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Abstract 

This paper proposes the Frequency Modulation 
Neural Network as an alternative to current neural-
net models. This proposal is for an architecture 
of a heterogeneous neural-network in which in­
formation is propagated using frequency modu­
lation of pulses oscillated by groups of neurons. 
The FMNN model enables operations including 
variable-binding, sequential recognitions and pre­
dictions. The use of FM signals for commu­
nication among neural clusters also enables the 
model to avoid communication bottlenecks arising 
in most massively parallel computer architectures. 

1 Introduction 

One weakness of the traditional neural network architecture 
is commonly known as the binding problem. Another weak­
ness are difficulties in predicting and recognizing sequential 
patterns such as word sequences. Due to these problems 
in the traditional neural network models, application of the 
model to any serious natural language processing has not 
been conducted. In the Frequency Modulation Neural Net­
work (FMNN)1, one solution to the binding problem is at­
tained through propagation of the activation source informa­
tion through the frequency modulation of pulses generated 
by certain groups of neurons. Combined with local modular 
circuits which enable sequential prediction and activation, 
our model attains structured marker passing from the neu­
ral level. First, we briefly summarize the marker-passing 
and constraint propagation schemes which we assume as 
our basis of natural language and inferential processing and 
describe what needs to be attained by the neural network. 
Then we describe some features of the FMNN architecture 
relevant to such tasks. 

*Also with the Laboratory for Computational Linguistics, 
Carnegie Mellon University. 

1Also with NEC Corporation. 
1 Also see [Kitano and Tomabechi, ms] for mathematical details 

and the descriptions of some of the circuits not included in this 
paper. 

2 Marker-Passing and Constraint 
Propagation 

2.1 Marker-Passing Models 
The spreading-activation marker-passing based models of 
cognitive processing reflect the highly interactive and par­
allel nature of human cognitive activities2. One of the ma­
jor differences between the marker-passing based models 
and the neural network models is that the marker-passing 
scheme allows some tokens (typically the sources of acti­
vation) to be passed with the activation propagations. The 
Direct Memory Access (DMA) model iRiesbeck and Mar­
tin, 1985] [Tomabechi, 1987] is a marker-passing scheme 
with case-based inference capability. In the DMA model, 
the spreading-activation of activation source tokens enables 
the models to instantiate generalized memory structures to 
capture the specific meaning of the input utterance. The 
tokenized activation source propagation can be seen as one 
way of solving the binding problem. Recently, researchers at 
Carnegie Mellon have adopted the DMA paradigm for var­
ious natural language and inference tasks. [Tomabechi and 
Tomita, 1988a] is a DMA natural language interface and in­
ferences for development of knowledge-based systems and 
in [Tomabechi and Tomita, 1988b], DMA based contextual 
inferencing was integrated into a unification-based (LFG, 
[Kaplan and Bresnan, 1982]) phoneme-parser ([Saito and 
Tomita, 1988]) as a part of real-time speaker-independent 
speech-to-speech translation system ([Tomabechi et. al., 
1989a]). Independently, a basic DMA algorithm has been 
implemented on VLSI chips [Kitano, 1988]. Also, the 
first DMA based speech-to-speech translation has been pub­
licly demonstrated at Carnegie Mellon3 ([Tomabechi et. al., 
1989b], [Kitano et. al., 1989b]). 

2.2 Constraint Propagation 

The Massively-parallel Constraint Propagation (MCP, 
[Tomabechi and Tomita, ms.]) scheme extends the DMA phi­
losophy and proposes the models to propagate constraints as 
well as other information such as the tokens for the sources 

2Such as [Quillian, 1969], [Charniak, 1983], [Hirst, 1984], 
[Riesbeck and Martin, 1985], [Charniak, 1986], [Norvig, 1987], 
[Tomabechi, 1987], and [Hendler, 1988]. 

3Other efforts include the application of DMA to phoneme-
based parsing [Tomabechi et. al., 1988], discourse-based process­
ing [Kitano et. al., ms.], cost-based ambiguity resolution [Kitano et. 
al., 1989a] and concurrent parsing and generation [Kitano, 1989]. 
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of activations. The Head-driven Massively-parallel Con­
straint Propagation (HMCP) [Tomabechi and Levin, ms.] 
proposes a scheme of propagating head-feature constraints to 
increase DMA's capacity for handling syntactic phenomena 
such as word order, agreement, case marking, inflectional 
and expletive morphology, control, and unbounded depen­
dencies. In the MCP paradigm, words (or some smaller 
linguistic units) in the input string trigger the propagation of 
constraint information through the network. The propagated 
information includes the source of the activation, syntactic 
head-features, etc.. Concepts that represent heads of phrases 
contain bundles of syntactic features which constrain their 
complements. When concept activations of complements 
collide with activations of heads, the syntactic features of 
the complement and head are unified with each other. 

