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Abstract 

The 'Strong A I ' claim that suitably programmed com­
puters can manipulate symbols that THEY understand 
is defended, and conditions for understanding d is­
cussed. Even computers without AI programs exhibit 
a signif icant subset of characteristics of human 
understanding. To argue about whether machines can 
REALLY understand is to argue about mere de f in i ­
t ional matters. But there is a residual ethical 
question. 

Topi c area and keywords 

Philosophical foundations, machines, language, 
meaning, understanding, reference, Strong A I . 

Introduction 

Fi l ing cabinets contain information but understand 
nothing. Computers are more active than cabinets, 
but so are copiers and card-sorters, which under­
stand nothing. Is there a real d ist inct ion between 
understanding and mere manipulation? Unlike 
cabinets and copiers, suitably programmed computers 
appear to understand. They respond to commands by 
performing tasks; they print out answers to ques­
t ions; they paraphrase stories or answer questions 
about them. Does this show they attach meanings to 
symbols? Or are the meanings 'derivative' on OUR 
understanding them, as claimed by Searle (C103)? Is 
real understanding missing from simulated under­
standing just as real wetness is missing from a 
simulated tornado? Or is a mental process l ike ca l ­
culation: i f simulated in de ta i l , i t is replicated? 

I argue that there is no clear boundary between 
things that do and things that do not understand 
symbols. Our ordinary concept of 'understanding' 
denotes a complex cluster of capabi l i t ies, and d i f ­
ferent subsets of these may be exhibited in d i f ­
ferent people, animals or machines. To ask 'which 
are necessary for REAL understanding?' is to a t t r i ­
bute spurious precision to a concept of ordinary 
language. 

Instead of answering either 'YES' or 'NO' to the 
question whether suitably programmed computers can 
understand, we note that within the space of possi­
ble 'behaving systems' (including animals) there 
are in f in i te ly many cases, some sharing more 
features with human minds, some fewer. The impor­
tant task is to analyse the nature and the implica­
tions of these s imi lar i t ies and differences, 
without 

assuming existing English words can label the cases 
adequately. 

Dennett [2] thinks we can jus t i f iab ly take the 
' in tent ional ' stance towards any machine or organ­
ism whose behaviour thereby becomes easier to 
predict or explain. Searle C1Q3, C113 retorts that 
behaviour is not enough, alleging that a suitable 
program could make a system appear to understand 
Chinese when it doesn't rea l ly , e.g. if Searle is 
inside executing the programs. In [18] I show that 
he actually attacks an extreme and implausible 
thesis, namely that ANY ' ins tant ia t ion ' of a su i t ­
able program would understand. But he is right in 
suggesting that actual behaviour is not what mental 
concepts refer to . How the behaviour is produced is 
relevant. There are signi f icant ly different ways in 
which the same behaviour might be generated. For 
instance a huge lookup table, prepared by an 
extraordinari ly foresightful programmer who an t i c i ­
pated a l l our questions, could pass a collection of 
behavioural tests. But it might produce nasty 
surprises later , because no f i n i t e set of actual 
tests can establish the powers required for passing 
a wider range of possible tests. Since there are 
indef ini tely many counterfactual conditional state­
ments that are true of us, but which would not be 
true of such a machine, we would be unwise to rely 
on it in future simply because it has worked so 
far , without knowing the basis for success. 

Attributions of mentality imply coherent behaviour 
and r e l i a b i l i t y , as fr iends, enemies, colleagues, 
or goal achievers. There are different kinds of 
unre l iab i l i t y . One kind would exist in a machine 
whose computations depended on co-operation of a 
(speeded up) human interpreter performing mil l ions 
of steps, as in Searle's experiment. Tiredness, 
boredom, cussedness, and mere slips could easily 
interfere. This supports Searle's claim that men­
t a l i t y presupposes machinery with the right causal 
powers (though not his other conclusions). 

The lookup table is unreliable in a deeper way: we 
cannot rely on it to deal with the unanticipated. 
The same applies, to a lesser degree, to less r ig id 
programs: human-like performance in any f i n i t e set 
of tests does not jus t i fy the assumption that the 
behaviour would be convincing in other possible 
situations. This is painful ly evident in AI pro­
grams to date. 

