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Abstract

Theory resolution constitutes a set of complete procedures for in-
corporating theories into a resolution theorem-proving program,
thereby making it unnecessary to resolve directly upon axioms of
the theory. This can greatly reduce the length of proofs and the
size of the search space. Theory resolution effects a beneficial di-
vision of labor, improving the performance of the theorem prover
and increasing the applicability of the specialized reasoning pro-
cedures. Applications include the building in of both mathemat-
ical and special decision procedures, e.g., for the taxonomic in-
formation fumished by a knowledge representation system. The-
ory resolution is a generalization of numerous previously known
resolution refinements. Its power is demonstrated by comparing
solutions of "Schubert's Steamroller" challenge problem with and
without building in axioms through theory resolution.

1 Introduction

Incorporating a theory into derived inference rules so that its
axioms are never resolved upon has enommous potential for re-
ducing the size of the exponential search space commonly en-
countered in resolution theorem proving. Theory resolution is
a method of incorporating specialized reasoning procedures in a
resolution theorem prover so that the reasoning task will be ef-
fectively divided into two parts: special cases, such as reasoning
about inequalities or about taxonomic information, are handled
efficiently by specialized reasoning procedures, while more gen-
eral reasoning is handled by resolution. The connection between
the two reasoning components is made by having the resolution
procedure resolve on sefs of literals whose conjunction is deter-
mined to be unsatisfiable by the specialized reasoning procedure.
The objective of research on theory resolution is the conceptual
design of deduction systems that combine deductive specialists
within the common framework of a resolution theorem prover.
Concem has often been expressed about the ineffectiveness
of applying resolution theorem proving to problems in artificial
intelligence. Theory resolution is designed to partly address this
concem by providing a means for incorporating specialized rea-
soning procedures in a resolution theorem prover. The division
of labor achieved in the reasoning process by theory resolution is
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intended to produce the dual advantages of improving the theo-
rem prover's performance by the use of more efficient reasoning
procedures for special cases and of increasing the range of appli-
cat ion of the specialized reasoning procedures by including them
in a more general reasoning system.

Past criticisms of resolution can often be characterized by
their pejorative use of the terms uniform and syntactic. Theory
resolution meets these objections head-on. In theory resolution,
a specialized reasoning procedure may be substituted for ordi-
nary syntactic unification to determine unsatisfiability of sets of
literals. Because the implementation of this specialized reason-
ing procedure is unspecified—to the theorem prover it is a "black
box" with prescribed behavior, namely, able to determine unsat-
isfiability in the theory it implements—the resulting system is
nonuniform because reasoning within the theory is performed by
the specialized reasoning procedure, while reasoning outside the
theory is performed by resolution. Theory resolution can also be
regarded as being not wholly syntactic, since the conditions for
resolving on a set of literals are no longer based on their being
made syntactically identical, but rather on their being unsatisfi-
able in a theory, and thus resolvability is partly semantic.

Reasoning about orderings and other transitive relations is
often necessary, but using ordinary resolution for this is quite
inefficient. It is possible to derive an infinite number of conse-
quences from a <b and (x <y)A(y < z) D (J < x) despite the
obvious fact that a refutation based on just these two formulas
is impossible. A solution to this problem is to require that use
of the transitivity axiom be restricted to occasions when either
there are matches for two of its literals (partial theory resolution)
or a complete refutation of the ordering part of the dauses can
be found (total theory resolution).

An important form of reasoning in artificial intelligence ap-
plications embodied in knowledge representation systems is rea-
soning about taxonomic information and property inheritance.
One of our goals is to be able to take advantage of the efficient
reasoning provided by a knowledge representation system by us-
ing it as a taxonomy decision procedure in a larger deduction
system. KRYPTON [4,13] represents an approach to construct-
ing a knowledge representation system composed of two parts: a
terminological component (the TBox) and an assertional compo-
nent (the ABox). For such systems, theory resolution indicates
in general how information can be provided to the ABox by the
TBox and how it can be used by the ABox.

2 Theory Resolution

We will now define the theory resolution operation and discuss
various useful restrictions on theory resolution. We will limit our
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discussion to Lhe varigble-free *ground” case of theory resolution,
since fifting to the general case is straightforward.