Below are the node entries taken from [Tomabechi and 
Levin, ms.] representing4 the lexical concepts for the verbs 
give and try: 

( l e x - n o d e *GIVE 
( i s - a (*ACTION)) 
(phono logy < / g / / i / / v / > ) 
( s y n - h e a d - f e a t u r e ((MAJ V) (V FORM FIN) (AUX 

MINUS))) 
( g i v e r (*PERSON 1) ) 
( r e c e i v e r (*PERSON 2 ) ) 
( g i v e n (*OBJECT 3 ) ) 
( subca t <(NP[NOM] 1 ) , (NP[ACC] 2 ) , (NP[ACC] 

3)>) ) 

( l e x - n o d e *TRY 
( i s - a (*ACTION)) 
(phono logy < / t / / r / / a / / i / > ) 
( s y n - h e a d - f e a t u r e ((MAJ V) (VFORM FIN) (AUX 

MINUS))) 
( t r i e r (* PERSON 1)) 
( c i r c u m s t a n c e (*ACTION 2 ) ) 
( subca t <(NPlNOM] 1 ) , ( ( ( (MAJ V) 

(VFORM INF)) 
subcat<(NP 1)>) 

2)>) ) 

The list (NP[NOM] 1) in the subcat feature is a short-hand 
for (((MAJ N) (CASE NOM)) 1). 

The list in subcat represents the postulation for the con­
straints that are to be satisfied by the nodes that will fill the 
conceptual roles (that are co-numbered). The contents of the 
syn-head-feature are the head-features that are propagated 
with the specific node activations along with other informa­
tion. In the entry for try we can see that subcat specifies 
that it subcategorizes for an unsaturated verb phrase as an in­
stance to fill the circumstance role (whose abstraction is the 
concept * ACTION). An input string such as He can trigger 
the propagation of information such as NP[NOM] as well as 
the semantic propagation through the abstraction and other 
links. The HMCP models demonstrate that constraint prop­
agation schemes can handle sentential constructions such as 
control (as in He tried to give Mary the book) assigning the 
correct interpretations and attaining the correct grammatical-
ity judgement 

4The lexical entries are originally taken from the representation 
under HPSG (Head-driven Phrase Structure Grammar, [Pollard and 
Sag, 1987]). HMCP attains the HPSG unification based analysis 
under the DMA framework. 

3 MSP vs Conventional Architecture 
Although the DMA models and the MCP (HMCP) mod­
els are appealing schemes for natural language processing 
and inference, because these models require propagation of 
information (i.e., sources of activation and constraint infor­
mation), it has been difficult to support them in the con­
ventional neural-net architecture. In this paper, we refer to 
the structured marker-passing algorithms that the DMA and 
MCP models assume in their implementation as 'Massively-
parallel Structured-marker Passing* (MSP) algorithms. Be­
cause the MSP algorithms assume a massively-parallel ma­
chine architecture, the implementations (such as on MULT I -
LISP, [Halstead, 19851) have been generally slow. The con­
ventional massively-parallel machines (such as Connection 
Machine, [Hillis, 1985]) are not desirable for MSP algo­
rithms because they are incapable of propagating informa­
tion without large overhead. In other words, the massively-
parallel machine architecture, which assumes the propaga­
tion of small amounts of scalar values is not suitable for 
MSP algorithms. 

4 Frequency Modulation Neural Network 

We would like to introduce a model of neural network and 
a possible hardware architecture which directly support the 
MSP paradigm. We call this model the Frequency Modula­
tion Neural Network (FMNN) and the major features which 
distinguish FMNN from other neural network are as follows: 

• Simulates spikes instead of activation levels. 

• Assumes neural clusters with certain circuit topologies: 
Heterogeneous Neural Network. 

• Patterns of spikes, modulated as FM signals, have sig­
nificance in propagating information. 