So, taking the intentional stance on purely 
behavioural grounds (Turing's tes t ) , is potential ly 
r isky. We must adopt what Dennett calls the 'design 
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stance1 for a better jus t i f i ca t ion of our ascrip­
tions of intent ional i ty , understanding, etc. A 
machine must not merely produce appropriate 
behaviour, but must satisfy the design requirements 
for understanding. Could a machine do this? 

The main features of human understanding are 
sketched below. We'll f ind important aspects of our 
ordinary concept of 'understanding' in simple com­
puters, even without AI programs. Requirements for 
richer human-like capacities are also described. 
There are no reasons for doubting that machines can 
satisfy them. 

The Semantic Linkage Problem 

A central issue is the 'semantic linkage problem': 
how can a person, or machine, take one thing as 
referring to or describing another? AI work on 
language and image understanding often relies on 
translation into some internal representation. But 
if the machine i tse l f does not understand the 
internal representation, we have not progressed 
much beyond f i l i n g cabinets. If a l l understanding 
requires translation we risk an in f in i te regress. 
Ultimately something must be interpreted as mean­
ingful in i ts own r ight . How? It is implausible 
that existing AI story 'understanders' really can 
think about part ies, po l i t i ca l events, or pas­
sionate murders, despite pr int ing out sentences 
about them after reading stor ies. If a symbol-user 
U uses a symbol S to refer to some object 0, then 
it seems that U must have some other way of re la t ­
ing to 0, attending to 0, thinking of 0, e tc . , 
besides using S. This 'semantic linkage' problem 
pervades recent analytical philosophy (E.g. See 
[17], [6], [3]. It is ignored in work on formal 
semantics, and both l inguist ics and psychology seem 
to have l i t t l e to say about i t . It is complicated 
by the fact that 0 can be remote from U, or even 
long dead, or imaginary, which rules out direct 
causal connections between U, S and 0, as neces­
sary. We shall see that when 0 is part of U (e.g. a 
location in U's memory, an internal action U can 
perform, an internal pattern U can test f o r ) , the 
link may be a comparatively simple causal re lat ion­
ship. My conjecture is that more sophisticated 
types of meaning and reference are possible only on 
the basis of this ' i n te rna l ' semantics. 

What is understanding a language? 

I use the word 'language' loosely as equivalent to 
'nota t ion ' , 'representational scheme', 'symbol sys­
tem' etc. Very roughly, a language L is a system of 
symbols used by some agent U in relation to a world 
W. A f u l l analysis would distinguish different 
kinds of: (a) symbol media, (b) symbol systems, (c) 
mechanisms for manipulating symbols, (d) symbol 
users, (e) worlds, and ( f ) purposes for which sym­
bols might be used. This paper discusses only a 
subset of this rich array of poss ib i l i t i es . 

Symbols are structures that can be stored, compared 
with other structures, searched for , etc. They may 
be physical structures, l ike the marks on a piece 
of paper, or v i r tua l symbols, i .e . abstract struc­
tures in a v i r tua l machine, l ike 2-D arrays in a 
computer (See C153). They may be internal or 

external. They need not be separable physical 
objects or events, since a single t ravel l ing wave 
may 'carry' different signals simultaneously, and a 
network of active nodes may have several patterns 
superimposed in i ts current state. Symbols include 
maps, descriptions, representations, of a l l kinds, 
including computer programs, and non-denoting sym­
bols, l ike parentheses and other syntactic devices. 
(In fact , anything at a l l can be used as a symbol.) 

A language L contains symbols used by U to 
represent or refer to en t i t i es , properties, rela­
t ions, events, processes, or actions in some world 
W. The word 'used' may suggest that U has goals or 
purposes. However, this is not a necessary condi­
t i on , since a plant "uses" water in photosynthesis 
without having any expl ic i t goal, or purpose. We 
can t e l l that U uses a symbol S to refer to object 
0, by discovering that some signif icant subset of 
the conditions l isted below are sat is f ied. We shall 
see that in the more elaborate cases goals are 
involved. 

