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ABSTRACT

A general principle is given for detection of
the 3D structure and motion from an image sequence
without using point-to-point correspondence. The
procedure consists of two stages: (i) determination
of the "flow parameters" from "features" without
using correspondence and (ii) computation of the 3D
structure and motion from these flow parameters.
The first stage is done by solving equations of
functionals, and the second stage is described in
analytical expressions.

I INTRODUCTION

Schemes to recovery the 3D structure and
motion from a 2D image sequence have been studied
by many people, e.g., [T - 6], but most of them are
based on the point-to-point correspondence, which
requires a large amount of implementation effort.
There do exist methods which do not require the
correspondence [7 - 9], but they can be wused only
to trace the motion along time, starting from a
given initial information, and the results are
obtained only numerically.

In this paper, we present a general
mathematical principle to detect the 3D structure
and motion without using correspondence. Yet, the
solution at particular time is given In analytical
expressions, giving geometrical Interpretations and
proving the existence of the spurious solution [6],
etc. The procedure consists of two stages. First,
we extract, without using correspondence, the "flow
parameters" which completely characterize the
viewed motion for each planar region of the object.
This is done by measuring "features" of the image.
The next stage is the computation of structure and
motion from these flow parameters, and the solution
is given in the form of analytical expressions.

I OPTICAL HON AND AON PARAVETERS

Take a Cartesian arzy-coordinate system on the
image plane and the z-axis perpendicular to |It.
Consider a plane moving in the scene. Let z = px +
qy + r be its equation. Let (0, O, 1r), the
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intersection between the plane and the z-axis, be a
reference point. The motien 1s iInstantaneously
specified by translation velocity (2, b, ¢) at the
reference point aud rotation veloclity {wy, wpy, w3)
around 1t (f.e., with rotation axls orientation
(wy, wy, w3} and anpular velocity ()2 + (wp)2 +
(w3)2 (rad/sec) screwwise around it). Our goal 1is
to compute p, g, P, d, b, ¢, wy, wy and wy from an
Image sequence without using point—to-point
correspondence.

Let (0, O, - f), the point away from the Image
plane by f on the negative side, be the viewpoint,
A point (X, Y, 2) in space 1s projected to {fX/(f +
Z). fY{(f + 2}) on the image plane. If the point
is on the plane 2 = pr + qy + r moving as described
above, It Induces the followIng "optical f£low" at
point (x, ¥) on the lmage plane (of. Kanatani [8,
9]:

W = ug + Azx + By + (Ex + Fy)x,

vo=upg+ x4+ Iy + {Fx+ Fyly, M
where B parameters ug, g, 4, &, €, P, £ and F are
glven by

uy = fa/(f + r), vy = FUI(S + »),

A=puy = {pa +ed/(f+r),

B = qu, - wy - gal{f +r),

€= - pw +wy-pb/(f+r), (2)
D=~ qu - gh +e)/{T +r}),

E = {up + pel{f +r))if,

F={-w +qgef{f+r))if.

In other words, what we are viewing 1Is a very
restricted form of motion whose welocities are
specified enly by 8 parameters ug, vg, 4, B, €, D,
¥ and F. 1f these parameters are the same, motions
seem ldentical to the viewer., Hence, our procedure
is divided into two stages. First, we will show
how to detect the "“flow parameters" ug, vy, 4, B,
¢y, 'y £ and F from an image sequence without ueing
point~to=point correspondence, Next, we will show
how to solve simultaneocus non-linear equations (2}
foer p, q, r, a, b, ¢, @, wp; and wy not simply
"mmerically” but also "analytically." Here, the
“"focal length" f of the camera is assumed to be a
known constant.

If we take the limit f + = of a large focal
length f, we obtain the follewing "“orthographic
approximation"

Up = d, vﬂ-br



4 = pup, B = qup - wg,
[ - puy + wa, Q-_qwl! (3)
E=0, F =0,

and if we omit terms of 0(1/f?) but retain terms of

0(1/f), we obtain the following "paeudo-
orthographic approximacion™
up = fa/(f +r), vp = fBI{f + »),
A=puy - {pa+ed/(f+r),
B = quy - uwy - gaf{f +r),
Com - puy + wy - pbl{f + 1), (%)
e - quy = (gh + &)/{f + 1},
E = wyff, F=-uw/f.

Here, we consider only the planar metion.
However, 1f the objeet 15 not planar, we can
decompose the object surface image Into small
planar or almest planar regions by fitting the form
of eqns (1) to the observed flow, say by the least
square error method. Thus, the subsequent analysis
applies to objects of arbitrary shape.

