
A Quant i ta t ive Analysis of M i n i m a l Window Search 

Alexander Reinefeld 

FB Informatik, Universitat Hamburg 
Bodenstedtstr. 16, D-2000 Hamburg 50 

<reinefeldOrz.informatik.uni-hamburg.dbp.de> 

Abst rac t 

Use of minimal windows enhances the aB algorithm in prac­
tical applications as well as in the search of artificially con­
structed game trees. Nevertheless, there exists no theoretical 
model to measure the strengths and weaknesses of minimal win­
dow search. In particular, it is not known which tree ordering 
properties are favorable for minimal window search. This paper 
presents a quantitative analysis of minimal window search based 
on recursive equations which assess the influence of static node 
values on the dynamic search process. The analytical model is 
computationally simple, easily extendible and gives a realistic 
estimate of the expected search time for averagely ordered game 
trees. 

1 In t roduc t ion 

The structure most frequently used for evaluating the perfor­
mance of tree searching algorithms consists of a uniform tree of 
depth d and width w. In such regular trees the nodes can be cat­
egorized into type classes according to whether all descendants 
must be searched or only some of them (the so-called cut-nodes 
[4]). This was first done by Knuth and Moore [3], who classi­
fied the nodes of optimally ordered game trees into three types 
(Figure 1): 

• Nodes of type 1 are examined with the full-width window 
The leftmost descendant is again of type 1 

and the remaining descendants are of type 2. 

• Nodes of type 2 are examined with the window , 
which allows cut-offs. Hence, in optimally ordered trees, 
there exists only one descendant, which is of type 3. 

• Nodes of type 3 are examined with the window 
All w descendants are of type 2. 

Figure 1: Node types in an optimally ordered tree 

T . A . Ma rs l and 

Computing Science, University of Alberta 
Edmonton, Canada T6G 2H1 

<tonyOalberta.cdn> 

In the following, we extend this node classification scheme to 
include unordered game trees and derive recursive equations to 
compute the average performance of both the aB-algorithm and 
minimal window search. 

2 Analysis of M i n i m a l Window Search 

Minimal window search is based on the assumption that most 
of the subtrees will prove inferior to the best subtree searched 
so far. Having traversed the first subtree with a normal window 

the remaining subtrees are searched with the minimal 
window where v represents the best available mini-
max value (e.g., the value obtained from the first search). If 
the value returned is the subtree is indeed inferior. Only 
when the value returned is is the initial assumption wrong 
and the current subtree must be re-searched with a wider win­
dow to determine its correct value. The re-search can be done 
either with an aB search in Scout [6,1] and CoB) [2], or by 
performing a recursive self-call, as in NegaScout [7] and PVS [4]. 

Figure 2: Basic NegaScout Algorithm (NS) 

Reinefeld and Marsland 951 



To simplify presentation, the self-call minimal window ver­
sion of NegaScout, as shown in Figure 2, is referred to as NS. A 
variation, designated NS a B , invokes to do the re-search. It is 
formed by replacing the corresponding line of NS with 

The nodes visited when NegaScout traverses an averagely or­
dered tree are shown in Figure 3 There the node types are 
prefixed wi th an "JV", and are changed from Figure 1 because 
the tree is not optimal. For simplicity we initially assume that 
a re-search is never necessary, so Figure 3 is valid for both NS 
and NS a b . NegaScout starts searching the root node of type NX 
with the ful l window Since there is not yet any bet­
ter information, the root's left descendant is searched with the 

same ful l window, hence it is also of type Nl. The remaining 
descendants of type NA are searched with the minimal window 

According to our average tree assumption, these cut-
nodes have only 1 -f g descendants. The first g descendants are 
again of type A4, whereas the (1 + y)-th descendant is of type 
N5, since all w descendants of this N5 node must be searched 
to cause the cut-off one level above. 

The consistency of these equations may be checked by observing 
the special case of optimally ordered game trees (i.e., the case 

By setting k - 0 (interior nodes have no cost) and e - 1 
(all leaf nodes have equal cost) it is possible to show that 

which is equivalent to abest case in odd-depth trees, as it 
should be [3]. Similarly, the consistency can be checked for even 
search depths. 

