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ABSTRACT

Ore of the major unsolved problems in designing an autonomous
agent |robot] that must function in a complex, moving environment
is obtaining reliable, real-ime depth information, preferably without
the limitations of active scanners. Stereo remains computationally in-
tensive and prone o severe erors, the use of motion information is
still quite experimental, and autofocus schemes can measure depth at
only ore point at a time. We examine a novel source of depth informa-
tion: focal gradients resulting from the limited depth of field inherent
in most optical systems. We prove that this source of information can
be used to make reliable depth meps of useful accuracy with relatively
minimal computation. Experiments with realistic imagery show that
measurement of these optical gradients can potentially provide depth
information roughly comparable to stereo disparity or motion paral-
lax, while avoiding image-toimage matching problems. A potentially
real-ime version of this algorithm is described.

I. INTRODUCTION

Our subjective impression is that we view our surmoundings in
sharp, dear focus. This impression is reinforced by the virtually univer-
sal photographic tradition* to make images that are everywhere in
focus, ie., that have infinite depth of field Unfortunately, both this
photographic tradition and our feeling of a sharply focused world seems
to have lead vision researchers  in both human and machine vision

to largely ignore the fact that in biological systems the images that
fall on the retina are typically quite badly focused everywhere except
within the central fovea (1,2). There is a gradient of focus, ranging
from neary perfect focus at the point of regard to almost complete
blur at points on distant objects.

It is puzzling that biological visual systems first employ an optical
system that produces a degraded image, and then go to great lengths
to undo this blurring and present us with a subjective impression of
shap focus This is espedially peculiar because it is just as easy to start
out with everything in perfect focus. Why, then, does Nature prefer to
employ a lens system in which most of the image is blumed?
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In this paper we report the finding that this gradient of focus in-
herent in biological and most other optical systems is a useful source
of depth information, prove that these focal gradients may be used to
recover a depth map (j.e., distances between viewer and points in the
scene) by means of a few, simple transformations of the image, and that
with additional computation the reliability of this depth information
may be intemally checked. This source of depth information (which
differs markedly from that used in automatic focusing methods) hes
not previously been described in the human vision literature, and we
have been unable to find any investigation of it in the somewhat more
scattered machine vision literature. The performance of a practical
technique has been demonstrated on reallistic imagery, and an inexpen-
sive, reakHime version of the algorithm is described. Finally, we report
experiments showing that people make significant use of this depth in-
formation.

This novel method of obtaining a depth map is important be-
cause there is currently no passive sensing method for obtaining depth
information that is simultaneously fast enough, reliable enough, and
produces a sufficiently dense depth map to support the requirements
of a robot moving in a complex environment. Stercopsis, despite huge
investment, remains computationally intensive and prone to severe er-
rors, the use of motion information is still in an experimental stage,
and autofocus schemes can measure depth at only ane point at a time.
We believe that this research, therefore, will prove a significant ad-
vance in solving the problem of realime acquisition of reliable depth
maps without the limitations inherent in active scanners (e.g., laser
rangefinders).

Il. THE FOCAL GRADIENT

Most biological kens systems are exactly focused* at only ore dis-
tance along each radius from the kens into the scene. The locus of
exactly focused points forms a doubly curved, approximately spherical
surface in three-dimensional space Only when objects in the saere in-
tersect this surface is their image exactly in focus; objects distant from
this surface of exact focus are blurred, an effect familiar to photog-
raphers as depth of field.

The amount of defocus or blurring depends solely on the distance
to the surface of exact focus and the characteristics of the lens system;
as the distance between the imaged point and the surface of exact focus
increases, the imaged objects become progressively more defocused.
If we could measure the amount of bluming at a given poaint in the
image, therefore, it ssems possble that we could use our knowledge
of the parameters of the lens system to compute the distance to the

corresponding point in the scene.

"Exact foe us" is taken here to mean "has the minimum variance point
spread function," the phrase "measurement of focus” is taken to mean
"characterize the point spread function."



The distance I to an imaged point is related to the parameters of
the lens system and the amount of defocus by the following equation,
which is developed in the appendix.
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where v, is the distance between the lens and t=the image plare (e.g.,
the film location in a camera), / the fnumber of the lens system,
F the focal length of the lens system, and a the spatial constant of
the point spread function (i.e., the radius of the imaged points "blur
circle") which desaribes how an image point is blurred by the imaging
optics. The point spread function may be usefully approximated by a
two-dimensional Gaussian G(r, a) with a spatial constant a and radial
distance r. The validity of using a Gaussian to describe the point spread
function is discussed in the appendix.