The symbols need not be used for external communi­
cation. Meaning and understanding are often assumed 
(e.g. [7]) to be essentially concerned with commun­
ication between language users. As argued in C133, 
this is a mistake, since understanding of an exter­
nal language is secondary to the use of an internal 
symbolism for storing information, reasoning, mak­
ing plans, forming percepts and motives, etc. This 
is prior in (a) evolutionary terms, (b) in relation 
to individual learning, and (c) insofar as the use 
of an external language requires internal computa­
t ions. In short: 

'Representation is prior to communication'. 

Objects in the world W may be concrete (e.g. physi­
cal objects) or abstract (e.g. numbers, grammatical 
rules). They may be external, or internal to U. 
Like symbols, the objects may exist in a v i r tua l 
world, embodied in a lower level world, l ike a v i r ­
tual machine implemented in a lower level computer. 
Many programming languages refer to objects in a 
v i r tua l world, such as l i s t s , arrays, procedures, 
etc. Similarly social systems form a v i r tua l world 
embedded in a psychological and physical world. 

The structure of the concept 'understanding' 

Instead of f ru i t less ly trying to identify a set of 
defining conditions for U to use symbols with 
understanding, I offer a prototypical set of condi­
tions for saying that U uses some collection of 
symbols as a language L referring to objects in a 
world W. Different combinations of these conditions 
define different concepts of 'language', 'meaning', 
'understanding', etc. Asking which is the 'RIGHT' 
concept is pointless. 

For each condition I comment on how it might be 
sat isf ied by a machine, ignoring, for brevi ty , the 
difference between internal and external represen­
tations of computer languages. The discussion w i l l 
appear to be question-begging, as fragments of ev i ­
dence w i l l be presented as if the case had been 
made. The fact that so many fragments can be 
presented this way, is what makes the case! It 
shows that events and processes in a machine can 
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constitute a model for a signif icant subset of the 
'axioms' impl ic i t ly defining mentalistic concepts. 
Unlike simulations of (e.g.) tornadoes/ people out­
side the model can relate to the model as to the 
real thing (though some may f ind this d is tastefu l ) . 
A robot may obey commands, answer questions, teach 
you things. But a simulated tornado w i l l not make 
you wet or cold. Anyone who objects that this is 
not enough can be challenged to describe precisely 
what is missing. Appeals to mystery, or to unana­
lysable kinds of mental or sp i r i tua l stuff are 
undiscussable. 

We'll see that computers can manipulate internal 
structures and use them as symbols associated with 
a world W consisting of both ent i t ies within the 
machine and more abstract ent i t ies l ike numbers and 
symbol-patterns. Later, the discussion addresses 
reference to an 'external' world. 

Prototypical conditions for U to use L_ to refer to W^ 

* L is a set containing simple and complex symbols, 
the lat ter being composed of the former, in a 
principled fashion, according to syntactic 
rules. 

This condition is sat isf ied by most computer 
languages, though machine codes generally have very 
simple syntactic rules and structures. Rules may be 
implicit in procedures. 

* U associates some symbols of L with objects in W, 
and other symbols with properties, relat ions, or 
actions in W. 

A computer can associate 'addresses' with a world W 
containing locations in i ts memory (or in a v i r tua l 
machine) and their contents and relationships. The 
symbols cause processes to be directed to or i n f l u ­
enced by specific parts of the system. Some of the 
symbols specify which processes - i .e . they name 
actions. 

Various sorts of properties and relations may be 
symbolised in a machine language, e.g. equality of 
content, neighbourhood in the machine, arithmetic 
relat ions, having a b i t set, etc. Symbols indicat­
ing tests that produce a boolean resul t , name pro­
perties and relationships. 

So, if U is a simple computer, the basic semantic 
relation is causal: 

'S refers to 0 for U' = 
'S makes U's ac t iv i t ies relate to or involve 

where 0 may be an object, property, relation or 
type of action. 

Instructions have imperative meanings because they 
systematically cause actions to occur. Roughly, 

'S denotes action A to U' = 'S makes U do A' 

Depending on how rich the language i s , S and A may 
have independently variable components, e.g. 
object, instrument, manner, location, time, etc. 

In computers imperative meaning is basic: even 
denoting expressions are often instructions to com­
pute a value. This low level meaning depends on 
direct causal connections within the machine. Later 
we discuss non-imperative denotation. 

* Some of the objects referred to in world W are 
abstract, l ike numbers. 

