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A b s t r a c t 

Theory resolution constitutes a set of complete procedures for in­
corporating theories into a resolution theorem-proving program, 
thereby making it unnecessary to resolve directly upon axioms of 
the theory. This can greatly reduce the length of proofs and the 
size of the search space. Theory resolution effects a beneficial di­
vision of labor, improving the performance of the theorem prover 
and increasing the applicability of the specialized reasoning pro­
cedures. Applications include the building in of both mathemat­
ical and special decision procedures, e.g., for the taxonomic in­
formation furnished by a knowledge representation system. The­
ory resolution is a generalization of numerous previously known 
resolution refinements. Its power is demonstrated by comparing 
solutions of "Schubert's Steamroller" challenge problem with and 
without building in axioms through theory resolution.1 

1 I n t r o d u c t i o n 

Incorporating a theory into derived inference rules so that its 
axioms are never resolved upon has enormous potential for re­
ducing the size of the exponential search space commonly en­
countered in resolution theorem proving. Theory resolution is 
a method of incorporating specialized reasoning procedures in a 
resolution theorem prover so that the reasoning task will be ef­
fectively divided into two parts: special cases, such as reasoning 
about inequalities or about taxonomic information, are handled 
efficiently by specialized reasoning procedures, while more gen­
eral reasoning is handled by resolution. The connection between 
the two reasoning components is made by having the resolution 
procedure resolve on sets of literals whose conjunction is deter­
mined to be unsatisfiable by the specialized reasoning procedure. 
The objective of research on theory resolution is the conceptual 
design of deduction systems that combine deductive specialists 
within the common framework of a resolution theorem prover. 

Concern has often been expressed about the ineffectiveness 
of applying resolution theorem proving to problems in artificial 
intelligence. Theory resolution is designed to partly address this 
concern by providing a means for incorporating specialized rea­
soning procedures in a resolution theorem prover. The division 
of labor achieved in the reasoning process by theory resolution is 
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intended to produce the dual advantages of improving the theo­
rem prover's performance by the use of more efficient reasoning 
procedures for special cases and of increasing the range of appli-
cat ion of the specialized reasoning procedures by including them 
in a more general reasoning system. 

Past criticisms of resolution can often be characterized by 
their pejorative use of the terms uniform and syntactic. Theory 
resolution meets these objections head-on. In theory resolution, 
a specialized reasoning procedure may be substituted for ordi­
nary syntactic unification to determine unsatisfiability of sets of 
literals. Because the implementation of this specialized reason­
ing procedure is unspecified—to the theorem prover it is a "black 
box'' with prescribed behavior, namely, able to determine unsat­
isfiability in the theory it implements—the resulting system is 
nonuniform because reasoning within the theory is performed by 
the specialized reasoning procedure, while reasoning outside the 
theory is performed by resolution. Theory resolution can also be 
regarded as being not wholly syntactic, since the conditions for 
resolving on a set of literals are no longer based on their being 
made syntactically identical, but rather on their being unsatisfi-
able in a theory, and thus resolvability is partly semantic. 

Reasoning about orderings and other transitive relations is 
often necessary, but using ordinary resolution for this is quite 
inefficient. It is possible to derive an infinite number of conse­
quences from a < b and (x < y) A (y < z) D (J < x) despite the 
obvious fact that a refutation based on just these two formulas 
is impossible. A solution to this problem is to require that use 
of the transitivity axiom be restricted to occasions when either 
there are matches for two of its literals (partial theory resolution) 
or a complete refutation of the ordering part of the clauses can 
be found (total theory resolution). 

An important form of reasoning in artificial intelligence ap­
plications embodied in knowledge representation systems is rea­
soning about taxonomic information and property inheritance. 
One of our goals is to be able to take advantage of the efficient 
reasoning provided by a knowledge representation system by us­
ing it as a taxonomy decision procedure in a larger deduction 
system. KRYPTON [4,13] represents an approach to construct­
ing a knowledge representation system composed of two parts: a 
terminological component (the TBox) and an assertional compo­
nent (the ABox). For such systems, theory resolution indicates 
in general how information can be provided to the ABox by the 
TBox and how it can be used by the ABox. 

2 T h e o r y R e s o l u t i o n 

We will now define the theory resolution operation and discuss 
various useful restrictions on theory resolution. We will limit our 
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Harrison and Rubin's U-generalized resolution [7] is es­
sentially binary partial narrow theory resolution applied to sets 
of clauses that have a unit or input refutation. They apply it to 
building in the equality relation, developing a procedure similar 
to Morris's E-resolution [10]. The restriction to sets of clauses 
having unit or input refutations eliminates the need for factor­
ing and simplifies the procedure, but otherwise limits its appli­
cability. No effort was made in the definition of U-generalized 
resolution to limit the applicability of T-resolution to reasonable 
cases (e.g., formation of an ORD-resolvent of a < b and c < d is 
permitted by the definition). 