We will assume the standard definitions of & ferm, an atomic
Jformula fatom), and & hiteral. We will consider & clause to be a
disjunction of n > 0 literals. If n = D, the clause i the emply
rlause O. Tfn = I, the clause is & umit clouse. The disjunc-
tion connective V is assumed to be associative, commutative,
and idempotent. The empty clause O is the identity clement for
V. We will generally make no distinction between a unit clause
and the single literal of which it is composed.

We will assume the standard definitions of an nterprefation,
an interpretation aatisfying or falafying a formula or set of for-
mulas, and a formuls or set of formulas being satiafinble or un-
aatiafiable.

Any satisfiable set of formulas that we wish to incorporate
into the inference process can be regarded ws a theory.

Deflnition 1 A T-interpreizhion is an interpretation that satis-
fies theory T

For example, in & theory of partial ordering OR D consisting
of -(z < z) and (z < y) A (¥ < £) 2 (z < 1), the predicate <
cannot be interpreted so that a < a has value truec or a < ¢ has
value falec if 6 < & and & < ¢ both have value true. In a taxo-
nomic theory TAX including Bop(z) D Peraon{z), Boy{John)
cannot have value true while Peraon{John) has value false.

Definition 2 A set of ciauses S i T-unsatiafioble if no T-
interpretation satisfles 5. § is memimally T-unsatiafiodle iff S,
but no proper subset of §, in T-unwatisfable.

Definition 8 Let Cy,...,Cm (m > 1) be & set of nonempty
clauses, let ench C; be decomposed as K; V L; where K;
is & nonempty clause, and let Ry,..., Ry {(n > 0) be unit
clauses. Suppose the set of clauses Ky,... K Ry.... . Raia T-
unsstisfiable. Then the clavse Ly v-- VL,V R V- V=R, isa
theory reaolvent uaing theory T (T -reaolventf of Cy, ..., Cpy. The
theory resolvent js called mn m-ory theory resolvent. It is & fotal
theory resolvent iff n = 0; otherwise it is partial. K),..., K
is called the key of the theory resolution operation. For partial
theory resolvents, Ry,..., Ra i» & set of conditions for the T-
unsatiafiability of the key. The negstion =R, V-V =R, of the
conjunction of the conditions is called the raaidue of the theory
resolution operstion. It is s narrow theory resclvent iff ench K;
i5 & unit clause; otherwise it is wids.

The partial theory resolution procedure permits total as well
as partial theory resolution operations. Similarly, the wide the-
ory resohition procedure permits narrow as well us wide theory
resolution operations.

Example 4 A set of unit clauses is unsatisfinble in the theory
of partial ordering ORD iff it contains a chain of inequalities
t < - < ta(n > 2) such that either £; is the same w #, or
S{ty < ta) is also one of the elauses. P is & unary total narrow
ORD-resalvent of (a < a) VP. PV Q is a binary total narrow
ORD-resclvent of ([a < bV Pund (< a)VQ. PYQ@VRVS
i & 4-ary total narrow ORD-resolvent of (a < b))V P, (b <
e)v@. (¢ < d)v R and ~{a < d) vV 5. This can also be derived
incrementally through partial narrow ORD-resolution, i.e., by
resalving {a < b))V P and (b < ¢) v @ to obtain (a < c}VPVQ,
resplving that with {c < )V Rtoobtain [s < d)VPVQ VR,
and resolving that with -{o < d} v 5 to obtain PV QV RV S.

Example & Suppose the taxonomic theory T AX includes a def-
inition for fatherhood Father(z) = [Man(z)A FyChild(z, y)].
Then Father{Fred) is a partial wide theory resolvent of
Child({ Fred, Pat)v Child{Fred, Sandy) snd Mar(Fred). Also,
O is a total wide theory resolvemt of Child(Fred, Pot)v
Child( Fred, Sundy), Mon|Fred), and ~Father(Fred).

We will explore some possible restrictions on the definition of
theory resolution that make it practical to spply while preserving
complelenesy.

In narrow theory resolution, only T-unsstisfiahility of sets of
literals, not clauses, muat be decided. Total and partial nar-
row theory resolution are both possible. In total narrow the-
ory resolution, the resolved-upon literals {the key) must be T-
unsatisfiable. In partial narrow theory resolution, the key must
be T-unsatisfisble only under some conditions. The negated con-
ditions are used as the residue in the formation of the resolvent.