4.1 Simulating Spikes 

Unlike most neural networks which simulate the activation 
level of each node, the FMNN simulates the spikes which 
each neuron emits. Spikes are electric pulses emitted from 
neurons to propagate through axons. We are proposing to 
simulate the neural spikes because (1) we are interested in 
simulating a detailed biological process, and (2) patterns of 
pulses can carry information impossible to transmit in past 
neural network architecture. Biologically, we are not able 
to define the precise roles of spikes in the human brain with 
regard to cognitive activities. It is also probably true that 
mere simulation of spikes will not contribute much to our 
understanding of the physiological nature of the brain, be­
cause other factors, such as chemical substances, neurogen­
esis, and plasticity of the brain, are also involved. However, 
we expect that spike simulation may lead to the discovery of 
new computational features of the brain5. Apart from bio­
logical observations, the use of spikes in the neural network 
makes the flow of structured information attainable. 

5In fact, [Loeb, 1985] has shown that differences between ar­
rival times down to 10 microseconds can be detected by neurons 
leading to [Scjonwski, 1986]'s analysis that submillisecond timing 
information could be important in the cerebral cortex as well. 
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4.2 Heterogeneous Neural Network 
The second assumption of the FMNN is the heterogeneous 
structure. We assume the existence of several types of 
groups of neurons and certain local and global structures 
in the network. Most neural networks assume homogene­
ity. Although these models employ certain global structures, 
such as layers composed of input, hidden, and output units 
[Rumelhart et al., 1986] or a recurrent structure [Elman, 
1988], each node is assumed to have homogeneous charac­
teristics. In addition, the existence of a local structure is not 
assumed. Motivations for assuming heterogeneous structure 
are based on both biological and technical considerations. 
Biological observations on neurogenesis [Murphy et. al., 
1983] [Nottebohm, 1989], the existence of local structure 
of neurons [Rosen et. al., 1989], and the existence of the 
specific global innate configurations for the specific tasks 
such as the Papez circuit involving the hippocampus [Pa-
pez, 1937] indicate that neural circuits in our brain have 
certain innate structures already encoded in the DNA. In 
addition, strong evidence of hypercolumn in the A17 field 
of visual cortex, models of the hippocampus [Zipser, 1985] 
and studies on the topological circuits of neurons [von der 
Malsburg, 1985] lead us to assume a structured functional 
module which we call hypermodule. We claim such local 
circuits provide technical benefits because they will allow us 
to predefine highly functional neural circuits without aban­
doning the basic features of the neural network. 

4.3 Frequency Modulation 
We use Frequency Modulation (FM) signals as one of the 
basic communication mechanisms in our model. When we 
look into the physiological data of signal transmission be­
tween neurons, frequency of pulses varies depending on the 
strength of the input given to the neuron. [Treutlein and 
Schulten, 1985] analyzed the Fokker-Plank equation corre­
sponding to the stochastic Bonhocffer-Van der Pol (BvP) 
model, and concluded that the noise level can be employed 
to tune firing frequency of Hodgkin-Huxley type neurons. 
In their analysis, the noisy BvP model tends to limit cy­
cle in which the mean period of pulses is depending upon 
the noise level. This means that the more energy the cell 
gets, the higher the frequency of impulses it emits6. This 
property has been known since [Adrian, 1946]; however, 
it has been neglected by the past neural network models. 
Moreover, there exist neurons whose activation levels vary 
dependent on the regular brain wave (0 -Cells associated with 
the hippocampal 0-wave.). Also, the importance of arrival 
time of impulses and relative timing of impulses for pro­
cessing in the cortex has been noted (such as [Sejonwski, 
1986] and [Sachs et. al., 1983]); however, no neural net­
work model so far has captured this phenomenon7. This 
characteristic is well simulated when we consider FM as 
its approximation. FM is a kind of an angle modulation 
technique originally developed for telecommunication of sig­
nals [Marubayashi, 1981]. A signal is encoded into a car­
rier wave (Acos(wc1 + 9C)) by modulating its phase angle 

6[Sejonwski, 1981] introduces an idea of skeleton filter - the 
temporary network of neurons near threshold that can linearly trans­
form correlations between spikes on input lines. 

7One of the few exceptions may be [von der Malsburg and 
Schneider, 1986]. 

Since we are going to deal with impulses instead of ana­
log waves, instantaneous frequency is a probability density 
of the impulse. Apart from physiological aspects, the use 
of FM signals as representation and communication scheme 
of a massively parallel computer would provide significant 
advantages over traditional computer architecture. 