Computers can use certain symbols to denote numbers 
because they are manipulated by arithmetical pro­
cedures and used as loop counters, address incre­
ments, array subscripts etc. Thus the machine can 
count i ts own operations, or the elements of a l i s t 
that satisfy some test . The way a machine does this 
is typical ly very close to the core of a young 
chi ld 's understanding of number words - they are 
just a memorised sequence used in certain counting 
ac t i v i t i es . So: 

'S refers to a number, for U' = 
'S belongs to a class of symbols which U mani­
pulates in a manner characteristic of count­
ing, adding, etc.' 

* What a complex symbol S expresses for U depends 
on i ts structure, i t s more primit ive components 
and some set of interpretation rules related to 
the syntactic rules U uses for L. ([5]) 

This is true of many computer languages. E.g. what 
is denoted by a complex arithmetical expression, or 
a complex instruct ion, depends on what the parts 
denote, and how they are put together according to 
the syntactic rules of the language. 

* U can treat the symbols of L as 'ob jects ' , i .e. 
can examine them, compare them, change them, 
e tc . , though not necessarily consciously. 

This applies to computers. Symbolic patterns used 
to refer can also be referred to , compared, 
transformed, copied, etc. E.g. two patterns may be 
tested for equality, or overlap, or set inclusion. 
An address can be incremented to get the next loca­
t ion . It is not clear whether other animals can or 
need to treat their internal symbols as objects. 
This may be a pre-requisite for some kinds of 
learning. 

* Certain symbols in L express condit ional i ty. 

This is the key to much creative thinking or plan­
ning, and to f l e x i b i l i t y of action. We can d i s t i n ­
guish (a) ' i f used in conditional imperatives, (b) 
• i f used as the standard boolean ( t ru th-
functional) operator and (c) ' i f used in condi­
t ional assertions, (c) is not found in the simplest 
computer languages. 

Conditional imperatives are found in machines since 
' i f (or some equivalent) when combined with evalu-
able expressions permits or suppresses actions, 
depending on the evaluation. 

* By examining W, U can distinguish formulas in L 
that assert something true from those asserting 
something false. 

Computers typical ly use symbols to denote ' t r u t h -
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values' ( ' true' and 'false' or '1' and ' 0 ' ) . 
Boolean operations e.g. ' o r ' , 'and' , 'not' are also 
represented, by symbols that trigger actions 
transforming inputs to outputs consistently with 
truth-tables. The ' resu l t ' is taken as a t ru th -
value partly because of i ts role in conditional 
imperatives. The sense in which computers can exam­
ine their internal states to assign a truth-value 
is fa i r l y clear, though how they check arithmetical 
statements requires deeper analysis. 

If U assigns truth-values to symbols in a manner 
that depends on the state of world W, the symbols 
can be thought of as representing factual proposi­
t ions, that so and so is the case in W. More gen­
era l ly , 

'For U, S means P is the case' = 
' i n certain contexts the expression S causes U 
to do certain things only if P is the case, 
otherwise not' 

We have yet to see how a machine can treat ' t rue ' 
and ' fa lse ' as more than just formal duals. 

* U can detect that stored symbols contain errors 
and take corrective act ion, e.g. noting that two 
descriptions are inconsistent and finding out 
which to reject. 

Something l ike this occurs in programs that attempt 
to eliminate wrong inferences derived from noisy 
data, e.g. in v is ion, and in plan-executors that 
check whether the assumptions underlying the 
current plan are s t i l l t rue. Here we find support 
for a richer conception of a truth-value than just 
a pair of a rb i t ra r i l y chosen symbols, if ' t rue ' 
connotes surviving tests, and ' fa lse ' reject ion. 
More on this later. 

* A complex symbol S with a boolean value may be 
used for different purposes by U, for instance: 
questioning (specifying information to be found 
by lookup, computation, or external sensing), 
instructing (specifying actions), asserting 
(storing information for future use). 

We have seen how, in a computer, S can function as 
a primit ive question, in a conditional instruction 
where action depends on the answer to the question. 
In low level machine languages there is not usually 
the possib i l i ty of using the same symbol to express 
the content of an imperative as in "Make S t rue" . 
I .e. machine codes do not have ' indirect impera­
t ives ' with embedded propositions. However, AI 
planning systems have shown how in principle this 
can be done, at least in simple cases, assuming the 
i n i t i a l ava i lab i l i ty of direct imperatives. 