We do not want to require the derivation of all partial narrow
theory resolvents permitted by the definition. This would result
in the derivation of ohviously unnecemsary resolvents. For exam-
ple, we could resolve (a < 8} v P and (¢ < d} V R, since, under
some conditions such as (b < c}A{d < a),a <band c < dare
T-unsatisfiable. If we permit inferences from a < b and ¢ < 4,
which have no terms in common, theory resolution would not be
very useful. If resolving a < b and ¢ < d were to actuslly lead to a
refutation—i.e., conditions for their T-unsatisfability do hold—
thet some of these conditions, e.g., {§ < ¢) A {d < a), must have
arguments in common with o < & and ¢ < d. We should restrict
partial theory resolution to cases in which the literals are suitably
refated.

To justifly such pragmuatically necessary restrictions on theory
resolution, we offer the following criterion for the selection of
key sets of literals that provides u sufficient condition for the
completencss of partisl narrow theory resolution.

In essence, the key selection criterion requires that every T-
unsatisfiable set of literals have one or more subset key sets of
literals that can be T-resolved. For example, in theory ORD, in
refuting sets of positive inequality literals, we might select only
pairs of literals matching z < ¥ and y < = an key sets of liternls.
Thus, in refuting the set {a <, b < ¢,¢ < d,d < 2}, we would be
permitied, for exsmple, to resolve upon o < b and b < ¢, but not
a < b and r < d. Key sets of literals have one or more residues
associated with them such that every minimally T-unsatisflable
set includes a key with u residue thai can be refuted by resclving
away the literals in the residue, With literals matching z < ¢
and y < z selected, it is sufficient to derive T-resolvents with
residue z < z. For example, a < b and b < ¢ can be T-resclved
with o < ¢ as the result. This can then be resolved with ¢ < d
10 derive a < d that can be resolved with d < a to derive 0.

Key selection erltarion.

» For any minimally T-unsatisfisble set of liternls S, there is
at least one key set of literala K such that K € 5. K has at
least two literals (one literal if S has only one literal). Each
K is recognizable by the decinion procedure for T and will
comptise the key for possible thaory resolution operations,
il clauses contnining the key literals are present.

» For any such key sei of literals K, there in at lenst one,
possibly empiy, residue aei of literals R such that K U-R
is minimally T-unsatisfiable, where ~R denotes the set



{~R,,....~Ry} when R = (R,....R,}. Bach -R isa
set of couditions for the T-unsatisfiability of key set K.
Each R is computed from A by the decision procedure for
T and is used as a residue for theory resolution operations
that resolve on key K.

e 1L must be the case that, for some key set of literals K
and associated residue set of literals R, (5 — K} U {VR}
i« minimally T-unsatisfiable, where VR denotes the clause
By V- -V Ry when R = {R;,..., Ha}). This ensures Lhat
key selection and residue computation will be sufficient for
completrness-- any T-unsatisfisble set of literals 5 has a
T-resolvent using & key K € S and residue R computed
from A such that the T-resolvent is contradicted by the
rematning literals § — K.

in total uarrow theory resolution, we uniformly take the key
H 1o he the cntire minimally T-unsatisfiable set of literals 5.
The residue I is always empty.

In partial narrow theory resolution, we will try to minimize
the number of residue sets of literals. Thus, for A = {8 <
b.b < ¢] we might have residues R) = {a < ¢}, B2 = {-{c <
). =ley < ad), Ry = {=fe < ), ={# < z2), (22 < 8]}, etc.
However, only f; need be used, since, in the theory T, Ry implies
every other ;. R; can be regarded ss the strongest consequence
of o < b and b < ¢ in theory T,

The following theorem proves the completeness of narrow the-
vry resclution with arbitrary selection of key sets of literals nat-
isfying the key selection criterion.

Theorem 6 Lel 5 be a T-unaatiafiable st of clauses. Then there
11 @ refutatron of § fdersvation of O from S} using partial narrow
theary resnfution with theory T for arbitrary selection of key scts
salisfiing the key selection criferion,

Proof: if D € 5, then § is trivially refuted.