II1 ESTIMATION OF FLOW PARAMETERS FRCM FEATURES

Let ¥(x, y) represent an image. For example,
if the image consists of gray-levels, X(x, )
denotes its intensity at point {(z, y). If the
image consists of colors, X(x, y) may be a vector
value function corresponding to R, G and B. Tf the
image consists of points and lines, X{xr, y) has
delta-function-like singularities. In any case, we
define a "feature” F{X¥] of image X(x, y)} as a
"functional," {.,e., a map #[.] from the set of
images X¥{x, y) to real numbers.

Consider the time change when there exists an
optical flow (u(x, y), vixr, y)) on the Iimage plane.
If ¥(x, y} 1s an image at time ¢, it chanpes at
time £ + §¢ after a short time interwval inte

Xz - ulx, ylat, y ~vix, ylét) = xlx. y)
- X Gy yulz, y)ét - Xqu. wlwle, y)ét + ..., (5)

where Xy and X, are partlal derivatives. Then, the
cvorresponding feature F[X] becomes F[X] + DFIX]6&t +
...y where in peneral the "change rate" DF[.] is a
Y"linear functional” in wlzx, ¥) and vi{xr, ¥). Tn
view of the optical flow of eqas (1), thls means
that we have & "linear" equation of the form

DF[X] = ¢\ [Xhug + ColX1vg + C31X1A + 0, [X]E
+ CglXle + Cp(Xlo + CHIX1E + CylX]F. (6}

Here, Cyl.], ..., Cgl.l are functionals derived
from the given feature F[.], so that they are known
functionals. The change rate DF[.] can  be
eztimated by difference schemes. Fur example,
cbeserve an image at time ¢ and compute its feature
F(t). Next, observe the image at time ¢ + &t after
a short time interval and compute its feature F(i +
&t). Then, DF[X] 1s approximated by (F(i{ + &) -~
F(t))/5t or by other higher order difference
achemes. Thus, all quantities except up, vp. 4, B,
¢, D, E and F Iin eqn (6} are directly computed from
the image aequence without wusing point-to-point
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correspondence. Hence, if we prepare 8 or more
independent functionals Ff.3, Fol.)}, ..., we
obtain a set of simultaneous “linear" equations in
ug, vg, 4, B, ¢, D, E and P of the form of eqn (6)
to determine them.

The d1dea of using features was  already
intreduced by Amari [10, 11] and Kanatani [7 - 9].
However, they did not divide the process into two
stages as described here but tried to compute p, g,
r, oa, b, &, w), wp and w3 directly. This leads to
a set of simultaneous 'non-linear" equations, which
is difficult to sclve. Kanatani [7 - 9] proposaed
an lterative method which traces the motion along
time, starting from known initial values of p, ¢
and r. Here, however, we divide the process into
two stages and flrst determine the "flow
parameters," which can be computed by solving a set
of "linear" equations. This poses no computational
problem. The desired p, ¢, P, a, b, ¢, wy, wp and
wy are glven in terms of the flow parameters aa is
shown subsequently.

At for the feature functionals, we car choose
those used by Awari [10, 11] and Kanatanl [7 - 9].
amari [10, 11] used weighted integral (or "filter")
Flx] = fﬁﬂ(x, ¥)X{(z, ;)dxdy of various m(x, y) over
a fixed window for gray-level images. Invoking &
mathematics called "stereclogy," Kanatani [7] used,
for textured surfaces, Fourler coefficlents of
function XN(8), where N(8) 4s the number of
intersections, per unit length, between parallel
lines of orientation 8 and the texture on the image
plane. When no texture exlsts and only
circumference contours are available, Kanatani [8)
used Fourier coefficients of D(8), which 1s the
caliper diameter of the contour measured by two
parallel lines of orilentation 0, Kanatani [9] alao
used line integral ﬁn(m. y)Yde of wvarious m{z, y)
along the contour and surface 1integral ffm(x.
y)drdy of varilous m(x, y) inside the contour. In
any case, a set of linear equations of the form of
eqn (6} is obtalned, and the flew parameters are
determined immediately. However, the accuracy and
reliability heavily depends on the cholce of the
features.

v STRUCTURE AND MOTION FROM FLOW PARAMETERS

Suppose we have already computed the flow
parameters ug, vg, 4. ¥, €. D, & and F by the
method described in the previous sectiom. Oor, 1f
the peint-to-point correspondence happens to be
available, they are immediately determined, say by
the least-square-error fitting of egns (1).  What
we want is p, g, 1, 2, b, ¢, wy, wy and w3. First,
compute

k=¢ -8,
K =E + 1P,

g = ug + ivg, F=A+D,
S=(4-D)+i(B+ ),
where ¢ 1s the imaginary unit, and hence Uy, X and
5 are complex numbers. Define complex variables V
=qg+1ib, P=p+ig and ¥ = w; + iwz. Then, V, e,

P, r, W and wy are glven as follows.