Apart from a few exceptions l ike Planner, Conniver 
and Prolog, most computer languages include 
requests and instructions, but not assertions: fac­
tual statements assimilated to some store of 
bel iefs. However, it is easy to allow programs to 
record results of computations or externally sensed 
data, or even results of self-monitoring. Recom-
putable information may be stored simply for easy 
access, as people store mult ipl icat ion tables. 

Whether U uses S as a question, an assertion, or an 

instruct ion, w i l l depend on context. S may specify 
the content of an assertion in one context 
( 's tore(S) ' ) , a question in another ( ' i f S then . . . ' 
or ' lookup(S)') , and an instruction in a th i rd 
( 'achieve(S)'). I .e. role is determined by use 
rather than form or content. 

* U can make inferences by deriving new symbols in 
L from old ones, in order to determine some 
semantic relation (e.g. proofs preserve t ru th , 
refutations demonstrate f a l s i t y ) . 

Work in AI has demonstrated mechanisms for doing 
t h i s , albeit in a restr icted and mostly uncreative 
fashion so far . Human forms of inference require 
some of the functional architecture discussed below 
in connection with motives, and also require use of 
a much wider range of representations than AI has 
so far addressed ([153). 

* L need not be a f ixed, s ta t i c , system: it should 
be extendable, to cope with expanding require­
ments. 

One source of language change in people is communi­
cation with others using different dialects. A 
deeper source is situations that prove hard to 
describe. 

Many computer languages are extendable. Adaptive 
dialogue systems are beginning to show how a 
machine may extend i t s own language according to 
need. But deep concept formation is s t i l l some way 
o f f . It is not clear which animals can and which 
cannot extend their internal languages. Without 
th i s , certain other forms of learning may be impos­
sib le. (More on language change below.) 

* U may use symbols of L to formulate goals, pur­
poses, or intentions; or to represent hypotheti­
cal possib i l i t ies for purposes of planning or 
predict ion. 

Simple versions of this sort of thing are found in 
existing AI planning systems. 

Without a functional architecture supporting d is­
t inct ions between bel ie fs , desires, plans, supposi­
t ions, e tc . , a machine cannot assign meanings in 
the way that we do. Merely storing information, and 
deriving consequences, or executing instructions, 
leaves out a major component of human understand­
ing, i .e . that what we understand matters to us. 
For information to matter to a machine it would 
have to have i t s own desires, preferences, l ikes, 
d is l ikes, etc. This presupposes that there are 
modules whose function is to create or modify goals 
- motive generators. Full f l e x i b i l i t y requires 
motive-generator generators. Deciding and planning 
require motive comparators and motive-comparator-
generators. This is a complex story, spelled out in 
a l i t t l e more detai l in [14]. When desires, inten­
t ions, plans, preferences, etc. are generated 
through experience, perhaps over many years, this 
undermines the claim that a machine can exhibit 
only desires of the programmer or user. Such a 
machine, unlike existing computers, would use sym­
bols in L for i ts purposes. 
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This takes us across yet another boundary in the 
space of behaving systems. Does a machine 'REALLY1 

understand without a l l this? Well, it could 'under­
stand1 well enough to be an ut ter ly slavish ser­
vant. It could not, however, be entrusted with 
tasks requiring creat iv i ty and dr ive, l ike managing 
a large company or a batt le force, or minding c h i l ­
dren. 

* A language may be used for communication between 
individuals. This adds new requirements [18]), 
which are irrelevant to our present concerns. 

Recapitulation 

A l l the conditions so far l is ted for U to use a 
language L in relation to a world W are consistent 
with U being a computer. Several do not even 
require AI programs, since modern computers are 
bui l t able to use symbols to refer to a world W 
containing numbers, locations in memory, the pat­
terns of symbols found in those locations, proper­
t ies and relations of such patterns, and actions 
that change W. 

Associations between program elements and things in 
the computer's world define a primit ive type of 
meaning that the computer i tse l f attaches to sym­
bols. I t s use of the symbols has features analogous 
to simpler cases of human understanding, and quite 
unmatched by f i l i n g cabinets. So, it does not 
interpret symbols merely derivat ively: the causal 
relations jus t i fy our using simplif ied intentional 
descriptions, without anthropomorphism. 