Otherwise we will prove the theorem by induction on com-
plexity measure £(S), where ¢(5) = (|S|, ¥(5)), where |5| is the
number of clauses in S and E(5) ia the excess literal parameter
[l]. The excess literal parameter is defined to be the number of
liteenls (i.e., literal occurrences) in § minua |§]|. The ordering of
r(5) in defined by e(S1) = ¢(S3) iff [$;] < |82|, or |$1| = |Sa| and
k(8] < k(82).

Case ¢(5) = (m,0). Every cleuse must be & unmit clause.
Because S is T-unsatisfiable, it must include s mipimally T-
unsatisfiable subset 5.

Subcase |$'| € 2. By the key selection criterion,
5' must be selected ax a key. The empty clause O
in derivable in » single unary or binary T-resolution
step from 5 and hence from §.

Subcase |S'| > 2. By the key selection criterion,
there exists a key K S §' with |K} > 2 and (poesibly
empty} residue R such that S* = (5" — K) U {VR)
is minimally T-unastisfiuble. ¢(S$") < c($') X (5).
Thus, by the induction hypothesis, O is derivable
from 5", Sipce VR is u T-resolvent of K C 5, O in
derivable from §.

Case ¢[5) = {m,n), n > 0. Select a nonunit clause & € .
Decompose C into unit clause A and clsuse B,ie, C = AV B.
Because S is T-unsatiefiable, both §4 = (§ — {C})U {A} and
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Sy = (§ — |{C})J { B} are T-unsatisfiable. Both ¢{S,} < ¢(5)
and ¢(Sp) < ¢{8). Thus, by the induction hypothesin, there must
exist derivations of O from each of 54 and Spg.

Imitate the derivation of O from Sg, using C instead of B,
The result will be & derivation of either O or A from 5. In the
latter case, extend the derivation of A from S to a derivation of
0 from 5 by appending the derivation of O from 5,.

Corollary T let § be o T-unsatisfiable sel of clauscs. Then
there i1 a refutation of § {derivotion of 1 from S} using total
narrow theory reaolulion wnth theory T

Although the theorem proves completeness of narrow theory
resclution, its proof doea not preclude the need for tautclogies in
a refutation. Indeed, it in the case that tautologies may have Lo
be retained for  refutation to be found.

Example 8 Let T be the theory in which P, @, and R are all
equivalent. Let S be {PVQV R, -Pv -V -R}. There wa
single-step wide T-resolution refuiation of &. However, although
there do exist refutations of § by narrow T-resolution, all require
retention of Lautologies, since all narrow T-resolvenis of FVQV R
and =P v -Q v ~ R are tautologies.

Finally, note thai heuristic restrictions of theory resolution
{such ms discarding all tautologies, not recognizing all cases of
T-unsatisfiability, or not computing all residues), though incom-
plete, may he very useful in practice.

3 Examples of Theory Resolution

Theory resclution is a procedure with substantial generality and
power. Thus, it is not surprising that many specialized reason-
ing procedures can be viewed as instances of theory resolution,
perbaps with additional constraints governing which theory re-
solvents can be inferred. We helieve that the success of thesc
specialized reasoning procedures helps to validate the concept of
theory resolution.

First of all, we should note that there is a relationship be-
tween theory resolution and hyperresolutlon. Although fur-
ther constrainls [e.g., on the polarity of the literals) are often
prescribed, the essence of hyperresolution ia the derivation of
Liv. v L,V R from the eleciron clauses k; v L;, where K;
ie & literal and L; is & [possibly empty] clause and the nucleus
clause K, V- --V-Kn,V R, where R is a [possibly empty]| clause.
This corresponds to n theory resolution operstion using theory
T, where ~H V- V=Ko,V Rissconmequence of T, Ky,..., K
is the key set of literals, and R is the residue.

Theory resolution is also related to procedural sttaeh-
maent, whereby expressions are “evaluated” to produce mew ex-
pressions. Ordinary prozedural attachment can be regarded as
unary theory resclution. Theory resolution in general can be con-
sidered a8 an extension of the notion of procedural sttachment to
seta of literals. Where ordinary procedural attachment permits
the replacement of 2 < 3 by true, theory resolution, in effect, can
attach a procedure to the < relation that permits derivation of
a<cfromo<band dce.

Two previous refinements of resolution that resemble partial
theory resolution are Z-resolution and U-generalized resolution.

