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Abstract 

This research addresses how constraint satisfaction interacts 
with the search mode, and how the ratio of breadth of effort to 
depth of effort can be controlled. Four search paradigms, each 
the best of its kind for non adversary problems, are investigated. 
One is depth first, and the others best first. All methods except 
one highly informed best first search use the same knowledge, 
and each of these methods is tested with and without the use of a 
constraint satisfaction procedure on sets of progressively more 
difficult problems. 

As expected, the most informed search does better than the less 
informed as the problems get more difficult. Constraint 
satisfaction is found to have a pronouncedly greater effect when 
coupled with the most informed algorithm. Large performance 
increments over A* can be produced by the use of a coefficient 
associated with the h term, and this algorithm produces solutions 
that are only 5% worse than optimal. This is a known 
phenomenon; however, the range of this coefficient is very 
narrow. We term this coefficient, which controls the ratio of depth 
of effort to breadth of effort, the adventurousness coefficient. The 
less tractable a problem the greater the adventurousness should 
be. We present evidence to support this. 

Introduction 
Heuristics are employed when the domain space being explored 

is too large to search exhaustively. A heuristic increases the 
likelihood of making a correct choice, but cannot prevent the 
making of an incorrect choice. The knowledge embodied by the 
heuristics is needed to reduce the cost of the search, but is 
insufficient to alleviate the need to search. The basic problems 
associated with heuristic search are: the desire to follow 
"successful" branches, while leaving less successful ones for 
later, and, when to quit pursuing a branch as its estimated merit 
declines. 

Both problems are addressed by any search paradigm; however, 
the second problem can be effectively dealt with by a constraint 
satisfaction procedure that eliminates states that can no longer be 
solved. Brute force methods solve problems by searching to the 
maximum penetration allowed in the time available. As the 
problems get more difficult, the utility of such methods decreases. 
Thus depth-first searches are often augmented with techniques 
such as branch and-bound and minimal move ordering 

knowledge, but the use of heuristic knowledge is minimal. In 
contrast, a pure best first search relies exclusively on its heuristic 
knowledge with all the search control decisions being based on 
that knowledge. 

We wished to study the interaction between heuristics, search 
techniques, and constraint satisfaction. Superpuzz, a solitaire 
puzzle that can benefit from constraint satisfaction techniques, 
was chosen as our problem domain. We selected four search 
algorithms as being the best exemplars of their class for solving 
non-adversary problems, and devised a constraint satisfaction 
procedure. We then investigated the degree of degradation fcr 
each search algorithm as the problems became more difficult, and 
the interaction of constraint satisfaction with each technique. 

The Domain 
The domain chosen for this study was Superpuzz, an extremely 

difficult solitaire puzzle. The rules of Superpuzz are as follows: 

Superpuzz is played with 24 cards, 6 (numbered 0 to 5) in each 
of 4 suits. To start a problem deal the cards in a raster of 6 wide 
by 4 deep. Then remove the "0" denomination cards, leaving 
"holes". Legal moves consist of moving a card into a hole, thus 
creating a hole at its former location. The card that is moved into 
a hole must be of the same suit as the card to the left of the hole, 
and be one higher in denomination. 

No card can be moved to the right of the last card in a suit, nor to 
the right of a hole. If a hole is on the left edge, any 1 may be 
moved there. The game is won when all the cards have been 
placed in ascending order by suit, with one suit in the first 5 places 
of each row as demonstrated by Figure 1B. There is no 
requirement to have particular suits in particular rows. The game 
is lost when there are no longer any legal moves. These are the 
rules for 4x6 Superpuzz; it is also possible to play harder versions 
adjusting the rules for 4x7 and 4x8 formats. 
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Figures 1A and 1B show an initial and terminal position 
respectively. A solution to the initial position can be found at the 
end of this article. The most challenging aspect of Superpuzz is 
determining which ace to move into a hole on the left-edge. 
Making the proper ace move is often-non intuitive, which makes 
the domain interesting and results in programs that outperform 
well practiced humans. 

The Search Paradigms 
Initial studies determined the following search algorithms were 

the bet,t exemplars of their class : 
1. A depth-first search (Df ) using the branch and bound, 

and iterative deepening |5| techniques. Iterative 
deepening has recently beer) proved to dominate 
simple depth first search when the depth of the 
solution is unknown |3| The constant of iteration 
used was 2. The bound is the number of misplaced 
cards (N) in the present configuration If the present 
configuration is at depth D, it is impossible to reach a 
solution at a depth less than D + N. 