In most situations, the only unknown on the right-hand side of
Equation (1) is a, the point spread function's spatial parameter. Thus,
we can use Equation (1) to solve for absolute distance given only that
we can measure | i.e., the amount of blur at a particular image point.

Measurement of a presents a problem, however, for the image data
is the result of both the characteristics of the soere and those of the
lens system. To disentangle these factors, we can either look for places
in the image with known characteristics (e.g., sharp edges), or we can
observe what happens when we change some aspedt of the lens system.
In the following discussion both of these two general strategies for
measurement of a are described: the use of sharp edges, and comparison
adoss different aperture settings. Both approaches require only one
view of the soene.

A. Using Sharp Discontinuities

Image data are determined both by scene characteristics and the
properties of the lens system, e.g., how fast image intensity changes
depends upon both how soere radiance changes and the diameter of
the blur circle. If we are to measure blur circle, therefore, we must
aready know the scenes' contribution to the image. At edges — sharp
discontinuities in the image formation process — the rate of change
we obsenve in the image is due primarily o the point spread function;
because we can often recognize sharp discontinuities with some degree
of confidence [34] we can use image data surrounding them fo deter-
mine the focus These observations lead to the following scheme for
recovering the viewerto-scene® distance at points of discontinuity.

Mathematical Details. To calculate the spatial constant of the
point spread function we require a measure of the rate at which image
intensity is changing; the widespread use of zero-crossings of the
Laplacian to find edges [5] suggests using slope of the Laplacian acoss
the zero-crossing as a measure of rate of change.

Consider a vertical step edge in the image of magnitude 6 at posi-
tion xo. In this case the values C{x,y) resulting from the convolution
of image intensities /{x,y) with the Laplacian of a Gaussen V2G{r,)
(as in |5]) have the fom

Clron) = Ve, a) & 1z, ¥)
= [ [ Az — 0 + 13 — P, oM (u, v)dude  (2)
= §[d#{z — o, o)/ dx}

where (3(r — 5. 7} ia 3 one-dimensional Giaunsian centered at point 2q,
und o is the spatial constant of the point spresd function at that point
surh an edge the slope of the function Ciz,y) ot the

*When the disconlinuity i in depth, as al an occluding contour, the
distanee measured is 10 the pearer side of the discontinuity,
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Figure 1. [mages Identical Except for Depth of Field. [s) Production: The
light from » single view is eplit into two identical images and directad through
twn lena systems with diflerent aperture size. Alternstively, ane can vary the
aperture between sliernate frames from s standard vidas or CCD camers.
In eicher case the two r g images are identical pt for depth of fald,
an shown tn Figure | (k) and (c]. These images are of & mirrorad hotile on
a checkered plnin.

point of the zero-crossing is equal to the maximum rate of chapge in
image intensity, and 5o we can use it to estimate o,
An estimate of 7 can be formed as follows:

- ( z? )

exp| ——= 3
Jre P ®
where 2, ¥ and & are as before, and for conveniehce z, ia taken to be
zero. Taking the absolute value and then the natural log, we find

Mz y)=48

4Gz, 7)
_d: L3

§ 2 Cie,
md o 2 ClEd) (4)
NoXTD 2 z
We can lormulate Equation (4) s
A+ B=C (5
where
1
A=-1 Ban-t € = 1S3
20 Vore ¥
If we interpret Equation (5) aa a linear regression in 27 we can

then obtain a maxi likelihood estimate of the tants A and B,
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and thus obtain a. The solution of this linear regression is

A= )_:.{T__:" - ¥ e
- Lfrt - 2p
where | is the meen of the z,,and € is the mean of i€y From Ain
Equation (6) we can obtain the following estimate of the value of the
spatial constant :

B=C-14 ©)

o= [~2A]7*

Having estimatece we can now use Equation (1) to find the distance to
the imaged point; note that there are two solutions, one commesponding
to a point in front of the locus of exact focus, the other comesponding to
a point behind it This ambiguity is generally unimportant because we
can usually amange things so that the surface of exact focus is nearer
to the sensor than any of the objects in the field of view.