Reference to inaccessible objects 

We have seen how machines can refer to their own 
internal states, to numbers, and to symbolic pat­
terns, i .e . what Woods [18] calls a 'completely 
accessible' world. In order to be useful as robots, 
or f r iends, they w i l l need to refer to external 
objects, events, locations, etc. The problem of 
external semantic linkage is harder to deal with. 
Can a system use symbols to describe objects, pro­
pert ies, and relationships in a domain to which it 
has no direct access, and only incomplete evidence, 
so that it can never completely verify or fa ls i fy 
statements about the domain? (Compare philosophers 
on unobservables in science, e.g. [ 8 ] ) ) . 

A key idea is that imp l i c i t , pa r t i a l , definit ions 
(e.g. in the form of an axiom system) enable new 
undefined concepts to be added to a language. 
(Compare [1]) on 'meaning postulates'. Woods' 
'abstract procedures' seem to be the same thing.) 
For instance, a collection of axioms for Euclidean 
geometry, in the context of a set of inference pro­
cedures, can par t ia l ly and impl ic i t ly define con­
cepts l ike ' l i n e ' , ' po in t ' , ' in tersects ' , etc. The 
axioms constrain the set of permissible models. 
Similar ly, a congenitally blind person may attach 
meanings to colour words not too different from 
those of a sighted person, because much of the 
meaning resides in rich interconnections with con­
cepts shared by both, such as 'surface' , 'edge', 
' pa t te rn ' , 'cover ' , ' s t r i p e ' , 'harmonise', etc. 

We can generalise t h i s . In A . I . vision programs, 

instead of assertions and inference rules we often 
f ind data-structures and procedures for manipulat­
ing them. If the structures are also used to guide 
actions and predict their consequences, that impl i ­
c i t l y gives them semantic content, by constraining 
the class of possible environments that could 
coherently close the feedback loops, just as a set 
of axioms restr icts the set of possible models. As 
with axioms, the constraints may not define a 
unique model. 

Causal embedding in an environment 

Does external reference require external causal 
links? One may be able to use sensors detecting 
l i gh t , sound or pressure from external objects, and 
mechanical devices that act on objects. But direct 
links are often not possible. For instance we can 
refer to events remote in space and time, and even 
to hypothetical objects in hypothetical situations. 
So direct causal connections to X are not necessary 
for reference to X. 

Causal links may d i f fer in kind. Consider two 
machines running programs P1 and P2, the former 
connected to TV cameras and mechanical arms, as 
well as a VDU, and the latter only to a VDU. Sup­
pose P1 is able to use i ts sensory-motor links in 
referring to the external world, and P2 contains 
a l l of P1 except portions of the program required 
for interacting with the cameras and arms. P1 can 
learn about the world either through i ts cameras, 
or from another agent through the VDU. P2 has only 
the VDU, but can think about the same world, l ike a 
blind and paralysed person who can talk and l is ten; 
and l ike paleontologists talking about pre-history. 
Causal links can be more or less d i rect , and can 
convey more or less rich information. Communication 
via another agent is indirect , and generally pro­
vides limited but abstract information, but it is 
s t i l l a causal l ink , l ike foss i l records. 

So, using symbols to formulate descriptions of an 
external world does not require that the world 
actually be direct ly sensed and acted on by the 
specific symbol-user, though the internal symbols 
and procedures must be rich enough to support such 
processes. However, some causal link is required if 
symbols are to refer to particular physical 
objects, l ike the Tower of London, or physical pro­
perties found in our world, such as magnetism. 
Without causal connections with the environment a 
thinker could only think (existent ial ly quantified) 
thoughts about an abstract possible world, perhaps 
a generalisation of our world, but not about this 
world, or things in i t . Causal l inks, whether via 
sense organs or other agents, can help to pin the 
reference down to this world. They can reduce the 
extent of ambiguity of reference, though they never 
to ta l ly remove i t , as shown by old philosophical 
arguments in support of scepticism (see Strawson). 

