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ABSTRACT 

We have been engaged in work about the propagation of 
temporal constraints in the domain of job-shop scheduling. Many 
systems have been or are currently used to propagate temporal 
constraints. However, very few attempts have been made to 
build systems in which the amount of computational effort spent 
in constraint propagation is not fixed once for all. We do 
believe various pieces of knowledge can be used to dynamically 
adjust the amount of propagation. Consequently, we advocate the 
use of a flexible propagation system. We describe such a system 
and discuss control knowledge enabling dynamic adaptation of 
the amount of propagation to the needs of a problem solver. We 
also provide examples in the domain of job-shop scheduling. 

I THE USEFULNESS OF CONTROLLING 
CONSTRAINT PROPAGATION 

Constraint propagation is a deductive activity performed by 
a propagation system for a problem solver. It enables the 
problem solver to decompose a problem without neglecting 
interactions between subproblems, determine which subproblems 
are more constrained and focus attention accordingly. The 
propagation system also detects inconsistencies between three 
kinds of constraints: 

• Initial constraints partially describe the problem to be solved. 

• Decisions made by the problem solver refine these constraints 
and gradually reduce the search space. 

• Deviation constraints, appearing in real-time, describe 
differences between the problem solver predictions and the 
actual course of events. 

As soon as disjunctive constraints are considered, the 
problem of determining whether a given set of constraints is 
consistent is NP-hard. Therefore, two kinds of propagation 
systems can be distinguished. Complete systems guarantee 
consistency but are often useless for complexity reasons. 
Polynomial systems are (until P=NP) unable to immediately 
detect each contradiction. In general, a polynomial propagation 
system finds out a contradiction when the problem solver has 
already made decisions and refined constraints; a large amount of 
search is wasted since the problem solver explores spaces devoid 
of solutions. Similarly, all The consequences of a deviation are 
not immediately assessed. Therefore, the problem solver may be 
tardily warned of a need for plan revision and forced to make 
ill-considered reactive decisions. 

Many constraint propagation systems have been or are 
currently used within problem solvers. Most of these perform a 
fixed amount of propagation - the trade-off between the 
anticipation of interactions and The amount of computational 
effort spent in constraint propagation is set once for all - and 

systems in which the amount of propagation can be modified are 
designed to reduce propagation with respect to a predetermined 
set of particular parameters (reference intervals in [Allen 1981], 
levels of precision in [Le Pape and Smith 1987]). Ad-hoc 
systems (e.g. [Le Pape and Smith 1987]), implemented as part of 
and in the formalism of particular problem solvers, efficiently 
deduce just enough information for their problem solver to work 
properly. However, additional analysis may sensibly improve the 
problem solver capabilities of pruning the search space and 
reacting to unanticipated events. On the other hand, problem-
solver independent propagation systems (e.g. [Allen 1981]) are 
based on a theory and can be integrated into many problem 
solvers. Unfortunately, they may provide more or less 
information than needed. Indeed, the amount of propagation that 
enables a problem solver to be the most efficient varies from one 
problem to the other. It also varies dynamically during the search 
of a solution. 

We do believe various pieces of knowledge can be used to 
dynamically adjust the amount of propagation. Consequently, we 
advocate the use of a flexible propagation system. Section II 
describes such a system designed for propagating temporal 
constraints. Section I I I is concerned with control knowledge 
allowing to adapt this system and provides examples in the 
domain of job-shop scheduling. Resulting benefits and remaining 
difficulties are discussed in section IV. 

II A FLEXIBLE PROPAGATION SYSTEM 

Our temporal propagation system consists of a set of 
axioms and an interpreter. 

• Axioms constitute a theory of temporal constraint propagation 
which can be extended even though it already contains the 
underlying theories of several systems described in [Allen 
1981, Le Pape 1985, Rit 1986]. 

• The interpreter uses the theory consistently with control rules 
which collectively specify what is expected from the 
propagation system. Control rules serve as an interface 
between the problem solver and the interpreter. 

A. A Theory of Temporal Constraint Propagation 

The basic time objects considered by the propagation 
system are called "events". Within the theory, each event is 
identified with an interval of time during which it occurs. This 
means an event X is defined as having only a start point (start X) 
and an end point (end X). Symbolic interval-based constraints are 
used to express various temporal relationships between events 
(e.g. precedence relation between two events X and Y). Numeric 
point-based constraints are used to represent minimum and 
maximum distances between time points along a time line (e.g. 
duration between (end X) and (start Yj). While propagating 
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symbolic constraints is more efficient and natural, the numeric 
representation is needed to refine the symbolic relations and take 
into account lower and upper bounds for durations and waits 
between events. 

Four sources of knowledge make up the whole theory. 

• Logic axioms concern the manipulation of formulas containing 
disjunctions, conjonctions and negations. They constitute a 
variant of propositional logic. 