B. Comparison Across Differing Apertures

The limiting factor in the previous method is the requirement that
we must know the scene characteristics before we can measure the
focus; this restricts the applicability of the method to special points
such as step discontinuities. If, however, we had two images of exactly
the same scene, but with different depth of field, we could factor out
the contribution of the soere to the two images (as the contribution is
the same), and measure the focus directly.

Figure 1 shows one method of taking a single view of the soene and
producing two images that are identical except for aperture size and
therefore depth of field. This len6 system wses a half-silvered mirror (or
comparable contrivance) to split the original image into two identical
images, which are then directed through lens systems with different
aperture size. Because change in aperture does not affect the position
of image features, the result is two images that are identical except*
for their focal gradient (@amount of depth of field), and so there is no
difficulty in matching points in one image to points in the other. Figures
1 (b) and (c) show a pair of such images. Altematively, one could rig
a video or COD camera so that altemate frames employ a different
aperture; as long as no significant motion occurs between frames the
result will again be two images identical except for depth of field.

Because differing aperture size causes differing focal gradients, the
same point will be focused differently in the two images; for our pur-
pases the critical fact is that the magnitude of this difference is a simple
function of the distance between the viewer and the imaged point.
To obtain an estimate of depth, therefore, we need only compare cor-
responding points in the two images and measure this change in focus.
Because the two images are identical except for aperture size they may
be compared directly; i.e., there is no matching problem as there is with
stereo or motion algorithms. Thus we can then recover the absolute
distance D by simple point-by-point comparison of the two images, as
described below.

Mathematical Details. We start by taking a patch fy(r,#)
centered at (zq, yo) Within the first image iz, y):

Filr @) = I|(zo + rcosd,yo + rein §)

and calculate its two-dimensional Fourier transform % {¢, ¢}. The same
is done for a patch f.ir.#} at the comesponding point in the second
image, giving %f{!. #). Again, note that there is no matching problem,
as the images are identical except for depth of field.

Now consider the relation of £, te f;. Both cover the same region
in the image, so that if there were no blurring both would be equal to
the same intensity function fo{r, #). However, because there is blurring

Their overall brightness might also differ.

{with spatial coostants o, and og), we have

hilr, E__:' _ Jolr. 8) @ Glr. o) (7)

£lr 0 T Lofr ) & Glr. o)

|One point of caution is that Equation (7] may be substantialty in
erTof D cases with a large amount of deforus, a6 points peighboring
the patches fi, Jfu will be “spread out™ into the patches by differing
amounts. This problem can be minimized by using patches whose edges
trail off smoothly, eg.. /i {r.8) == H{zo + rcond, yo + rsin §)Gir,w) for
appropriste spatial parameter w.]

Noting that

firnfl=e"" T )=
are o Fourier pair and that if f{r, ¢) and F(}, #) are a Fourier pair then
s0 are
farsy L3 0

e
we see that we may use Equation (7) to derive the following relationship
hetween F; and 7 (the Fourier transforms of image patches f; and f;)
and 7 (the transform of the [hypothetical] unblurred image pateh fo):

L8l = " am Fip )= —

Thus” |

7 Gl oy foe 2 2ot
A= ks~ Teppinntel -t (9

where

F(A) = f_ Fin, )

Thug, given J; and F; we can find ¢; and a7, a8 follows. Taking the
natural lag of Foquation (9} wr obtain

In : + A 2n (0l = o) = o Ai(A) = W B (3)
|

We may farmulate this as AX® + B == (7 where

2
o
B=In—2

- C=lo fi(A)—In ()}

A= 2r%(a} ~ 03)
i.e., a5 a linear regression equation in M*. The eolution to this regres-
siop equation is the same a5 shown in the lasl example, and gives us
maximum-likelihood estimates of A and B, Solving A and B for oy and

g yields
e — _A.;.B._,_
g = JQin) g = \/_h'z‘['m (10)

We may now use these estimates of &, and o2 to calculste absolute
distance to the imaged surface patch. Using Equation (1) for esch of
the two images, we see that we now have

F F
D v - ) a1

T w-F-oh

where f, and f; are the [-bumbers for the two halves of the imaging
rystem.