3 Analysis of 

The quantitative analysis of aB is more complex, because < 

search process uses a window that may take any size from min­
imal to ful l-width. As before, we first present Figure 4, the 
average tree searched by aB. Again, the root node of type Al is 
searched with the full window and has descendants of 
type Al and A2. The latter are searched with a reduced window 

which allows cut-offs. So, only 1 + g descendants need 
to be searched. The leftmost At descendant is of type A3 and 
is searched with the window . None of its descendants 
can be pruned, because the upper bound of the window is stil l 
infinite. However, the leaf node values gathered in this subtree 
establish a t ight B-bound for the search of the next nodes of 
type AA. Therefore, only descendants need to be searched 
at this point The rightmost A2 descendant of type A5 finally 
returns the cut-off value, but only after all its descendants have 

952 REASONING 



been searched. Although they have the same number of descen­
dants, it is necessary to distinguish between nodes of type A2 
and AA. The reason is that the A2 nodes are expanded with 

so that all of its left descendant's descendants must 
be searched. Nodes of type A4, in contrast, are searched with a 
narrow window and that allows cut-offs in all deeper tree 

levels. 
Comparing both sample trees (Figures 3 and 4), clearly 

lack of a finite B-bound at the A3 nodes causes the degraded 
performance. NegaScout's minimal window search, in contrast, 
achieves a cut-off after descendants have been searched at 
the N4 nodes that correspond to aB's A3 nodes To make things 
worse for aB, each A3 node has a descendant of type A6, which 
in turn has an A3 descendant (see Figure 4). 

5 Numer ica l Comparison 

The equations just established are complex, but yield to numeri­
cal evaluation. Because there are many free variables 
and also (e, k), a variety of graphical presentations is conceivable. 
For example, the data in Figure 5 are obtained from trees of 
fixed depth d - 7, in which the principal variation changes twice 
at each type-1 node (r - 2). The data-points show the search 
complexity as a function of g (the number of extra-expansions 
in cut-nodes) for various tree widths. The search complexity 
is given in terms of leaf-node evaluations (hence 
normalized to 

Despite being degraded by two re-searches in each Nl node, 
the data in Figure 5 shows that both NegaScout variants outper­
form aB in well ordered trees with low g-values. This illustrates 
how severely a/? is hurt by its missing B-bound in the left part 
of al l A2 subtrees. NegaScout, in contrast, searches these parts 
w i th a minimal window at the risk of eventually being forced to 
do a re-search later. The advantages of minimal window search 
become even more apparent in wide trees, because the overhead 
of the two re-searches has less influence on the overall perfor­
mance. 

From Figure 5 one can see that NS is always better than NSa b 

if fewer than 20% of the descendants at type 2 nodes must be 
expanded, even though a second re-search occurs. If more than 
20% of the cut-node descendants are searched, both NegaScout 
variants are consistently poorer than aB. So we can do without 

since either pure aB or pure NS has the advantage. 

Reinefeld and Marsland 953 



6 Discussion 

In this paper, we presented a simple, flexible and extendible 
analytical model to assess the expected search time of NegaScout 
and aB on averagely ordered trees. The model can be used to 
decide which of the algorithms to use in a given search task, 
when the ordering of the tree is known in a statistical sense. 

The tree ordering properties are described in terms of g, the 
number of extra-expansions in cut-nodes, and r, the frequency of 
changes in the principal variation. In practice, r is usually small 
since the second-best choice prunes almost as effectively as the 
best. Although g, the number of extra-expansions in cut-nodes, 
might be as large as w/2 in random trees, most often heuristic 
information is available to sort the descendants before examina­
t ion. For computer chess, average values of g in the vicinity of 1 
are observed and in one study an average of 0.5 was quoted [4, 
p. 449]. Although the mentioned study is not strictly compara­
ble, since it used additional special-purpose pruning methods, it 
supports the view that the average value of g is small. Thus our 
model provides the theoretical basis to explain why NegaScout 
and PVS are superior to aB in practice (5). 

References 

[1] M.S. Campbell, T .A. Marsland. A comparison of minimax 
tree search algorithms. Art i f icial Intelligence 20,4(1983), 
347-367. 

(2) J.P. Fishburn. Analysts of Speedup in Distributed Algo-
rithms. U M I Research Press, Ann Arbor (1984) (see also 
Univ. Wisconsin, Ph.D. thesis, 1981). 

[3] D.E. Knuth , W Moore. An analysis of alpha-beta pruning. 
Art i f ic ial Intelligence 6,4(1975), 293-326. 

[4] T .A Marsland, F. Popowich. Parallel game-tree search. 
IEEE PAMI-7,4(1985), 442-452. 

[5] A. Muszycka, R. Shinghal. An empirical comparison of 
pruning strategies in game trees. IEEE SMC 15,3(1985), 
389-399. 

[6] J. Pearl. Asymptotic properties of minimax trees and game-
starching procedures. Art i f icial Intelligence 14(1980), 113-
138. 

[7] A. Reinefeld. An improvement of the Scout tree search al­
gorithm. ICCA Journal 6,4(1983), 4-14. 

9S4 REASONING 