Extending 'mentalese': concept learning 

A language may be extended by the addition of new 
axioms and procedures, par t ia l ly and impl ic i t l y 
defining some new primit ive symbols, and modifying 
the meanings of old ones. The history of concepts 
of science and mathematics shows that not a l l 



1000 A. Sloman 

newly-acquired concepts need be translatable into 
one's previous symbolism. E.g. 'mass' in Einstein's 
physics is not definable in Newtonian terms. Physi­
cists use concepts not exp l ic i t l y definable in 
terms of tests that may be applied to sensory data. 
Using theories and inconclusive tests, they infer 
descriptions including symbols that are only par­
t i a l l y defined. An intel l igent machine or organism 
is in the same sort of relation to the world as is 
a sc ient i f ic community. 

So new symbols may be learnt without being 
translatable into old ones. After such learning, 
there is no clear functional dist inct ion between 
the or iginal concepts and the accreted language: we 
can memorise facts, formulas and instructions in 
English, instead of always having to translate into 
'mentalese'. Hence, contrary to Fodor, different 
humans (or machines) may use dif ferent 'mentalese' 
even if they a l l started off the same. 

The essential incompleteness of semantics 

Not every descriptive or referential symbol U 
understands must be one to which U can relate real­
i ty d i rec t l y , using perceptual or other causal 
l inks. The symbol-system L may make contact with 
rea l i t y , e.g. through U's sense-organs and actions, 
only at relat ively scattered points, and only in 
indirect ways ( l ike the connection between real i ty 
and our concepts of 'atom', 'the remote fu tu re ' , 
'another person's mind', 'Julius Caesar', 'the 
inter ior of the sun', and so on). People with d i f ­
ferent points of contact with real i ty store much 
the same general information about large chunks of 
the world, because their inference procedures per­
mit them to extrapolate beyond what they have 
already learned, and we very l ikely have biological 
constraints bu i l t into us that , together with 
social processes, lead us to similar extrapolations 
from fragmentary evidence. However, convergence is 
clearly not guaranteed, and i ts absence may go 
undetected for some time [9]. If machines are to 
communicate successfully with us, the designers 
w i l l have to understand these constraints and how 
they work. 

If a new symbol is introduced using axioms that 
par t ia l ly impl ic i t l y define i t , then it can only be 
used with a par t ia l meaning, and sentences contain­
ing it w i l l not have determinate t ru th - and 
fals i ty-condi t ions. Such meanings may be inherently 
incomplete, if the concepts are indef ini te ly 
extendable by adding new theoretical assumptions 
about the nature of the real i ty referred to . This 
incompleteness is evident in theoretical concepts 
of science, but can also be demonstrated in o rd i ­
nary concepts. This is an inevitable fact about 
the semantics of a language used to represent 
information about external objects, concerning 
which only p a r t i a l , inferred, information is ava i l ­
able, via sense organs, instruments, hearsay, 
books, foss i l records, etc. In a suf f ic ient ly com­
plex system, even the language used for describing 
i ts own internal state w i l l have th is kind of 
indeterminateness and completeness, because of the 
problems of internal access sketched in chapter 10 
of [12]. 

How can truth and fa l s i t y be distinguished? 

Although I have shown that computers can be said to 
use boolean operations and boolean values, it is 
not clear how to distinguish a ' t rue ' from a 
• false' boolean value, since their roles in a com­
puter may be to ta l l y symmetrical. The manual may 
say that 1 stands for ' t rue ' and 0 for ' f a l s e ' , and 
that certain symbols are interpreted as 'and ' , 'or ' 
• i f , etc. But the duality of propositional logic 
implies that there is as much basis in the formal 
manipulations for treating 1 as ' fa lse ' and 0 as 
' t r u e ' , 'and' as ' o r ' , 'o r ' as 'and' and ' i f as 
'unless' . What else is required for there to be an 
asymmetry between the symbol for ' t rue ' and the 
symbol for ' fa lse '? 

Assertions can be stored, but mere storage does not 
introduce an asymmetry between ' t rue ' and ' f a l s e ' , 
since false as well as true statements could be 
stored, with expl ic i t boolean indicators, or in 
different data-bases. 

In Prolog-like languages, it might seem that there 
is a clear d ist inct ion between truth and f a l s i t y , 
between 'and' and ' o r ' , and so on, with completed 
derivations signifying t r u th , fa i lure signifying 
f a l s i t y . However, this is not suff ic ient to d is­
tinguish truth and f a l s i t y , since proving conclu­
sion C on the basis of premisses P1 to Pn is 
equivalent to refuting the disjunction of P1 to Pn 
on the basis of the fa ls i t y of C. 

