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ABSTRACT 
We report on initial experiments with an implemented 

learning system whose inputs are images of two-dimen­
sional shapes. The system first builds semantic network 
shape descriptions based on Brady's smoothed local sym­
metry representation. It learns shape models from them 
using a modified version of Winston's ANALOGY pro­
gram. The learning program uses only positive examples, 
and is capable of learning disjunctive concepts. We dis­
cuss the lcarnability of shape descriptions. 

1. Introduction 

We report on initial experiments with an implemented 
system that learns two-dimensional shapes from images. 
The system first builds semantic network descriptions of 
the imaged shape based on Brady's smoothed local symme­
try representation [Brady and Asada 1984, Ileide 1984]. It 
learns shape models from the descriptions using a modified 
version of Winston's ANA LOG Y program [Winston 1980, 
1981, J982; Winston, Binford, Katz, and Lowry 1984]. 
The inputs to the program are grey-scale images of real 
objects, such as tools, model airplanes, and model ani­
mals. The outputs of the program are production rules 
that constitute a procedure for recognising subsequent in­
stances of a taught concept. 

Figure la shows the gray-scale image of (a model of) 
a Boeing 747, Figure lb shows the results of Brady's 
smoothed local symmetries program, and Figure lc shows 
a portion of the semantic network that is computed from 
them by our program. The semantic network is trans­
formed into a set of associative triples [Doyle and Katz 
1985] and input to our learning program. The 747 gener­
ates 239 associative triples. Similarly, Figure 2a shows the 
subshapes found from the smoothed local symmetries of 
a tack hammer and Figure 2b shows the full semantic net 
for this image. The tack hammer generates 51 associative 
triples. 

The learning program is a modification of Winston's 
ANALOGY [Council 1985]. It is capable of learning con­
cepts containing disjunctions. The program learns shape 
models using positive examples only. Figure 3b shows the 
concept hammer that is learned from the three positive 
instances shown in Figure 3a. 

Figure 1. a. The input image, b. The smoothed local symmetries of 
the plane c. A portion of the hierarchical semantic network that is 
computed from the information m b. The full network generates 239 
associative triples. 

The novelty of our work is the ability to learn vi­
sual shape representations from real visual data. Previous 
work has not been based on real data because such data 
was unavailable or too complex and unstructured for ex­
isting learning algorithms. However, recent developments 
in edge-detection [Canny 1983] and middle-level vision 
[Brady and Asada 1984] have provided a solid base on 
which to build a robust vision system. Using this system 
we can generate shape descriptions in a form amenable 
to learning. Furthermore, although the descriptions typi­
cally comprise between fifty and three hundred assertions, 
various forms of abstraction keep this volume of data man­
ageable. 
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Figure 2. a. The main nmoothed local symmetries computed from 
the results of Brady's program, h. The semantic network that is 
computed from the information in a. 

2. Representing Shape 

To describe an object it is necessary to first segment it 
into separate subshapes. In terms of the mathematical 
analysis in Brady and Asada 1984 i, a subshape is defined 
as maximal with respect to smooth variations in the defin­
ing parameters. For example, the portions of fuselage in 
front of and behind the wings of the B747 in Figure 2 are 
joined, but the handle and blade of a screwdriver arc per­
ceived as separate pieces. Once a part has been found, its 
shape is specified by three numbers: the aspect ratio, the 
curvature of the axis, and the change in width along the 
axis. 

Joins between subshapes are determined by examin­
ing the spines of the regions and the adjacency of the 
contour segments. A join is specified by the relative angle 
and sizes of the pieces, and the location of join with re­
spect to each piece. Few previous representations of shape 
have described subshape joins. For example, ACRONYM 
(Brooks 1981, Brooks and Binford 1980] specified the co-
ordinate transformation between two joined pieces, but 
did not explicitly describe the join. 

Once we break the image into pieces and find the joins 
we must somehow represent this information. Images are 
noisy, so it is necessary to develop representations that 
are stable, in the sense of being invariant under localized 
changes such as image noise. However, tasks involving 
visual representations, for example inspection, often re­
quire that programs be sensitive to fine detail. A variety 
of techniques for simultaneously achieving stability and 
sensitivity have been proposed, each expressing some as­
pect of hierarchical description. The underlying idea is 
that gross levels of a hierarchy provide a stable base for 
the representation, while finer levels increase sensitivity. 