5 Modular Neural Circuits in the FMNN 
In this section, we describe some of the circuit topologies of 
modular neural circuits and their behavior. We will be dis­
cussing the circuits which are of particular relevance from 
the viewpoint of inferencing and natural language process­
ing. Relevant work has been done extensively by [Amari, 
1978]. A basis of our analysis also assumes lAmari, 1978], 
although we made some reformulation in order to simulate 
spikes . 

5.1 Simple Random Circuit 
A simple random circuit is a neural circuit in which each 
neuron is connected to the others at random I Amari, 1978]. 
The external behavior of this circuit is almost equivalent to 
the McCulloch-Pitt model assumed in most neural network 
theories [McCulloch and Pitts, 1943]. This circuit is also the 
simplest form of a bi-stable circuit. A simple random circuit 
stays at the low level equilibrium until input exceeding the 
threshold comes in. In this case, the circuit will transit to the 
high level equilibrium. As the signal goes off, the system 
will go back to the low level equilibrium. The other way to 
attain a simple bistable circuit is by connecting two excitory 
neural groups and one inhibitory group. An implication of 
such a circuit is that this neural complex can act as a node 
which is commonly assumed in connectionist (such as [Waltz 
and Pollack, 1984] and [Bookman, 1987]) literature. The 
circuit is a threshold device and it holds its activation for a 
certain period of time. A sequence of pulses emitted from 
such a circuit is random and has no significant meaning as 
a carrier of information. 

5.2 Induced Excitory Oscillator 
Induced Excitory Oscillators (IEOs) are types of circuits that 
generate pulses of a certain frequency whenever a certain ex­
ternal stimulus is given. This is a kind of bi-stable circuit 
in which one of the attractors is a periodic attractor9. An 
oscillator unit of neurons generates a group of pulses of a 
certain frequency. Each unit has its own frequency called 
its 'Characteristic Frequency' or 'Eigen Frequency'. Small 

8The behavior of the neural circuits in this paper has been an­
alyzed in part by using a neural spike simulator. 

9Biologically, circuits wi th coherent oscillatory capability are 
interesting with respect to their relation to Stimulus-Evoked (SE) 
-resonance of 35-85Hz found in the primary visual cortex called 
Coherent SE-resonance [Eckhorn et. al, 1988]. 
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circuits consist of a few neurons and with a large number 
of such circuits with a phased array configuration, output 
spikes form a simple sequence of pulses with a specific in­
terval. Moreover, a circuit with a group of neurons that 
outputs a sequence of pulses with a specific modulation is 
also possible. Such circuits tend to limit a cycle. A spon­
taneous frequency or a probability density of the pulses(Pi) 
follows: 

In the modular neural circuits, we only require IEOs to sat­
isfy a weak form of the Poincare-Bendixson-Theorem [Bel­
trami, 1987]. The theorem indicates that for the system 
x = f(X),X in R2, an orbit 7 tends to a limit cycle T if 

= r and r is a non-constant closed orbit. 7+ is the 
positive limiting set which is a set of points p in R2 for 
which 

Our neural circuit is stable if there is a cycle 7 which is 
asymptotically stable. This would require the existence of 
an open neighborhood Ω such that every orbit starting from 
i?o has 7 as its positive limiting set. This is known as a weak 
form of the Poincare-Bendixson-Theorem, The circuit that 
entails limit cycles that satisfy this theorem is useful since it 
continuously emits characteristic frequency, until the energy 
is dispersed or inhibition is imposed, which can identify the 
source of activation. 

5.3 Resonance Circuit 
Resonance circuits react only to a sequence of pulses whose 
frequency matches the characteristic frequency of the circuit. 
Such circuits can be built by combining a series of nodes 
forming a loop and some inhibitory connections to the input 
node. When a pulse comes in, the input node gets activated 
and emits an impulse to the next node in the loop. That 
node emits an impulse to the next node in turn. At the same 
time, the node emits an impulse to the inhibitory node in 
which the inhibitory link is connected to the input node. 
Thus, the input node can be activated until the inhibition is 
removed. By adjusting the size of loops and inhibitions, the 
characteristic frequency of the circuit can be adjusted. 

