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ABSTRACT 

We present a general sequent-based proof method for 
first-order modal logics in which the Barcan formula holds. The 
most important feature of our system is the fact that it has 
identical inference rules for every modal logic; different modal 
logics can be obtained by changing the conditions under which 
two formulas are allowed to resolve against each other It is 
argued that the proof method is very natural because these 
conditions correspond to the conditions on the accessibility 
relation in Kr ipke semantics. 

I INTRODUCTION 

In this paper we present a sequent-based proof method for 
first-order modal logic that is both general and natural. The 
inference rules are identical for al l modal logics; different modal 
logics differ only in the conditions under which two formulas in 
sequents can be resolved against each other. The conditions for a 
particular modal logic are closely related to the restrictions on 
the accessibility relation in the underlying Kripke semantics In 
this paper, we w i l l restrict ourselves to first-order modal logics 
w i th the Barcan-formula, As a 
consequence, the set of individuals in the different possible 
worlds are identical. In Jackson and Reichgelt (1987), we 
present a generalised version of the proof method in which the 
restriction does not hold. 

One aim of this work is the desire efficient proof methods 
that are sufficiently flexible to support experimentation with 
different logics of knowledge and belief (Jackson, 1987). The 
emphasis is on the design of modal meta-interpreters which 
endow a knowledge base management system wi th varying 
degrees of introspective capability (Jackson, in press). Another 
motivation is an interest in temporal logic; in particular the 
comparison of modal temporal logics wi th other approaches, e.g. 
a reified approach (Reichgelt, 1987). 

The outl ine of the paper is as follows. First, we present the 
notion of m-unification; intui t ively, two formulas can unify only 
in the same wor ld Then we present the axioms and inference 
rules of the proof theory, together wi th sample proofs. Final ly, 
we discuss related work. 

I I M-UNIFICATION 

Our logical language is defined in the normal way. We use 
the connectives and , the universal quantif ier V and the 
necessity operator ~~. The other connectives, the existential 
quantif ier and the possibility operator are introduced as 
abbreviations. 

In our proof theory, a sentence has an index associated wi th 
i t , which represents the world in which it is true or false. An 
index is defined as an arbi trary sequence of world-symbols 

separated by colons. The set of world-symbols is defined as the 
union of the set of integers, the set of variables w1, w2, etc, 
called world variables and the set of skolemised world symbols 
which are formed out of new function symbols plus sequences of 
world variables and individual variables. 

A world symbol that is not a world variable is called ground, 
as is an index that contains no world variables If a1 . . . .an is an 
index, than we call a1 the end symbol and an the start symbol. 
We write respectively If 

and a2 its parent symbol. 

that is accessible from world w, which is itself accessible from 
world 0. However, whereas w represents any world accessible 
from 0, represents a particular world whose choice depends 
on the choice for 

In order to define the proof theory for first-order modal logic, 
we f irst define the notion of m-unification. The intui t ion behind 
this notion is that formulas can only be resolved if they can be 
proven to have the opposite t ru th value in the same possible 
world. 

Two formulas w i th associated indices P; and Qj m-unify i f f 

(i) the formulas P and Q unify wi th unification 8, and 
(ii) the indices iandy w-unify, wi th unif ication n, and 
(i i i) 6 and r\ are compatible, i.e. the union of and rj is itself a 

unification 

In the above definit ion, we introduced the term 
w-unification. Two indices w-unify if it is possible for their end 
symbols to represent the same possible world; the definition 
follows in a relatively natural way from the intui t ion. We 
distinguish between three cases depending on whether the 
end-symbols are ground or not. 

The first case is when both end symbols are ground. In that 
case, the indices w-unify only if their end symbols are identical. 
If two worlds are either explicit ly named, or are dependent on 
other worlds, they can be assumed to be identical if and only if 
they have the same name or depend on the same worlds. 

The second case arises when both end symbols are not 
ground. In this case, we are dealing wi th two arbitrary worlds 
accessible from their respective parent symbols. But we can only 
assume that two arbi trary worlds are identical if their two 
parent worlds are identical. The corresponding clause in the 
definit ion applies only if we can be sure that world variables 
always represent non-empty sets of accessible worlds. We 
therefore insist that the accessibility relation for the logic in 
question is serial, i.e. if for every possible world there is an 
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The intuit ions behind (IR2) and (IR4) are similar to those 
behind the treatment of existentially quantif ied variables in 
skolemisation. In skolemisation, a skolem function records the 
fact that the choice of an individual as the instantiation of an 
existentially quantified variable w i th in the scope of universally 
quantified variables depends on the choice for universally 
quantified variables. In (IR4), the universal quantif ier occurs on 
the r ight side of «- and is therefore in the scope of negation and 
has existential impact However, in modal logic, the choice of an 
individual as the instantiation of an existentially quantified 
variable depends not only on the choice of individuals for 
universally quantified variables wi th a higher scope, but also on 
the choice of world Thus, the skolem function has to have both 
individual variables occurring in the formula and world 
variables occurring in the index as its argument. In (IR2), we 
have to record the fact that the choice of world depends not only 
on the choice of worlds earlier on but also on the individuals that 
have been chosen as the instantiations of the individuals 
variables. 

A proof of a formula F is defined as a f inite sequence of 
sequents <Seqn,..,Seqn> where Seqo is the sequent 
Seqn is the empty sequent, and every sequent apart from Seqo is 
either an instance of one of the axioms or obtained from one of 
more previous sequents by an application of an inference rule. 

IV. EXAMPLES 

In this section, we give two examples that clarify the proof 
method. More examples can be found in Jackson (1987; in press). 
We wi l l first show how the S4 axiom can be proved if the 
accessibility relation is transitive. 

□ I b U O b l U I I D O . 
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Abadi and Manna (1986) present a resolution proof system 
for several modal logics, which has different inference rules for 
different modal logics. Some of the inference rules in their 
system are rewrite rules that can be applied to any sub-formula 
and can introduce new modal operators The system must 
therefore suffer from serious combinatorial problems 

Konolige (1986) calls the theorem prover recursively in 
order to determine whether two formulas can be resolved 
against each other. The various epistemic logics he considers 
then differ in the set of propositions that are given as premises to 
the theorem prover when it is so called. Because determining 
whether an inference rule can be applied to two formulas 
involves a recursive call to the theorem prover, it is potentially 
very expensive. 

Wallen (1986) generalises Bibel's connection-method to 
modal logic. His system is the most closely related to our system 

since it uses machinery that is similar to the indexing of 
formulas. Al though his system is less natural than ours for 
doing proofs by hand, it has the advantage of having been 
implemented. 

V I . CONCLUSION 

In this paper we presented a proof method for first-order 
modal logics w i th the Barcan formula. We believe that it is 
possible to implement a relatively efficient theorem prover for 
the following reasons. First, the number of applicable rules at 
any given t ime is small and therefore there is no combinatorial 
explosion of the proof tree. Second, unl ike the Abadi and Manna 
system, the inference rules are al l el iminat ion rules and they 
never introduce new connectives or operators. Th i rd , the cost of 
determining whether a rule is applicable is low (IR2)-(IR5) are 
applicable only if a formula is dominated by a particular 
connective, whereas we can use unification and efficient graph 
traversing algorithms for determining whether (IR1) is 
applicable. 
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