Figure 3. The concept hammer that is learned from the three positive 
instances shown above. 

A vision program needs to maintain several different rep­
resentational hierarchies, including the following: 
• Numeric values and symbolic descriptors 

Specifying a shape parameter of interest, say a mea­
sure of the elongation of a shape, by a numerical value 
is sensitive, but highly unstable. Symbolic names that 
correspond to an interval of numeric values are (usually) 
more stable but less sensitive. Our representation employs 
symbolic descriptors that have overlapping ranges. For ex­
ample, an end which is determined to be on the borderline 
between blunt and sharp is declared to be both blunt and 
sharp. Overlaps like this help to combat the quantization 
error introduced by encoding a continuous range as a set 
of discrete symbolic values. A small change in value leads 
to a small change in the representation. 
• Structural approximations to shapes 

Marr and Nishihara [1978] proposed summarizing the 
lesser subparts of an object, leaving them unspecified until 
they are needed. For example, all airplanes have a fuse­
lage, writh pairs of symmetrically attached wings and ele­
vators. Upon closer examination, a wing of a B747 has two 
attached engine pods, a DC10 has one, and an L1011 none. 
Suppressing mention of the engine subshapes, as well as 
summarizing the parameters that describe the shapes of 
the wings and fuselage, enables the descriptions of the 
three airplanes to closely match each other. 

In general, larger subshapes tend to determine gross 
categorization, and so they tend to appear higher in the 
structural hierarchy. Conversely, smaller subshapes tend 
to allow finer discrimination and occur lower in the hier­
archy. The smaller subparts of a tool typically determine 
the specific function of the tool. For example, deciding 
whether a tool is an awl, a gimlet, or a Phillips screw 
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driver involves looking closely at the end of the blade; 
the relatively localized context of the business end of the 
blade is established by the grosser levels of the hierarchy, 
where it is recognized (for example) that the tool is not a 
hammer or wrench. In this way, the Marr-Nishihara pro­
posal tends (hcuristically) to relate large scale geometric 
structure to gross functional use. 
• A-kind-of hierarchies 

Family hierarchies are ubiquitous, and apply as much 
to visual shape representations as to the more cognitive 
situations in which they were developed in Artificial In­
telligence. ACRONYM represents the fact that the sets 
of B747-SPs, B747s, wide-bodied jets, jets, and aircraft, 
are ordered by subset inclusion. Similarly, a claw hammer 
is a-kind-of framing hammer, which is a-kind-of hammer. 
In general, a subset hierarchy is a partially-ordered set, 
but not a tree. From the domain of tools, for example, a 
shingle ax is both a-kind-of ax, and a-kind-of hammer. 

3. Learning 

The commonest form of inductive generalization used to 
learn concepts from positive examples is the drop con­
dition heuristic IDietterich and Michalski 1981, Winston 
1984, page 398). This is the method used in our program. 
Through careful design of the representation the method 
has been extended to allow generalizations of intervals and 
structural graphs. 

The idea behind the heuristic is that if two things be­
long to the same class then the differences between them 
must be irrelevant. Accordingly, when we have a partial 
model of a concept and receive a new example, we modify 
the model by deleting all the differences between it and 
the example. This can be seen by comparing Figure 2b 
with Figure 3b. Notice that the network in Figure 3 puts 
very little constraint on the size or shape of the head. This 
is because the shapes of the heads in the examples vary 
widely. For instance, the heads of the first and third ham­
mer are straight while the head of the second hammer is 
curved. Note also that the manner in which the handle 
joins the head.is only loosely specified. This is because 
the handle is joined to the side of the head in the first two 
examples but to the end of the head in the third example. 