*Note that we need only consider the amplitude of the transforms in
these calculations.
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Figure 20 Arewraey at esttmating distanee, asvamitig human visual system
paratmelers, naing (&) foral gradient information, and (b} alereopsis.

C. Checking ithe anawer: overconstralnt

We may solve either of the two equations in (11) for D, the distance
to the imaged surface patch. Thus the solution is overconstrained; both
solutions must produce the same estimate of distance —othewise the
estimates of a, and a-, must be in error. This can occur, for instance,
when there is insufficient highfrequency information in the image patch
to enable the change in focus to be calculated. The important point is
that this overconstraint alows us to chedk our answey, if the equations
disagree, then we know nat to trust our answer. If, on the other hand,
both equations agree then we can know (to within measurement error)
that our answer must be correct.

D. Accuracy

Possbly the major question conceming the usefuiness of focal
gradient information is whether such information can be sufficiently
accurate  There are two major issues to be addressed fist can we
estimate the variance a of the point spread function with sufficient
accuracy, and seoond, does this translate into a reasonable degree of
accuracy in the estimation of depth.

Recent research aimed at estimating the point spread function
hes shown that it may be accurately recovered from unfamiliar images
despite the presence of nomal image noise [6,7]. Further, it appears
that humans can estimate the width of the point spread function to
within a few percent |8,9|. These findings, together with the results of
estimating reported in the next section, show that accurate estimation
of ¢ is practical given sufficient image resolution.

The second issue is whether the avallable accuracy at estimating
o translates into a reasonable accuracy in estimating depth. Figure 2
(@) show the theoretical error curve for the human eye, assuming the
accuracy at estimating o reported in [4]. It can be seen that reasonable
accuracy is available out to several meters. This curve should be
compared to the accuracy curve for stereopsis, shown in Figure 2 (b),
again assuming human parameters. It can be seen that the accuraces
are comparable.

A. Pentland 991

E. Human Perception

We have recently reported evidence demonstrating that people
make e of the depth information contained in focal gradients |9);
interestingly, the ecological salience of this optical gradient does not

to have been previously reported in the scientific literature. The
hypothesis that the human visual system makes significant use of this
ae to depth has been investigated in two experiments.

In the first experiment, pictures of naturalistic senes were
presented with various magnitude of focal gradient information. It
was found that increasing the magnitude of the focal gradient results
in increasing subjective depth. In the second experiment, subjects
were shown a rightward rotating wireframe (Nekker) aube displayed
in perspeciive on a CUT. Such a display may be perceived as either as
a rigid object rotating to the right, or (surprisingly) as wobbling, non-
rigid object rotating to the left. Nomally subjects see the rigid inter-
pretations most of the time, but when we infroduced a focal gradient
that favored the non-igid interpretations, the non-rigid interpretations
was seen almost as often as the rigid one.

An experiment demonstrating the importance of depth of field in
human perception can be easiy performed by the reader. First make
a pinhole camera by poking a small, dean hole through a piece of stiff
paper or metal. Imposition of a pinhole in the line of sight causes the
depth of field to be very large, thus effectively removing this depth
aue from the image. Close one eye and view the world through the
pinhole, holding it as dose as possible to the surface of your eye, ad
note your impression of depth (for those of you with dasses, things
will look sharper if you are doing it correctly). Now quickly remove
the pinhole and view the world nomally (still using only one eye). The
change in the sense of depth is remarkable, many observers report that
the change is nearly comparable to the difference between monocular
and binocular viewing, or the change which oocurs when a stationary
object begins to move

I11.  IMPLEMENTATION AND EVALUATION

A. Using sharp edges

The first method of deriving depth from the focal gradient, by
measuring apparent blur near sharp discontinuities, wes implemented
in a straightforward manner (convolution values near zero-crossings
were employed in Equations (4) - ((6)) and evaluated on the image shown
in Figure 3. In this image the optical system hed a smaller depth of
field than is currently typical in vision research; this wes done because
the algorithm requires that the digitization adequately resolve the point
spread function.