2 The A* search [4) A* expands the frontier node with 
the minimal function I, where / = g + h = D + N. 

3 A best first search (BF1) that uses the simple 
evaluation function f - N + D. where , the 
adventurousness coefficient which we discuss 
later, was equal to 1.8. 

4. A best first search (BF2) with a highly informed 
evaluation function that would encourage the 
development of good "positional" formations that 
could be transformed into wins. 

A hash table containing the generated nodes plays a key role in 
three ways. In the best first searches, it becomes the 
representation of the tree. The hash encoding detects identical 
states, so that the same subtree will be searched only once. The 
hash encoding also detects cycles. In the depth-first search, the 
hash table only performs the two latter functions. 

Two evaluation functions were required. These are 1) A 
misplaced card counter, and 2) A position goodness function. 
These functions are described in detail in [2]. The misplaced card 
function is used in all the search programs, while the goodness 
function is used only in BF2. 

The Constraint Satisfaction Method 
Any state of a domain is either solvable or unsolvable. We define 

the set of totally solvable domains to be those in which all states 
accessible from a solvable state are solved or solvable. In such 
domains any operator applied to any state preserves the solvability 
of the new state. Frequently, for each operator there exists a 
reverse operator that can re-establish the previous state. This 
type of problem is represented by puzzles such as the 15 Puzzle 
and Rubik's Cube. An alternate condition is that the permissible 
operations do not allow transformation to an unsolvable state. 

Set against the class of totally solvable problems is the class of 
partially solvable problems in which not every state of the 
domain can be solved, and the set of operations allow unsolvable 
states to be reached from solvable states, For totally solvable 
domains the only thing of interest is the speed of the solution 

process and the quality of the solution. Tor partially solvable 
problems, each instance may have to be classified as solvable or 
unsolvable. 

Constraint satisfaction is the term used for the sot of algorithms 
that can determine when a subtree cannot contain a solution. We 
wanted to study the role of constraint satisfaction on a difficult, 
partially solvable problem as the difficulty of the problem varied. 
This was the reason Superpuzz was selected, as standard puzzles 
such as the 15 Puzzle are totally solvable, and others such as 
Instant Insanity are not very difficult for a computer. 

Both totally and partially solvable problems can use heuristic 
knowledge in order to speed up the search for a solution. 
Heuristic knowledge can be used to choose the order of applying 
operators and to evaluate the new states. However, totally 
solvable problems need no process to identify subtrees in which 
no solution can exist because, ipso facto, such subtrees cannot 
exist. 

The constraint satisfaction function developed for this problem 
[2] is as follows: Once all the aces are in place, the final 
destination of every card can be determined. Cards not at their 
final destination must be moved. We only examine cards that are 
to the left of their destination since they are typically the hardest to 
move, If such a card is unmovable, the problem instance is 
unsolvable. The constraint satisfaction procedure is able to reject 
about 50% of all configurations presented to it during a search as 
being unsolvable Constraint satisfaction is applied only after all 
the aces are in place, since identifying deadlocked positions 
earlier was unproductive. It ts able to deal with situations where 
not only individual cards, but whole trains of cards must be 
moved. Trains arise frequently as the result of putting a card 
behind its predecessor. The problem of determining whether a 
tram can be moved is very difficult, and a number of finesses were 
used which are described in the above cited reference. 
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which we discuss in the next section. 

Discussion and Conclusions 
Superpuzz is a much more difficult than standard puzzles. 

Further, the difficulty of the game varies with the width of the 
puzzle. In this study we examine the 4x6, 4x7 and 4x8 games. 
Although the branching factor in each of these remains the same, 
the solution depth and percent of unsolvable problems increases 
significantly with increases of width. 
The solution process can be thought of as occurring in two 

phases. In phase one, the combinatonc power of search attempts 
to sec whether it is possible to obtain a position where till four 
aces are in place. When this has occurred, the deadlock 
detection algorithm is invoked, which can reject about 50% of all 
positions it encounters. Phase two is invoked for positions that 
pass the deadlock test. Here by relatively small searches, the 
solution is either found or rejected. When no solution is found in 
the sub-tree, phase one again obtains control. 

Given that the combination of deadlock detection and very small 
searches in phase two is very efficient, certain ideas emerge. If 
the position is solvable, then it is advantageous to reach phase 
two as quickly as possible. The BF2 search does this most 
effectively. It is not at all unusual to have the first all aces in-place 
configuration discovered by the BF2 search be solvable, 
whereupon the solution proceeds immediately. In those cases 
where this does not happen, the first dozen or so attempts do 
usually yield a solvable phase two. Only in cases where the 
solution is very contrived, or where there is no solution, is the BF2 
procedure outperformed by others, in the case where there is no 
solution, all phase two positions must be explored and the 
procedure that reaches these with the minimum amount of effort is 
the most effective. From this it can be seen that some knowledge 
of what percentage of problems is solvable is instrumental in 
deciding on a search paradigm. In this research, the BF2 
evaluation function is expensive to compute, as is traversing the 
tree. But, while the BF2 search is only marginally superior in the 
width 6 puzzle, it becomes completely dominant by the time the 
width is increased to 8. 