Dixon's Z-resclution |5] is essentislly binary total narrow
theory resolution with the reatriction that T must consiat of
a finite deductively closed set of 2-clauses {clauses with length
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2). This restriction does not permit inclusion of assertions like
Q) Vv QIf{r}), ~[recz),or(z <Al <z} [z <), but
does permit eficient computation of T'-resolventa {even allowing
the possibility of compiling T to LISP code and thence to ma-
chine code). Z-factoring and Z-subsumption operations are also
defined.

Harison and Rubin's U-generalized resolution [7] is es-
sentially binary partial narrow theory resolution applied to sefs
of dauses that have a unit or input refutation. They apply it to
building in the equality relation, developing a procedure similar
to Morris's E-resolution [10]. The restriction to sets of dauses
having unit or input refutations eliminates the need for factor-
ing and simplifies the procedure, but otherwise limits its appli-
cability. No effort was made in the definition of U-generalized
resolution to limit the applicability of T-resolution to reasonable
cases (e.g., formation of an ORD-resolvent of a <b and c < dis
permitted by the definition).

The linked inference principle by Wos et al. [22] is related
to theory resolution in concept and purpose. The linked infer-
ence principle is a somewhat more conservative extension of res-
olution than theory resolution, since it stipulates that the theory
will be built in by means of dauses designated as linking dlauses.
Theory resolution, on the other hand, allows the theory to be
incorporated as a "black box" that determines T-unsatisfiability
questions in an unspecified manner. This facilitates the use of
other systems, which do not rely upon resolution or clause rep-
resentation, to build in theories. Nevertheless, many instances
of theory resolution can be usefully implemented in the manner
of the linked inference principle. Since the implementation pro-
posal for the linked inference principle is more concrete, Wos et
al. have expended comparatively more effort in determining how
inference using the linked inference principle is to be controlled,
including defining linked variants of resolution refinements such
as unit-resulting resolution and hyperresolution.

We have already suggested the importance of theory resolu-
tion for taxonomlc reasoning. This is being explored in the
KRYPTON knowledge representation system. Figure 1 contains
a nearly verbatim transcription of a proof using KRYPTON-style
reasoning. The problem is to prove that, if Chris has no sons and
no daughters, then Chris has no children.

The terminological information used in this problem through
theory resolution includes the statements that boys are persons
whose sex is male; girls are persons whose sex is female; "no-sons*®
are persons all of whose children are girls; "no-daughters” are per-
sons all of whose children are boys. Relevant portions of this in-
formation are included in Formulas 1-6, which are used to define
what theory resolution operations are possible. If complements
of the first two atoms of each formula can be found, they can
be resolved upon, and the remaining part of the formula, if any,
would be derived as the residue. Thus, Formula 1 expresses the
unsatisfiability of Boy(John) and -Peraon(John). Formula 6
permits the derivation of Girl(Sandy) from NoSon(Mary) and
Child(Mory, Sandy). These formulas behave similarly to linking
dauses in linked inference [22].

The assertional information used in this problem includes the
information that every person has a sex; males and females are
disjoint; Chris has no sons and no daughters. From these facts,
and the built in terminological information, a refutation is com-
pleted starting with the negation of the desired conclusion that
Chris has no children, sk7 and sk2 are Skolem functions.

The following table compares the statistics for proofs com-

2-ary rule 1. Boy{z) D Pereon(z)
2-ary rule 2. Bay(z) A Sex(z,y) D Male(y)
2-ary rule (not used} 3. Girl{z) > Person(z)
Z-ary rule 4. Girl(z)ASez(z,y) > Female(y)
2-ary rule 6. NoSen(z)A Child(r,y)
2 Girl(y)
2-ary rule 6. NoDoughter{z} A Child{z,y)
> Boyly)
7. Person(z) > Sex(z, 2k1(z))
8. Malelz) = ~Female(x)
9. NoSon{Chris)
I0. NoDaughter(Chris)
negated conclusion 11. Chald(Chria, ak2)
resoive 11&9 using 5 12, Girl{2k2)
resolve 11&10 using 6 13. Boy(sk2)
resolve 1347 using 1  14. Sex(sk2, ak]1(sk2))
resolve 13&14 using 2 16, Male{ak1{ak2))
resolve 12414 using 4 16, Female{ak1{sk2))
resolve 164:8&15 W 0

Figure 1: KRYPTON-style Proof

pleted with and without Formulas 1-6 built in through theory
resolution. The proof strategies used and meaning of the statis-
Lics are essentinlly the same o described in Section 4

Built In Input Der. Ret. Suc. Time Proof |
Axioms Wi Wi Wi Unify
none 11 10 20 33

{sec.) Length
1.0 9
1-6 5 9 11 24 05 6

There is a noticeable improvement resulting from using theory
resolution, but because the problem is so small, the difference is
not large. Harder problems (like the one in Section 4) can be
used to demonstrate much greater improvement.