The linked inference principle by Wos et al. [22] is related 
to theory resolution in concept and purpose. The linked infer­
ence principle is a somewhat more conservative extension of res­
olution than theory resolution, since it stipulates that the theory 
will be built in by means of clauses designated as linking clauses. 
Theory resolution, on the other hand, allows the theory to be 
incorporated as a "black box" that determines T-unsatisfiability 
questions in an unspecified manner. This facilitates the use of 
other systems, which do not rely upon resolution or clause rep­
resentation, to build in theories. Nevertheless, many instances 
of theory resolution can be usefully implemented in the manner 
of the linked inference principle. Since the implementation pro­
posal for the linked inference principle is more concrete, Wos et 
al. have expended comparatively more effort in determining how 
inference using the linked inference principle is to be controlled, 
including defining linked variants of resolution refinements such 
as unit-resulting resolution and hyperresolution. 

We have already suggested the importance of theory resolu­
tion for taxonomlc reasoning. This is being explored in the 
KRYPTON knowledge representation system. Figure 1 contains 
a nearly verbatim transcription of a proof using KRYPTON-style 
reasoning. The problem is to prove that, if Chris has no sons and 
no daughters, then Chris has no children. 

The terminological information used in this problem through 
theory resolution includes the statements that boys are persons 
whose sex is male; girls are persons whose sex is female; "no-sons* 
are persons all of whose children are girls; "no-daughters" are per­
sons all of whose children are boys. Relevant portions of this in­
formation are included in Formulas 1-6, which are used to define 
what theory resolution operations are possible. If complements 
of the first two atoms of each formula can be found, they can 
be resolved upon, and the remaining part of the formula, if any, 
would be derived as the residue. Thus, Formula 1 expresses the 
unsatisfiability of Boy(John) and -Peraon(John). Formula 6 
permits the derivation of Girl(Sandy) from NoSon(Mary) and 
Child(Mory, Sandy). These formulas behave similarly to linking 
clauses in linked inference [22]. 

The assertional information used in this problem includes the 
information that every person has a sex; males and females are 
disjoint; Chris has no sons and no daughters. From these facts, 
and the built in terminological information, a refutation is com­
pleted starting with the negation of the desired conclusion that 
Chris has no children, sk1 and sk2 are Skolem functions. 

The following table compares the statistics for proofs com-

There is a noticeable improvement resulting from using theory 
resolution, but because the problem is so small, the difference is 
not large. Harder problems (like the one in Section 4) can be 
used to demonstrate much greater improvement. 

Theory resolution for taxonomic reasoning also incorporates 
many elements of reasoning in a many-sorted logic. For ex­
ample, in Walther's ∑RP-calculus (many-sorted resolution and 
paramodulation) [17,19], sort declarations, subsort relationships, 
and sort restrictions on clauses are all incorporated into the uni­
fication procedure, and eliminated from the clauses in the state­
ment of a problem. Thus, the ∑RP unification procedure imple­
ments a theory of sort information. 

4 E x p e r i m e n t a l R e s u l t s 

Although the relationship of theory resolution to many other 
extensions of resolution and experience with numerous small ex­
amples support the practical value of theory resolution, we will 
not elaborate on these, but will rather bolster our claim with an 
examination of experimental results for "Schubert's Steamroller* 
challenge problem. 

Schubert's steamroller problem (annotated with formula 
numbers) is 

(1-5) Wolves, foxes, birds, caterpillars, and snails are 
animals, and (7-11) there are some of each of them. 
Also (12) there are some grains, and (6) grains are 
plants. (13) Every animal either likes to eat all plants 
or all animals much smaller than itself that like to 
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We present statistics on several solutions of Schubert's steam-
roller problem found by our theorem prover [15]. The first is a 
proof that does not use theory resolution; the second is a proof 
using theory resolution to implement the taxonomic information 
in the problem (Formulas 1-6); the remaining proofs show the re­
sults of using theory resolution to build in each of Formulas 14-17 
successively. 

The same strategy was used for all of the proofs. Nonclausal 
connection-graph resolution was the principal inference rule. Fac­
toring was not employed. Pure, variant, and tautologous formu­
las were eliminated. Single literal formulas were used for both 
forward and backward demodulation. 

Heuristic search, guided by a simple weighted function of the 
deduction level of the parents and the expected size of the re­
solvent, was used to decide which inference operation should be 
performed next. The set of support strategy (with only For­
mula 18 supported) and an ordering strategy that designated 
which atoms in a formula could be resolved upon were used to 
limit the number of alternative inference operations. 

In using theory resolution, connection graph links were cre­
ated from key sets of literals in the theory being incorporated. 
Formulas 1-6 and 17 were implemented by binary total narrow 
theory resolution links and Formulas 14-16 were implemented by 
3-ary total narrow theory resolution links. For example, Wolf(t) 
and ->Animal(t) could be linked, and Bird(t1), Snail (t2), and 
likes to eat (t1,t2) could all be linked. Theory resolution was 
also used in demodulation—e.g., Wolf(t) could be used to de­
modulate Animal(t) to true. 