• Symbolic axioms deal with the thirteen relations of Allen 
[Allen 1981]. 

• Numeric axioms deal with the manipulation of inequalities in 
totally ordered Abelian groups. 

•Translat ion axioms enable to convert symbolic constraints 
into numeric constraints (e.g. 

The converse is 
also possible, but the numeric information about distances is 
lost. 

An inconsistency is detected when the application of axioms 
leads to the empty clause. 

The theory can be used when a model of time is defined in 
the form of a totally ordered Abelian group*. Each time point is 
considered as a variable the range of which is the group. The 
theory is complete: given a set of constraints, it enables to state 
whether values can be assigned to time points without violating 
any constraint. 

B. The Interpreter 

Within the interpreter, several propagation activities are 
distinguished: 

• Constraint combination consists in building a new constraint 
from a set of existing constraints. 

• Subsumption enables to hide a constraint the satisfaction of 
which results from the satisfaction of another constraint. 

• Cancellation enables to remove a constraint. 

• Restoration consists in reinstating previously subsumed 
constraints. 

• Reduction consists in taking from a constraint what concerns a 
single time point or interval. 

• Rewriting enables to gather constraints together into 
conjunctions, to split conjunctions, to write constraints in 
normal forms and to translate constraints from a symbolic to a 
numeric representation (and conversely). 

The role of the interpreter is to coordinate these activities in 
accordance with the instructions of the problem solver. Indeed, 
the problem solver cannot afford to devote too much of its 
processing time to a highly combinatorial propagation activity 
(i.e. to use the completeness of the theory to detect every 
contradiction as soon as it is introduced). Through control rules, 
the problem solver restricts the use of the theory. 

*A constant timeO and five functions time<, time=, time, 
time+ and time- need to be provided. Moreover, discrete and 
dense models are distinguished: in a discrete model, there is a 
smallest positive element timel such that (time< a b) is equivalent 
to (time* (time* a timel) b). A slight alteration in the Abelian 
group allows to look upon a dense model as a discrete model 
[Le Pape 1985]. It enables our theory to address both discrete 
and dense models of time. 

The interpreter proceeds as follows: 

• When a constraint is added or removed, it determines which 
propagation activities can be performed. 

• For each considered activity, control rules specify conditions 
under which axioms can be used. The interpreter determines 
whether the concerned constraints satisfy these conditions. 

• If the conditions are satisfied, axioms are applied and data 
dependencies are recorded. Dependency links are necessary for 
removing all the consequences of a cancelled constraint. 
Moreover, they enable to provide descriptions of detected 
inconsistencies. 

When the empty clause is derived, a description of the detected 
inconsistency is sent to the problem solver. 

Control rules can address constraint features inherent to the 
problem domain as well as domain independent features. Within 
the theory, events are merely time intervals and constraints are 
formulas. Domain independent features relate to these formulas 
(e g. disjunctive, numeric, symbolic, binary formulas). Within a 
problem solver, an event is much more than an interval of time: 
it corresponds to the performance of an action or to the 
persistence of a fact. Similarly, constraints partially describe a 
problem solving situation in terms of goals, restrictions, 
deviations and consequences of decisions. A lot of data are 
attached to events and constraints. The conditions specified by 
control rules can refer to this information. 

I l l CONTROLLING THE FLEXIBLE PROPAGATION SYSTEM 

Through control rules, the problem solver indicates how to 
pertinently use the propagation axioms. Setting these rules 
requires to take into account the following facts: 

• A minimum amount of propagation is necessary for the 
problem solver to work properly. 

• The problem solver does not need to be aware of a 
contradiction when it has no means to deal with it. Indeed, it 
may not be provided with the ability to react to contradictions 
that relate to many unmade decisions or events to happen. 
There is no need to detect these contradictions before the 
problem solving state is refined enough for reactive decisions 
to be made. 

• When the problem solver focuses on a particular subproblem, 
it is worth increasing the amount of propagation within this 
subproblem. 

• The problem solver can spend more or less processing time to 
propagate constraints in order to assess the consequences of a 
deviation or a decision. 

Part of the knowledge that enables to take these facts into 
account proceeds from the design of the problem solver. The 
designer knows how the problem solver works. He is able to a 
priori appraise the usefulness and the importance of some 
propagation steps. For example, he is led to define a set of 
compulsory propagations that are absolutely necessary to ensure 
that the problem solver wi l l propose admissible solutions. 

On the other hand, dynamic knowledge about the problem 
solving state (e.g. focused objects, importance of satisfying 
real-time constraints, current problem solving policy and 
strategy) is required. Indeed, the desirability of some propagation 
steps varies from one problem to the other and during the course 
of problem solving. For example, the urgency of reacting to a 
deviation is estimated in real-time. Similarly, the evaluation of a 
partial solution against problem domain criteria enables to 
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determine whether - and to what extent - some constraints or 
events need particular attention. 