Theory resolution for taxonomic reasoning also incorporates
many elements of reasoning in a many-sorted logic. For ex-
ample, in Walther's Y RP-calculus (many-sorted resolution and
paramodulation) [17,19], sort declarations, subsort relationships,
and sort restrictions on dauses are all incorporated into the uni-
fication procedure, and eliminated from the dauses in the state-
ment of a problem. Thus, the > RP unification procedure imple-
ments a theory of sort information.

4 Experimental Results

Although the relationship of theory resolution to many other
extensions of resolution and experience with numerous small ex-
amples support the practical value of theory resolution, we will
not elaborate on these, but will rather bolster our claim with an
examination of experimental results for "Schubert's Steamroller*
challenge problem.

Schubert's steamroller problem (annotated with formula
numbers) is

(1-5) Wolves, foxes, birds, caterpillars, and snails are
animals, and (7-11) there are some of each of them.
Also (12) there are some grains, and (6) grains are
plants. (13) Every animal either likes to eat all plants
or all animals much smaller than itself that like to



eat some plants. (14) Caterpillars and snails are
much smaller than birds, which are much smaller than
foxes, which in turn are much smaller than wolves.
{15) Wolves do not like to eat foxes or grains, while
(16) birds like to eat caterpillars but {15) not snails.
{17) Caterpillars and snails like to eat some plants.
Therefore (18) there is un animal that [ikes to eat a
grain-eating animal.

We present statistics on several solutions of Schubert's steam-
roller problem found by our theorem prover [15]. The first is a
proof that does not use theory resolution; the second is a proof
using theory resolution to implement the taxonomic information
in the problem (Formulas 1-6); the remaining proofs show the re-
sults of using theory resolution to build in each of Formulas 14-17
successively.

The same strategy was used for all of the proofs. Nonclausal
connection-graph resolution was the principal inference rule. Fac-
toring was not employed. Pure, variant, and tautologous formu-
las were eliminated. Single literal formulas were used for both
forward and backward demodulation.

Heuristic search, guided by a simple weighted function of the
deduction level of the parents and the expected size of the re-
solvent, was used to decide which inference operation should be
performed next. The set of support strategy (with only For-
mula 18 supported) and an ordering strategy that designated
which atoms in a formula could be resolved upon were used to
limit the number of alternative inference operations.

In using theory resolution, connection graph links were cre-
ated from key sefs of literals in the theory being incorporated.
Formulas 1-6 and 17 were implemented by binary total narrow
theory resolution links and Formulas 14-16 were implemented by
3-ary total narrow theory resolution links. For example, Wolf{(t)
and ->Animal(t) could be linked, and Bird(t;), Snail (t;), and
likes to eat (t,,t2) could all be linked. Theory resolution was
also used in demodulation—e.g., Wolf{(t) could be used to de-
modulate Animal(t) to true.

Following are the statistics for the various solutions of Schu-
bert's steamroller problem. Included in the statistics are the
number of formulas inputted to the theorem prover, the number
of formulas derived in the course of searching for a proof, the
number of inputted and derived formulas still present when a
proof was found, the number of successful unification attempts
during the search for a proof (including unification during link
inheritance), the time required for the proof (on a Symbolics 3600
personal LISP machine), and the length of the proof in resolution
steps.