Following are the statistics for the various solutions of Schu­
bert's steamroller problem. Included in the statistics are the 
number of formulas inputted to the theorem prover, the number 
of formulas derived in the course of searching for a proof, the 
number of inputted and derived formulas still present when a 
proof was found, the number of successful unification attempts 
during the search for a proof (including unification during link 
inheritance), the time required for the proof (on a Symbolics 3600 
personal LISP machine), and the length of the proof in resolution 
steps. 

Also included in the table are statistics we know for solu­
tions of Schubert's steamroller problem by other systems. Unfor­
tunately, use of slightly different axiomatizations, e.g., whether 
"grain-eating animal" is interpreted as an animal that eats some 
grain (our work, see [16]) or every grain [18], makes statistics for 
these different solutions not strictly comparable. We will publish 
a more detailed comparison of solutions later. 

The MKRP solution was done by Walther [20] using the Mark-
graf Karl Refutation Procedure [3]. This proof relied heavily on 
the MKRP TERMINATOR module [2], which is essentially a very 
fast procedure for finding unit refutations. A superior proof by 
Walther [18] used his ∑RP calculus [17,19] in the MKRP sys­
tem to perform many-sorted resolution on a much reduced set 
of clauses. This proof also used the TERMINATOR module, but, 
given the reduction in the number of clauses and literals made 
possible by using many-sorted resolution and its restrictions on 
unification, here its use was not essential to finding a solution 
with reasonable effort. MKRP is written in INTERLISP and was 
run on a Siemens 7760 computer. 

Our first theory resolution proof, in which only the taxonomic 
information of Formulas 16 is incorporated, has some similar­
ity to a many-sorted resolution proof. In the MKRP ∑RP proof, 
WoIf, Fox, Bird, Caterpillar, and Snail were declared to be sub-
sorts of sort Animal and Gram was declared to be a subsort of sort 
Plant. The unification algorithm was restricted so that a variable 
can be unified with a term if and only if the term is a subsort 
of or equals the sort of the variable. For building in just this 
taxonomic information, many-sorted resolution is stronger than 
this particular instance of theory resolution. Although theory 
resolution handles the sort literals more effectively than ordinary 
resolution, many-sorted resolution dispenses with them entirely. 
Also, many-sorted resolution is used to build in the sort infor­
mation for Skolem constants and functions so that, in Schubert's 
steamroller problem, Formulas 7-12 are supplanted by type dec­
larations. 

The ITP solution was found by the automated reasoning sys­
tem ITP (written in PASCAL) developed at Argonne National 
Laboratory [9]. This solution used qualified hyperresolution 
[8,21] and was completed in about six minutes on a VAX 11/780 
computer [12]. Like the theory resolution and MKRP ∑RP solu­
tions, this solution treated the taxonomic sort information in the 
problem specially. In qualified hyperresolution, some literals in 
a clause can be designated as qualifier literals that contain "con­
ditions of definition" for terms appearing in the clause. Qualifier 
literals are ignored during much of the inference process e.g., a 
clause consisting of a single nonqualifier literal and some qualifier 
literals is handled as if it were a unit clause with the conditions 
imposed by the qualifier literals checked only after the qualified 
terms are instantiated. Thus, sort restrictions can be specified 
in qualifier literals and deductions can be performed using only 
the nonsort information. The deductions are then subjected to 
verification that terms are of the correct sort. 

5 C o n c l u s i o n 

Theory resolution is a set of complete procedures for incorporat­
ing decision procedures into resolution theorem proving in first-
order predicate calculus. Theory resolution can greatly decrease 
the length of proofs and the size of the search space. Theory 
resolution is also a generalization of several other approaches to 
building in nonequational theories. 



1186 M.Stickel 

We are implementing and testing forms of theory resolu­
tion in the deduction-system component of the KLAUS natural-
language-understanding system [6,15]. This system demon­
strated substantial improvement in performance when theory res­
olution was used on Schubert's steamroller challenge problem. 
The KRYPTON knowledge representation system is also applying 
the ideas of theory resolution to combine a terminological rea­
soning component and an assertional reasoning component (for 
which they are also utilizing the KLAUS deduction system). 

Theory resolution is a procedure with substantial power and 
generality. It is our hope that it will serve as a base for the theo­
retical and practical development of a methodology for combining 
the general reasoning capabilities of resolution theorem-proving 
programs with more efficient specialized reasoning procedures. 

One important area for further research on theory resolution 
is finding restrictions on the need for retention of tautologies and 
determining compatibility with other resolution refinements. 

Another important research question is handling combina­
tions of theories (beyond the trivial case of totally disjoint the­
ories). Successful combining of multiple deductive specialists 
within a resolution framework awaits further development in this 
area. The work of Nelson and Oppen [11] and Shostak [14] on 
combining quantifier free theories may be relevant. 
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