5.4 Sequential Prediction and Activation Circuit 
The capability to handle natural language requires the sys­
tem to recognize sequential patterns. This type of nodes 
is assumed in the DMA type connectionist (or pseudo-
connectionist) architecture (such as [Riesbeck and Martin, 
1985] and [Tomabechi, 1987]), in which time-sequenced ac­
tivation of nodes is assumed to model subcategorization of 
syntactic units, episodic knowledge invocations, etc. In our 
model, sequential pattern recognition and predictions are at­
tained by assuming a scries of interconnected multi-stable 
modular circuits. As one example of such circuits, we can 
assume a complex of modular nodes each having inactive, 
prediction and recognition states. When input signals are 
less than a certain level (L2), the circuit stays inactive. Once 
the input strength exceeds that threshold, the excitation level 
goes up to the pre-excitory level. However, if the input 
strength is below the excitation threshold (L3), the excitation 
level stays at prediction level for a while and goes back to an 
inactive state quickly. The circuit jumps up to a recognition 

state when the input signals are more than L3. A recogni­
tion state is a stable state, but returns to an inactive state 
as a result of dispersion of the energy. Inter-module con­
nections are created so as to transfer sufficient impulses to 
the next module so that the next module can be activated to 
the prediction state whenever the current module gets to the 
recognition state. Such network configuration has not been 
assumed in the traditional neural network. However, we as­
sume the existence of such local circuit topologies in the 
neural network. The excitation level of the 1-th multi-stable 
node can be described by: 

2 

where denotes the excitation level of the 1-th 
node, external stimulus to the 1-th node, and excitation level 
of the i-th element of the 1-1-th node. ienotes a 
coefficient, weights, and threshold, respectively. The activa­
tion level of the node that packages the series of sequential 
nodes is: 

One interesting feature of this circuit is that it can handle 
the transposition of activation sequences by utilizing the cost 
of excitation propagation (instead of not recognizing the in­
correctly ordered sequence at all). To be more specific, a 
correct input activation sequence will excite Ecsc node at 
a normal level, say 100. However, an incorrect ordering 
can exist at a lower level, say 60. This is because an in­
correctly ordered sequence will consume more energy than 
the correctly ordered one due to the pre-excitation mecha­
nism which carries the next module to the prediction state. 
One of the reasons that we use groups of neurons instead 
of asymmetrically connected single neurons is thay they can 
be combined with resonance circuits to handle context-free 
rules with some syntactic constraints which are implicitly 
encoded in form of the modulation frequency. For example, 
we can implicitly encode the obliqueness order of HPSG 
[Pollard and Sag, 19871. 

6 Knowledge Representation in FMNN 
A complex knowledge structure can be built by modulating 
carrier waves by a modulation signal. Suppose that a cer­
tain group of neurons is representing the cluster for some 
instance of an already known person such as JOHN, and this 
cluster of neurons has the eigen-frequency of 200 Hz. Now 
suppose some activations have triggered the syntactic real­
ization that an input noun phrase that activated the clusters 
for JOHN concurrently activated another group of neurons 
that is representing the feature case nominative whose char­
acteristic frequency was 5000 Hz. While propagation for the 
activations of these clusters are performed, the carrier fre­
quency representing case nominative can be modulated by 
a signal representing JOHN. Such a scheme for modulation 
is nothing new to the current communication technology as 
has already been well accepted and performed by FM radios, 
TVs and other frequency modulated methods of communica­
tion. Intuitively, our concept of variable binding is similar 
to FM broadcasting in which carrier frequency of 80MHz 
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(FM-Tokyo) carries the music of the Boston Symphony Or­
chestra (BSO) as a modulation signal (value to be bound). 
In this case, the music of BSO is bound to FM-Tokyo. A 
complex structure as seen in Figure-1 (which partially cap­
tures the subcat feature for give as seen previously) can be 
built by modulating signals. 

We assume that one group of neurons is oscillating at a 
certain frequency. A series of pulses are emitted toward a 
group of neurons which eventually emit frequency modu­
lated pulses. A modulation signal is given from the group 
of neurons which oscillate in the frequency representing the 
value to be bound to the variable. The resulting pulse is 
modulated based on the frequency of the modulation signal. 
In case of figure-1, the data structure would be represented 
in the following equations: 

7 FMNN Machine 

Building an FMNN Machine should be the best way to take 
advantage of this architecture. It is analogous to the moti­
vation for building the Connection Machine ([Hillis, 1985]) 
for implementing the connectionist network. In this section, 
we discuss some of the possible implementation strategies 
and outline relevant technologies. 