Figure 3 also shows the depth estimates which were obtained when
the algorithm wes applied to this image. Part (a) of this Figure 3 shows
all the sharp discontinuities identified [2] It wes found that there wes
considerable variability in the depth estimates obtained along these
contours, perhaps resulting from the substantial noise (3 of 8 bits)
which wes present in the digitized image values To minimize this
variability the zero-crossing contours were segmented at points of high
curvature, and the depth values were averaged within the zero-crossing
segments Figures 3 (b), (c), and (d) show the zero-crossing segments
that have large, medium, and small depth values, respectively. It can be
seen that the image is properly segmented with respect to depth, with
the exception of one small segment near the top of (c). This example
demonstrates that this depth estimation technique — which requires
little computation beyond the calculation of zero-crossings — can be
employed to order sharp edges by their depth values.
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B. Comparison of different apertures

The second technique, comparing two images identical except for
aperture, can be implemented in meny different ways. We will report a
very simple version of the algorithm that is amenable to an inexpensive
reaHime implementation.

In this algorithm two images are acquired as shown in Figure 1 (a);
they are identical except for their depth of field and thus the amount of
focal gradient present, as shown in Figures 1 (b) and (c). These images
are then convolved with a small Laplacian filter, providing an estimate
of their local highfrequency content. The output of the Laplacian
fiters are then summed over a small area and nomalized by dividing
them by the mean local image brightness, obtained by convolving the
original images with a Gaussian fitter. It appears that a region as small
as 4 x 4 pixels is sufficient to obtain stable estimates of high-requency
content, figures 4 (a) and (b) show the nommalized high-requency
content of Figures 1 (b) and (C)

Finally, the estimated high-frequency content of the blurry, large-
aperture image is divided by that of the sharmp, small-aperture image,
i.e., each point of Figure 4 (a) is divided by the comesponding point
in Figure 1(b). This produces a "focal disparity" map, analogous to a
stereo disparity map, that measures the change in focus between the
two images and whose values are monotonically related to depth by
Equation (I). Figure 4 (c) shoas the disparity map produced from
Figures 2 (b) and 2 (c); intensity in this figure is proportional to depth.

Figure 4. (@) and (h) sow the nomalized highHrequency ngJ%
2I?D)aﬁ%c))r&spe(mely()sm/\slhefoaldisparityrrq)_ ] K
a seeo dltonctlypm bymmng(a)ati(b),ms

Areas of 4 (c) that are black have insufficient high-requency energy in
the sharp-focus image to make an estimate of depth.

It can be seen that this disparity mep is fairly accurate. Note
that points reflected in the bottle are estimated as further than points
along the edge of the bottle; this is not a mistake, for these points
the distance traveled by the light is further than for those along the
edge of the bottle. This algorithm, in common with stereo and motion
algorithms, does not "know" about mirrored surfaces.

C. Design for a real-time Implementation

A minimum of one convolution per image is required for this tech-
nique, together with a left shift and four subtractions for the Laplacian,
and three divides for the normalization and comparison. If special con-
volution hardware is available, one can use two convolutions one
Laplacian and one Gaussian per image, leaving only three divides®
for the normalization and comparison. Frame buffers that can convolve
image data in parallel with image acquisition are now available at a
reasonable price, leaving as few as 3 operations per pixel to calculate
the disparity map. For a 23> x 250 image, this can be accomplished in
as little as 0.36 seoonds with currently available microcomputers.

IV. DISCUSSION

The most striking aspedt of this source of depth information is that
absolute range can be estimated from a single view with no image-to-
image matching problem, perhaps the major source of eror in stereo
and motion algorithms. Furthermore, no special scene characteristics
need be assumed, so that the techniques utilizing this cue to depth can
be generally applicable The second most striking fact is the simplicity
of these algorithms: it gppears that a real-ime implementation can be
accomplished relatively cheaply.

Measurement of the focal gradients associated with limited depth
of field appears o be capable of producing depth estimates that are at
least roughly comparable to edge- or feature-based stereo and motion

which can be done by table lookup.



algorithms.  The mathematics of the aperture-comparison technique
shows it to be potentially more reliable than stereo or motion e,
there is no comespondence problem, and one can obtain an intemal
chedk on the answer  although (as discussed abowve) it hes somewhat
less accuracy.

The shampedge algorithm appears to have potential for useful
depth-plane segmentation, although it is probably not accurate enough
to produce a depth map. | believe that this algorithm will be of some
interest because most of the work  finding  and measuring the slope of
zero-arossings — is often already being done for other purposes. Thus
this type of depth-plane segmentation can be done almost as a side
effect of edge finding or other operations.