)

In the case of the orthographic approximation,
we get
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V= Uy, wy = (B + /S5% - T4)/2,
W = ke(n/évarg(5)/2-arg{2wy-(R+T))/2), (8)
' = Sa(n/4-arg (5)/ Harg{2uq~ (F423) )/ 2} [k,

where e(.) denotes exp(i.), arg the argument and
the complex conjugate. Here, k {s an indeterminate
scale factor. Thus, (1) the abrolute depth »r and
the wvelocity ¢ in the g-direction are
indeterminate, (i{i) ar indeterminate scale factor X
is invelved, and (111) there exist two types of
golutions, one 15 the true one and the other a
spurious one. They are Indistinguishable because
they vield identical {low parumeters. However, If
we observe two or more planatr regions of the same
rigidly moving obiect, we can plck up the true one
because w), w; and w3y must be common to all, The
fact that an indeterminate scale factor % is
necessarily involved was already pointed out by
Suglhara and Sugie [5], but the existence of the
spurious solution and the explicit forms of equns
{8) have not been known.

*

In the case af the
approximation, we get

VI +r) = Up/f, W= ifk, P = S/(X - Ualf).
wy = (F + Re[PUW* + iUg*/P])/2, (9
e/ (f + 1) = - (T + WIPO* + LU*/ D ]1)/2,

where Re[.] and Iml.] designate the real &nd the
imaginary part, respectively, Hence, (i) the
absolute depth » is indeterminate, but {11) a/(f +
r), B (S +r), of{f+r), P, g. wy, vy and w; are
uniquely determined.

pseudo-orthographic

In the case of the pure central projection, we
obtain

VI(F + 1) = Unlf, el{f +ry=2",
Plat) = (FR-Uo/ ¥V FR=Ugl [y ?wke’5) /20",
W(e') = L(FK-Uy/ Fev/ (FR-Ugl F2-be G}/ 24+ Uplf,
wy = (F + Re[P(e')(W(c")* + Lug*i]1)/2,
et = = (T + Im[Ple" ) (W' )* + iUg*/f)1)/2. (11)

Here, P and ¥ are glven as functions of »', and &’
is determined from eqn (11). Eqo (11) is proved to
have only one non-zere soclution. Since the
uniqueness of the solution 18  guaranteed, a
simpliest Bolution method is to  assume an
appropriate value of &' = o¢f(f + pr), s=ay by the
pseudo-orthographic approximation (9}, compute the
right-hand side of eqn (l11) and repeat the process,
using the new value of &', until convergence, We
see that (1) the absolute depth r 1s indeterminate,
(13) a/(f + r), B/{f + r) and ef/{ff + r) are
uniguely determined and (11i) there exist two sets
of sclutions for p, g, wy, wy; and wy, one 1s the
true one and the other a spurivus one, and they are
indistinguishable bhecause they yield the same flow
parameters, The spurlous splution is eliminated by
observing two or more planar reglions of the same
rigidly moving objlect because w), ws and wy must Lo
be commen to them.

(10}

Numerical schemes of recovering 3D structure
and motion from point-to-point correspondence pairs
have been known [} - 4], and the existence of the

spurious solution was pointed out by Lenguet-
Higpine [6]. However, analytical expressions like
eqns (10) and (11} have not been known. The
parameters of eqns (7) have physlcal meanings:
“translation,” T "divergence," £ rotation,” &
"shearing," and K "fanning.” They are transformed
by a coordinate rotation by # on the image plane as

UU—P”UE<- o), T -7, F~+R,
5+ Se(- 28), K+ Ke(~ 8),

i.., g and ¥ (as well as V, P and W} are
{relative) dnvariants of ’'welght" - 1 (or
Yvectors™), & is an {relative) Iovariant of welght
- 2 (or a "tensor"), and T and K {as well as r, o
and wy) are (absolute) invariants of weight 0 {or
“"scalars").

(12)
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