Let us consider why one search paradigm is better than another. 
A* and DF are really quite similar. They probe to new depths in a 
breadth-first style that takes advantage of certain efficiencies. A* 
knows about effort remaining and builds a permanent copy of the 
tree, which it continues to expand at the best leaf nodes. DF also 
knows about effort remaining and gets its power from great 
efficiency in space and time. However, neither is able to venture 
very far on a probe down a branch unless it is continuously having 
success (reducing the number of misplaced cards). Any failure to 
improve this measure would immediately force the A* search to try 
another branch. Because the DF search has an iteration constant 
of 2, two non successful moves can occur in expanding a branch 
before returning. Since the criterion for success is rather 
simplistic, and it is very likely that any solution will require a 
number of non-constructive or backward-appearing steps, it is 
unlikely that either search will be able to make significant forward 
progress through such territory. Instead they plow steadily 
forward until the treacherous territory is overcome by all highly 
evaluated branches, and then pursue one to a successful 
conclusion. 
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Now consider the BF 1 search paradigm The evaluation 
function for BF1 is / - /i N + D. The constant /i is the 
advonturousness coefficient; for this program μ = 1.8. In BF1 
the value of a descendant node either decreases by .8 units in 
case the number of misplaced cards is reduced, or is increased by 
1.0. This allows the descendant node to put some distance 
between it and its competitors when it is able to take a few 
constructive steps intermixed with some that do not appear so 
constructive. The essential point is that a branch does not have to 
produce "progress" on every move The degree of such 
adventurousness is what the constant 1.8 controls, and for the 
given domain and evaluation function it appears to be best. 

Best first search disciplines exist that have a reluctance to 
abandon a branch until it is judged a constant amount worse than 
the current best branch. The adventurousness coefficient allows 
the number of non-intuitive moves included in a branch to be a 
linear function of the number of "good" moves. This appears to 
be a better construction. 

The BF2 search is even more adventurous (though it not clear 
how to obtain its adventurousness other than by empirical 
observation) since it can gain numerous points in heuristic value 
by placing a card into what is considered an advantageous 
location. This allows it to penetrate deeply in certain branches 
that it "likes" while leaving others behind. This additional 
knowledge appears to pay off in performance. 

In some cases the evaluation function will lead the search up a 
blind alley. Here is where constraint satisfaction helps the most: it 
can disenchant the search causing it to look elsewhere. This 
happens for all of the searches, but is most effective in BF2 
because the other searches are not as adventurous. 

In any search paradigm, once a node is known to be 
deadlocked, its successors will never be expanded. However, 
these savings can only be realized once such a sub tree is 
reached. This is where adventurousness is important. If 
situations where constraint satisfaction procedures can be 
applied occur only after almost all important branches have been 
pushed to the same depth, then the savings will not be very great. 
Here, the most adventurous search has a big advantage (see 
Table 3) since // allows selectively approaching the point where 
constraint satisfaction can be applied. 

If the above notions of adventurousness are correct, then the 
less tractable the domain, the higher the adventurousness should 
be We tested this hypothesis by re-running the? Bf 1 (deadlock) 
algorithm on all the 4x8 problems with μ = 2.4 This resulted in 
the average nodes per problem being reduced by 15%, and in the 
number of intractable problems being reduced from 9 to 5. We 
intend to investigate this scaling of adventurousness further in 
future studies. 

In anv domain the heuristic function must evaluate the 
desirability of the moves available. The decision of whether to 
abandon a branch in a best first search or continue it is basic to 
the efficiency of the search. The adventurousness coefficient for 
any domain /function combination, determines the degree to 
which the past history of the branch influences this decision. It is 
not necessary to "succeed" on every move in a branch in order to 
continue it. Instead a success gradient (the adventurousness 
coefficient) must be maintained. This tends to produce 
consistent, plan-like behavior. 

A minimal solution to Figure 1A is: (read left to right; names of 
moving cards only, except for aces where the row is also given). 

C2 S1 (Z) D4 D3 D4 CI (Y) C2 D1 (X) C3 S2 H2 S4 C4 D2 S5 C5 H4 
S3 D1 (W) H1 (X) S4 D2 H2 S5 D3 D4 D5 H5 
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