is also the cae that disjunctive
tems require a more general proof mechanism, since a proof of
Elxﬁz)vﬁy) cannot be handed by the current implementation,

h a spedal heuristic will uise a notion of partial proof to
remeve facts relevant to such a query [Goebel8s|.

t Roeersden/g, p. 634

RGoebel 715

Bobrow and Winograd's description of KRL's matching frame-
work (see [Bobrow77a, §2.5]) dso usss the notion of partial match.
Their discussion about what is deductive and what is heuristic is
sufficiently interesting to pursue here because DLOG already pro-
vides some of the features of KRL's "flexible" matching.

Recall that the basic data type of KRL is a frame-ike structure
called a "unit." A unit is a collection of "descriptors" that attribute
various properties to the unit in which they appear. Of interest
here are the various ways in which units can be related by match-
ing their descriptors. For . oonsider KRL's matching by
"using properties of the datum elements” [Bobrow77a, pps. 23-24]:

Consider matching the pattem descriptor (which Owns (a

Dog)) against a datum which explicitly indudes a descriptor

(which Owns Pluto). The SELF description in the memory

unit for Pluto contains a perspeciive indicating that he is a

dog. In a semantic sense, the match should suooeed. |t can

cF>)r|1Iy do so by further reference o the information about
uto.

This form of matching already exists in DLOG. For example, the

KRL descriptors (which Owns (a Dog)) and (which Owns Pluto)

might be rendered as 3r[Ouwne{z ey|dogly)]) and
3z [Owns(z Pluta)], respechively If we have the fact that Pluto is
adog (i.e., the asserion dog(Pluto)), DLOG unification will suc-
cessfuly un'rry the abowe parr by recursiely proving that
dog(Pluto) follows from the knowledge base.

Several other foms of KRL matching fall into similar
categories, where a recursive proof will provide the inferences
required to demonstrate the equality of descriptions. The only
dear instance in which partial matches arise are due to resource
limitations. Again the partial results defermine whether the
current line of reasoning is to continue (perhaps given further
resources), or to be abandoned.

Concluding remarks

We have that there may be moe o the meaning of
descriptions than their traditional Tarskian semantics, espedally as
regards the way that they are manipulated within a logichased
representation We briefly outiined the kinds of descrip-
tlvetennsmdudedlnﬂ'leﬂobg-basedDLOGrepresentatons&
tem, and discussed various ways in which those terms could be
|nterpreted Lambda terms, useful in a particular application, do
notra/emobvmsformalmea'hga‘d the need for
higher-order semantics. of which semantic
is selected, the notion of extended unification can be used to mani-
pulate erbedded descriptions. With some effort, the extended pro-
cedure can be viewed as providing either metaloglcal or higher-
order proof theory extensions.

Finally, it is important for ion sysems to exploit the
computational as well as the traditional denotational meaning of
descriptons. The uralists have been saying this for years;
we claim that logic can contribute to an understanding of the com-
putational use of certain kinds of descriptions.

Acknow lodgements

David Pode suggestied meny improvements to an eariier draft of
this paper. Richard Robinson pointed out the relationship between
DLOG's lambda terms and Montague's formalization of obligation.

References

[Attardi8I] G. Attardi and M. Simi (1981), Consistency and
completeness of Omega, a logic for knowledge
representation, Proceedings of the Seventh
International Joint Conference on Artificial
Intelligence, August 24-28, The University of British
Columbia, Vancouver, British Columbia, 504-510.

716 R.Goebel

|Bobr0N77aE<BL(_3C.) Bobrow and T. Winograd (1977), An ovenview of [Kaplan73] D. Kaplan (1797T5’3 V\L/hat is Rflgselrs theory Bf d
| a knowledge representation . Cognitive descriptions e Logic of Grammar, D. Davidson
Science 1(1), 346. eng.ege, Cog G. Haman (eds) Dickenson, Encdino, Calrfomla 210-
[Bobrow77b] D.G. Bobrow and T. Winograd (1977), Experience 217.

with KRL-O, ane cyde of a knowledge representation [Katz77] J.J. Katx (1977), A proper theory of names, Philosophical

language, Proceedings of the Fifth International Joint Studies 31, 1-80.

Conference on Artificial Intelligence, August 22-25, [Leisenring69] A.C. Lelsennng (1969), Mathematical Logic and

MIT, Cambridge, Massachusets, 213-222. Hilbert's E-symbol, MacDonald Technical & Scientific,
(Bobrow79) DG Bobrow and T. Winograd (1979), KRL, another London, England.

, Cognitiw Science 3(1), 2042. |Linsky77] L. L|nsky (1977), Names and descriptions, The

[Bowen82| K Bowen and RA. Kowalski (1982), Amelgamating University of Chicago Press.

language and metalanguege in logic programming, Logic [Moniague74] R. Montague (1974), On the nature of certain

Programming, AP.1.C. Studies in Data Processing 16, philosophical entiies, Formal Philosophy, RH.