We have seen one source of asymmetry, in mechanisms 
that can check stored assertions out, instead of 
always bl indly assuming them correct: an elementary 
form of self-consciousness. Truth of a formula is 
then associated with having the capacity to survive 
thorough checking. But the connection is not sim­
p le , for the process of checking may include 
errors. 

Another source of asymmetry is a 'redundancy con­
vention'. Instead of storing values of expressions 
exp l i c i t l y , adopt a convention that one of the 
boolean indicators is redundant: it is signif ied 
merely by the presence of a formula in an informa­
t ion store or a communication. 'True' and ' fa lse ' 
then drop out of the 'object language' and become 
partly redundant metalinguistic concepts. 

A deeper asymmetry l ies in connections between 
beliefs and autonomous motives. Truth then is the 
boolean value of those beliefs (stored information) 
which (generally) enable desires to be sat isf ied by 
rational planning. Again the connection is not sim­
p le , for a true belief combined with other false 
premisses, or an inval id inference, can lead to a 
disastrous plan. Moreover, what f u l f i l e s one desire 
may turn out to subvert another far more important 
one. I believe that further investigation w i l l show 
that by adopting the design stance we can replace 
old and apparently empty philosophical disputes 
with new f r u i t f u l analyses with important implica­
tions for the design of in te l l igent systems. 

Conclusion 

By adopting a 'design stance', we can begin to 
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c lar i fy the question whether machines themselves 
can understand symbols, or whether meanings of sym-
boLs in a computer are onLy derivative. It is not 
enough that machines appear from the outside to 
mimic human understanding: there must be a reliable 
basis for assuming that they can dispLay under­
standing in an open-ended range of si tuations, not 
all anticipated by the programmer. I have br ie f ly 
described structural and functional design require­
ments for t h i s , and argued that even the simplest 
computers use symbols in such a manner that , 
independently of how PEOPLE interpret the symbols, 
the machines themseLves (unLike cabinets and 
copiers) associate meanings of a primitive sort 
with them. Internal uses of symbols are primary. 

I have shown that a machine may use symbols to 
refer to i t s own internal states and to abstract 
objects; and indicated how it might refer to a 
world to which it has only limited access, relying 
on the use of axiom-systems to constrain possible 
models, and perception-action loops to constrain 
possible completions. These constraints leave mean­
ings partly indeterminate and indefinitely extend­
able. Causal links reduce some of the indeter­
minacy. (ALL these topics require far more detailed 
discussion.) 

The f u l l range of meaningful uses of symbols by 
human beings requires a type of architectural com­
plexity not yet be achieved in AI systems. There is 
no known obstacle to such developments in p r inc i ­
p le, though further research may reveaL insuperable 
d i f f i cu l t ies. 

Instead of l i s t ing necessary and suff icient condi­
tions for understanding I argued that there is a 
complex set of prototypical conditions, different 
subsets of which may be exemplified in different 
animals or machines, yielding a complex space of 
possible systems which we are only just beginning 
to explore. Our ordinary concepts. Like 'under­
standing' are not suited to drawing global boun­
daries within such a space. At best we can analyse 
the implications of various different designs, and 
the capabil i t ies they produce, or f a i l to produce. 

When we have shown in detai l how Like or unlike a 
human being some type of machine i s , there remains 
a residual seductive question, namely whether such 
a machine really can be conscious, really can feel 
pain, really can think etc. Pointing inside your­
self at your own pain (or other mental state) you 
ask 'Does the machine really have THIS experi­
ence?'. This sort of question has much in common 
with the pre-Einsteinian question, uttered pointing 
at a location in space in front of you: 'Wi l l my 
finger really be in THIS location in f ive minutes 
time?' In both cases it is a mistake to think that 
there real ly is an 'en t i t y ' with a continuing iden­
t i t y , rather than just a complex network of rela­
tionships. The question about machines has an extra 
dimension: despite appearances, it is ultimately an 
ethical question, not just a factual one. It 
requires not an answer but a practical decision on 
how to treat the machines of the future, if they 
leave us any choice. 
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