The aperture-comparison algorithm provides considerably stronger
information about the scene because it overconstrains scene depth,
allowing an intemal chedk on the algorithm's answer Thus it provides
depth information with a reliability comparable to the best that is
theoretically available from three-or-more image stereo and motion
algorithms, although it hes Son's what kess depth resolution. The major
limitation in measuring focal gradient depth information in this manner
appears to be insuring sufficient high-frequency information to measure
the change between images; this requires having both adequate image
resolution and high-frequency scene content.

Summary. In summary, we have described a new source of depth
informal ion — the focal gradient that can provide depth informa-
tion at least roughly comparable to stereo disparity or motion paral-
lax, while avoiding the image-toimage matching problems that have
made stereo and motion algorithms unreliable We have shown that
the limited depth of field inherent in most optical systems can be used
to make depth maps of useful accuracy with relatively minimal com-
putation, and have successfuly demonstrated a potentially real-ime
technique for recovering depth maps from realistic imagery. It is our
hope, therefore, that this research will prove to be a substantial ad-
vance fowards building a robot that can function in complex, moving
natural environments
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For a thin lens,

where u is the distance between a point in the scene and the lens, v
the distance between the lens and the plane on which the image is in
perfect focus, and F the focal length of the lens Thus,
At

w= n—f- (13)
For a particular lens, F is a constant If we then fix the distance i
between the lens and the image plane to the value v — v, we have also
determined a locus of points at distance u — uy that will be in perfect
focus, ie.,

= o (14)

We may now explore what happens when a point at a distance u >
U is imaged. Figure 5 shows the situation in which a lens of radius
r is used to project a point at distance u onto an image plane at
distance uy behind the lens. Given this configuration, the point would
be focused at distance v behind the lens but in front of the image
plane. Thus, a blur circle is formed on the image plane. Note that
a point at distance u < Uy also forms a blur circle; throughout this
paper we assume that the lens system is focused on the nearest point
so that u is always greater than uy. This restriction is not necessary in
the second algorithm, as overconstraint on the distance solution allows
determination of whether D = u > ug or D — u < u,.
From the geometry of Figure 5 we see that
r I

tant = v vy -1 (15}
Combining Pauations (13) and (15) and substituting the distance I Tor
the variable ¢ we obtain

rrg — Fir + o)

ofr

" ¥n
!’{l - F C"!

where £ is the f-number of the lens,

The blurring of ihe image is better described by the point spread
function than by a blur cirche, although the blurring is haunded by
the blur circle radius in the sense that the point spresd function is
less than seme threshold outside of the blur circle. The point spread
function is due primarily to diffraction effects, which for any particular
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wavelength produce wave cancellation and reinforcement resulting in
intensity pattems qualitatively similar to the sine function, sinr/r but
with different amplitudes and periods for the "rings" around the central
peak [2].

The "rings" produced by this function vary in amplitude,
width and position with different states of focus and with different
wavelengths. As wavelength varies these rings change position by as
much as 90 degrees, so that the blue light troughs become positioned
over the red light peaks, etc. Further, change in wavelength results in
substantial changes in the amplitude of the various rings. Although
this point spread function is quite complex, and the sum over different
wavelengths even more so, our analysis shows that for white light the
sum of the various functions obtained at different wavelengths hes the
general shape of a two-dimensional Gaussian.

Sampling effects caused by digitization are typically next in im-
portance after the diffraction effects. The effect of sampling may be
acoounted for in the point spread function by convolving the above
diffraction-produced point spread function with functions of the form
sinnr. Other factors such as chromatic abberation, movement, and
diffusion of photographic emuision may also be acoounted for in the
final point spread function by additional convolutions.

The net effect, in light of the central limit theorem and our analysis
of the sum of single-wavelength focus pattems, is almost certainly best
desarbed by a two-dimensional Gaussian G(r,0) with spatial constant
0. The spatial constant o of the point spread function will be propor-
tional to the radius of the blur circle; however, the constant of propor-
tionality will depend on the particulars of the optics, sampling, etc.
In this paper the radius of the blur circle and the spatial constant of
the point spread function have been treated as identical; in practical
application where recovery of absolute distance is desired the constant
of proportionality k must be determined for the system and included
in Equation (1) as follows:
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