Built In  Input Der. Ret. Suc.  Time  Prool
Axioms WhHs Wils Wil Unify (sec.) Length
none 18 2,717 585 216,987 2:53 59
1-8 12 888 246 44928 0:20 kY
1-6,14 11 408 68 5018 0:01.3 32
1-8,14-15 10 320 63 4556 0011 32
1-6,14-16 o 212 587 3,068 0:00.7 32
1-6,14-17 8 282 24 I 00016 24
MKRP 277 60 83 TTooda sh
| +LRP 12 10 13 48 0002 9
e T T e T
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Also included in the table are statistics we know for solu-
tions of Schubert's steamroller problem by other systems. Unfor-
tunately, use of slightly different axiomatizations, e.g., whether
"grain-eating animal" is interpreted as an animal that eats some
grain (our work, see [16]) or every grain [18], makes statistics for
these different solutions not strictly comparable. We will publish
a more detailed comparison of solutions later.

The MKRP solution was done by Walther [20] using the Mark-
graf Karl Refutation Procedure [3]. This proof relied heavily on
the MKRP TERMINATOR module [2], which is essentially a very
fast procedure for finding unit refutations. A superior proof by
Walther [18] used his YRP calculus [17,19] in the MKRP sys-
tem to perform many-sorted resolution on a much reduced set
of dauses. This proof also used the TERMINATOR module, but,
given the reduction in the number of dauses and literals made
possible by using many-sorted resolution and its restrictions on
unification, here its use was not essential to finding a solution
with reasonable effort. MKRP is written in INTERLISP and wes
run on a Siemens 7760 computer.

Our first theory resolution proof, in which only the taxonomic
information of Formulas 16 is incorporated, has some similar-
ity to a many-sorted resolution proof. In the MKRP }RP proof,
Wolf, Fox, Bird, Caterpillar, and Snail were declared to be sub-
sorts of sort Animal and Gram was declared to be a subsort of sort
Plant. The unification algorithm was restricted so that a variable
can be unified with a term if and only if the term is a subsort
of or equals the sort of the variable. For building in just this
taxonomic information, many-sorted resolution is stronger than
this particular instance of theory resolution. Although theory
resolution handles the sort literals more effectively than ordinary
resolution, many-sorted resolution dispenses with them entirely.
Also, many-sorted resolution is used to build in the sort infor-
mation for Skolem constants and functions so that, in Schubert's
steamroller problem, Formulas 7-12 are supplanted by type dec-
larations.

The ITP solution was found by the automated reasoning sys-
tem ITP (written in PASCAL) developed at Argonne National
Laboratory [9]. This solution used qualified hyperresolution
[8,21] and was completed in about six minutes on a VAX 11/780
computer [12]. Like the theory resolution and MKRP Y RP solu-
tions, this solution treated the taxonomic sort information in the
problem specially. In qualified hyperresolution, some literals in
a clause can be designated as qualifier literals that contain "con-
ditions of definition" for terms appearing in the clause. Qualifier
literals are ignored during much of the inference process e.g., a
dause consisting of a single nonquialifier literal and some qualifier
literals is handled as if it were a unit dause with the conditions
imposed by the qualifier literals checked only after the qualified
terms are instantiated. Thus, sort restrictions can be specified
in qualifier literals and deductions can be performed using only
the nonsort information. The deductions are then subjected to
verification that terms are of the correct sort.

5 Conclusion

Theory resolution is a set of complete procedures for incorporat-
ing decision procedures into resolution theorem proving in first-
order predicate calculus. Theory resolution can greatly decrease
the length of proofs and the size of the search space. Theory
resolution is also a generalization of several other approaches to
building in nonequational theories.
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We are implementing and testing foms of theory resolu-
tion in the deduction-system component of the KLAUS natural-
language-understanding system [6,15]. This system demon-
strated substantial improvement in performance when theory res-
olution was used on Schubert's steamroller challenge problem.
The KRYPTON knowledge representation system is also applying
the ideas of theory resolution to combine a terminological rea-
soning component and an assertional reasoning component (for
which they are also utilizing the KLAUS deduction system).

Theory resolution is a procedure with substantial power and
generality. It is our hope that it will serve as a base for the theo-
retical and practical development of a methodology for combining
the general reasoning capabiliies of resolution theorem-proving
programs with more efficient specialized reasoning procedures.

One important area for further research on theory resolution
is finding restrictions on the need for retention of tautologies and
determining compatibility with other resolution refinements.

Another important research question is handling combina-
tions of theories (beyond the trivial case of totally disjoint the-
ories). Successful combining of multiple deductive specialists
within a resolution framework awaits further development in this
area. The work of Nelson and Oppen [11] and Shostak [14] on
combining quantifier free theories may be relevant.
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