This is a simplified explanation of the learning algo­
rithm. The matching involved is not graph isomorphism 
nor is it, merely counting the number of required features 
an object has. Rather it is a complex local matching 
scheme. Consider using the semantic net shown in Fig­
ure 1 as the model for the airplane concept. For an object 
to match this model, at the top level it must have three 
pieces which look similar to the three in the model. A 
piece of the example is similar to the wing model if, first 
of all, it has the shape specified in the network and, sec­
ond, it has two things which look like engines attached to 
it. Suppose that a certain piece has the right shape for a 
wing but has only one engine attached to it. At the level 

of the wing model the program notices that there is a dis­
crepancy yet judges that the piece is still close enough to 
the description to be called a wing. When the top level 
of the matcher asks if the piece in question looks like a 
wing the answer is "yes". No mention is made of the fact 
that the wing is missing an engine. The difference only 
matters locally and is isolated from the higher levels of 
matching. 

Another important concern is limiting the scope of 
generalizations made. Imagine that the program is shown 
a positive example that is substantially different from its 
current model. Altering the model by the usual induc­
tion heuristics typically leads to gross over-generalization. 
This, in turn, runs counter to what Winston [1984, page 
401] has dubbed Martin's law, namely: learning should 
proceed in small steps. Therefore our program creates a 
new, separate model based on the new example, splitting 
the concept being taught into a disjunction. 

In some cases, the disjunction will be replaced by a 
single model as positive examples are taught that are in­
termediate to the disjuncts. For example, suppose that 
the first example of a hammer shown to the program is 
a claw hammer, and that the second is a sledge hammer. 
The program will create a disjunction as its concept of 
hammer, but it will be consolidated into a single model 
once it has seen such examples as a mallet and ballpein 
hammer. 

Even though the program only generalizes a concept 
using an example that is structurally similar, it is some­
times deceived and must recover from over-generalization. 
We follow Winston [1984] and provide censors that over­
ride the offending rule. Censors can be generalized and 
there can be disjunctive censors; in fact this is the usual 
case. Since censors can be generalized they also have the 
possibility of being over-generalized. This is countered by 
putting censors on the censors. In general, a concept is 
not represented by a single model but by a group of mod­
els. There can be several positive models corresponding 
to the disjuncts as well as several negative non-models 
summarizing the exceptions to the other models. 

4. Current Work 

The goals of our research are not limited to learning. The 
work reported here forms part of the Mechanic's Mate 
project [Brady, Agre, Braunegg, and Conneil 1984], which 
is intended to assist a handyman in generic assembly and 
construction tasks. The primary goal of that project is to 
understand the interplay between reasoning that involves 
tools and fasteners and representations of their shape. 

For example, instead of learning that a certain geomet­
ric structure is called a hammer, we learn that something 
which has a graspable portion and a striking surface can 
be used as a hammer. These two functional concepts are 
then defined geometrically in terms of the shape repre­
sentation. Reasoning from function as well as from form 
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allows more flexibility. For instance, faced with a ham­
mering task, but no hammer, one might try mapping the 
hammer structure onto that of any available tool. A screw 
driver provides a good match, identifying the blade of a 
screw driver with the handle of the hammer, and the (as­
sumed flat) side of the screw driver handle with the strik­
ing surface of the head of the hammer. In this way, the 
Mechanic's Mate can suggest improvisations, like using a 
screw driver as a hammer. 

Our initial goal was to learn shape models cast in the 
representation described previously. Eventually, the Me­
chanic's Mate will have to learn about the non-geometric 
properties of objects: weight, material type, and the pro­
cesses that use them. Currently we are using Katz's En­
glish interface |Katz and Winston 1983] to tell our pro­
gram such things. This is not satisfactory. Instead, we 
hope to teach dynamic information using a robot arm and 
hand. 

Another area of interest is inducing structural sub­
classes from examples. Since the subclasses that form the 
a-kind-of hierarchy are an important part of the shape 
representation, they should be learnable. However, in 
learning subclasses there is a danger of combinatorial ex­
plosion. Learning subclasses requires a suitable similarity 
metric. Feature-based pattern recognition systems learn 
subclasses as clusters in feature space, and clusters are 
sets that are dense with respect to the Euclidean metric. 
Part of our research in learning shape descriptions has 
been to determine what makes objects look similar. This 
suggests using the metric employed in the learning pro­
cedure to form subclasses through a process analogous to 
feature space clustering. This is the focus of our current 
work. 
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