K.L. Clark and S-A. Tamhmd (eds.), Academic Press, Thomason (ed.), Yale University Press, 148187

New York, 153172, [reprinted from The Monist 53(1960), 158-194).
[Brinton77] A. Brinton (1977), Uses of definite desariptions and Moore76| R.C. Moore (1976), D-SCR1PT, a computafional theory

Russells theory, Philosophical Studies 31, 261-267. ggm IEEE Transactions on Computers C-
(Camoll78) J.M. Carroll (1978), Names and naming: an

interdisciplinary view, Research Report RC7370, IBM Morgen75] C.G. Morgan (1975), Automated hypothesis generafion

Watson Research Center, Yorkiown Heights, New York, using extended inductive resolution, Advance Papers of

October. the Fourth International Joint Conference on
[Clark78] KE. Clark (19(7;8), Negation as failure, Logic and Data é‘sq'%a/ Intelligence, Seplerber 3-8, Thlisi, USSR,

ases, H. . : 0.

N YO’,E Salare and J. Mker (eds), Plerum Press, 11601 JB. Moris (1969), E-resolution: extension of resoluon
[Dan 180 V. Dahl (1 980) Two solutions for the negation problem, to indude the equality relation, Proceedings of the

Proceedings of the Logic Programming Workshop, July Intemationl Joint Conference on Artificial

1416, Debrecen, Hungary, S-A. Tamiund (ed), 61-72 Intelligence, Mey 7-9, Washington, D.C., 287-2%4.
[Dahig2] V.. Dahl (1982), On datbase sysiems development through INomean79] DA. Noman and D.G. Bobrow (1979), Descriptions:

logic, ACM Transactions on Database Systems 7(1), an intermediate siage in memary retrieval, Cognitive-

102123, Psychology 11(1), 107123,
[Digcr78] W. Diger and G. Zifonun (1978), The predicate [Ortony77] A. Ortony and RC. Anderson (1977), Definite

calouiustanguage KS as a query language, Logic and descriptions and semantic memory, Cognitive Science

Data Bases, H. Gallaire and J. Minker (eds.), Plenum , 1(1), 7483,

Press, New York, 377-408. [Retter75] R. Reiter (1975), Formal reasoning and language
[Donnelan66] K.S. Donnellan (1966), Reference and definite understanding systems, Proceedings of the First

descriptions, Pfiilosophical Review 76(3), 281-304. Conference on 'theoretical Issues in Natural Language
[van Emden®4] M.H. van Emden and JW Lloyd (1984), A logical Processing, Jue 1013, MIT, Cambridge,

reconstruction of Prolog I, Proceedings of the Second Massachusetts, 175179,

International Logic Programm/ng Conference, July 2- [Robinson79] JA. Robinson (1979), Logic: Form and Function,

6, Uppsala University, Uppsala, Sweden, 115125, Avrtificial Inteligence Series 6, Elsevier North Holland,
[Goebel84)RG Goebel(1984) DLOG: abgn-baseddatarrtxjelfor New York.

, ACM [Robinson80] J.A. Robinson and E.E. Sibert (1980), Loge

SIC ARTNewsletter87 4546 [rep! nnted with programming in LISP, Report 8-80, Schod of Computer

comrections, from ACM SIC ARTNewsIetter 86, 69-71], and Information Sdence, Syracuse University, Syracuse,
[Goebd85] RG. %bel(1985)Abgcbeseddaiarmdelforﬂ1e New York, Decermber.

machine , PhD. [Robmson82] JA. Robinson and E.E. Sibert (1982), LOGLISP: an

dissertation, Computer Sdenoe Department The altemative to PROLOG, Machine Intelligence, vol. 10,

University of British Columbia, Vanocouver, British J.E. Hayes, D. Michie, and YH Pao (eds), Ellis-

Columbia, (acoepted with revisions in February), 247 Horwood, 399419,

pages. 78] S.J. Rosenscnen (1978), The production systern:
[Hayes77] P.J. Hayes (1977), In defence of logic, Proceeding of the architecture and abstraction, Pattern-Directed

Fifth International Joint Conference on Artificial Inference Systems, DA Watermen and F. HayesRoth

Intelligence, August 22-25, MIT, Cambridge, (eds), Academic Press, New York, 525638,

Massachusetts, 559-565. [Schubert76] L.K. Schubert (1976), Extending the expressive power
[Hewitt80] C. Hewitt, G. Attardi, and M. Simi (1980), Knowledge of semantic networks, Artificial Intelligence 7(2), 163-

embedding in the desaription system Omegg, 198

Proceedings of the First American Association of [Steels80] L. Steels (1980), Description types in the XPRT-system,

Artificial Intelligence Conference, August 18-21, Proceedings of the AISB-80 Conference on Atrtificial

Stanford University, Stanford, Califomia, 157-163. Intelligence, July 14, Amsterdam, Holland, (STEELS
[Jensen79] DC. Jersen and T. Pietrxykowski (1975), Mechanizing 19)

to-order type theory through unfication, Theoretical [Stickel75] M.E. Sticke! (1975), A complete unification algorithm for

Computer Science 3(2), 123-171. associative-commutative functions, Advance Papers of
[Kahn8l] K. Kahn (1981), UNIFORM - a language besed the Fourth International Joint Conference on

unification which unifies (much of) LISP, PRO_OG and Artificial Intelligence, Sepiember 3-8, Thlisi, USSR

ACTI, Proceedings of the Seventh International Joint 71-76.

Conference on Artificial Intelligence, August 24-28,
Vancouver, British Columbia, 933-939.