In order to dynamically take advantage of the flexibility of 
the propagation system, the problem solver must be provided 
with sources of knowledge (e.g. adapting Riles) that perform the 
following tasks: 

• Determining which restrictions must be applied to constraint 
propagation: the two kinds of knowledge mentioned are 
considered to determine appropriate restrictions. Knowledge 
about the efficiency of the propagation system in various kinds 
of situation is also taken into account. This knowledge can be 
refined when experience is gained from using the problem 
solver. 

• Accordingly modifying, adding or deleting conditions of 
control rules. 

Obviously, there is a connection between the determination of 
propagation conditions and other control activities performed by 
the problem solver (e.g. problem decomposition, adoption of a 
strategy). The use of control knowledge is extended to the 
management of the propagation system. 

Dynamically controlling the propagation system is helpful 
in a variety of situations. We present a few examples in the 
context of job-shop scheduling. Broadly speaking, the scheduling 
problem consists in assigning resources and start and end times 
to operations. Operations are the considered events. Our 
scheduler is the considered problem solver. 

• Considering or neglecting preference constraints: 
Preferences are constraints the satisfaction of which may be 
compromised if necessary (e.g. due-dates). The scheduler 
often relies on the propagation system to detect necessary 
compromises. However, in case of emergency, the scheduler is 
only looking for an admissible solution; the propagation 
system is used as an "admissibility checker": control rules 
specify that deductive activities (i.e. combination, reduction, 
rewriting) involving preference constraints must not be 
performed. 

• Focusing on particular events: 
Propagating disjunctive constraints is time consuming and 
generally avoided. However, it is worth taking a closer look at 
operations that require the use of a scarce resource. When 
scarce resources are identified, the scheduler specifies that 
disjunctive constraints need to be combined only if the 
associated events require the use of such a resource. 

• Requiring details: 
Within the scheduler, manufacturing plans are represented as 
hierarchies of operations (as in [Le Pape and Smith 1987]). 
Different levels at which scheduling can be performed are 
defined and explicitely associated with operations. Disjunctive 
constraints relating to the use of shared resources are more 
numerous and precise at lower levels. According to the 
problem solving state, these details about resource planning 
may be more or less important (e.g. the scheduler may be 
scheduling in detail or just determining whether due-dates are 
likely to be relaxed). Consequently, the scheduler specifies 
levels to which events must belong for propagation to be 
performed. 

• Adapting the propagation to real-time constraints: 
In case of emergency, reactive decisions must be made 
without evaluating all of their consequences. Through control 
rules, the scheduler specifies that only the consequences that 
relate to "imminent" events need to be detailed. 

IV RESULTING BENEFITS AND REMAINING DIFFICULTIES 

With our flexible propagation system, the trade-off between 
the anticipation of conflicts and the amount of processing time 
assigned to constraint propagation is not fixed once for all. 
Through control rules, the amount of propagation is adjusted to 
meet the needs of a problem solver. Moreover, the problem 
solver can combine various available pieces of knowledge to 
dynamically determine how to adjust the behavior of the 
propagation system. 

The problem solver is provided with the ability to moderate 
its control decisions. Indeed, a wide range of intermediate 
possibilities from purely heuristic search methods to least-
commitment approaches is available. Furthermore, the problem 
solver can globally adopt a heuristic strategy and ask the 
propagation system to locally assess all the consequences of a 
decision. Similarly, it can adopt a least-commitment approach 
and punctually give up complete consistency checking. This is 
particularly useful in real-time problem solving. Indeed, the 
problem solver can adjust the amount of propagation according 
to the urgency of a reactive decision. 

Difficulties in using our flexible propagation system must 
not be overlooked. 

• When a rapid reaction is necessary, the problem solver 
reduces the amount of propagation. Since the consequences of 
reactive decisions are not closely considered, new deviations 
are likely to happen. Deviations may occur more frequently, in 
which case the propagation activity is reduced again and so 
forth. Finally, the problem solver might superficially use the 
propagation system and continually react to unanticipated 
events. 

• The quality of the dynamic adjustment of the amount of 
propagation rests upon a good understanding of the current 
problem solving context. This means the problem solver must 
combine criteria of judgement The difficulty lies in finding 
relevant criteria as much as in considering them together. For 
example, with regard to the problem mentioned above 
(instability resulting from a drastic reduction of the 
propagation activity), we have no intuition concerning 
knowledge that enables to evaluate to what extent a set of 
control rules responds to the need for stability. Furthermore, 
knowledge would still be required about how to establish a 
compromise between this need for stability and a need for a 
rapid reaction. 

These difficulties are often encountered (in different forms) in 
the domain of real-time problem solving. Using the flexible 
propagation system in the context of job-shop scheduling leads 
us to investigate domain dependent and independent knowledge 
that can be used to face these difficulties. 
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