7.1 Processors 
A straightforward way of implementing the FMNN model 
is to build a VLSI neural network chip with heterogeneous 
connections and spike generation capabilities as described in 
this paper. One other approach is to build components that 
are equivalent to each local neural circuit in their functions. 
Such components would include energy-spike converters, 
oscillators, resonators, etc.. Several technologies are avail­
able to actually implement such functional modules. Analog 
circuit technology is a well-established technology that can 
attain functionalities of intended modules. Especially, recent 
studies on analog VLSI [Ryckebusch et. al., 1989] may pro­
vide a hardware basis from the VLSI level. Digital Signal 
Processing (DSP) technology is one other possibility which 
can be more compatible with current computer architecture. 
One advantage of using DSP technology is that the filtering 
and control of signals can be more precise than with ana­
log technology. Also, it is be possible to implement FMNN 
using current computer technology. However, it would be 
more likely to be a simulation of FMNN rather than a direct 
hardware implementation. Figure-2 is a summary of differ­
ences of the FMNN model and other models of computation. 

7.2 Communication 
In the FMNN Machine, communication between processor 
units is performed by sending sequences of pulses. The con­
ventional approach of communicating pulses between pro­
cessors is using bus, N-cube, and a network which has prob­
lems such as load bottlenecks, routing, packet collision, etc.. 
A new approach which we are proposing is to send them us­
ing carrier waves. The pulses are carried on a specific carrier 
frequency possessed by each generator. Resonators in each 
node can tune to the desired carrier wave in order to estab­
lish appropriate connections. This communication method 
enables us to send many independent pulse sequences at a 
time; thus enabling us to simulate a very large-scale neural-
network (VLNN) in which a massive amount of informa­
tion is transmiued throughout the network. As briefly de­
scribed earler, an FM radio is a good analogy to our ap­
proach, where the signal is sent by a certain carrier wave 
and an audio signal is modulated by frequency. To send 
a huge amount of impulses, communication media need to 
have a large capacity to communicate on many independent 
channels. Recent advancements in communication technolo­
gies including Optical Wavelength Division Multiplexing or 
Optical Frequency Division Multiplexing may provide such 
capabilities. 

8 Discussion: Beyond PDP 
8.1 Bridging the Gap between Neural Network and 

Cognitive Processing 
The fundamental premise of connectionism has been that in­
dividual neurons do not transmit large amounts of symbolic 
information ([Feldman and Ballard, 1982]). We are extend­
ing this claim to add a phrase that, however, a group of neu-
rons is capable of oscillating pulses to carry information. As 
a basis of this extension, we are assuming the existence of 
local functional circuits which we refer to as hypermodules. 
The impact of this addition leads to the significant enhance­
ment of the neural network because; (1) we now have a 
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heterogeneous network with highly functional local circuits 
of neurons that are oscillating, receiving and modulating sig-
nals, (2) the FM signals propagated in the network can con­
tain information such as which oscillating node initiated the 
propagation and what constraints to inhibit/delay/impose and 
slow/accelerate certain propagation. Especially the capacity 
to propagate information results in the capacity to perform 
operations such as variable-binding (by specifying where the 
oscillation was initiated) and structure-building (modulating 
the oscillations on top of receiving frequencies and utilizing 
the variable-binding capacity). This is significant for cogni­
tive research which requires propagation of information and 
constraints. Indeed the network is capable of supporting the 
massively-parallel structured-marker passing (MSP) from the 
hardware level. As discussed in detail in [Tomabechi and 
Tomita, ms.], the MSP network is a model that is capable of 
performing inferencing and natural language processing that 
is not currently possible with the conventional connectionist 
model due to its lack of capacity to propagate information 
(which is done in MSP as a passing of structured-markers). 
Also as reported in [Kitano and Tomabechi, ms.], we can 
build circuits of neurons within the FMNN architecture to 
capture nodes that respond to certain features of sensory 
input such as sound-wave length and light-wave length10". 
Representation of knowledge in our model is very different 
from other existing models. Especially, our model does not 
assume a static representation of knowledge as it has been 
the case in other models. We are assuming constant informa­
tion flow in the brain (as opposed to the specific portion of 
the network statically representing some knowledge) and the 
knowledge is implicitly represented as time-varying signals. 

8.2 Physiological Relevance 

From the physiological point of view, recent studies of neu­
rophysiology including the one by Eckhorn's group [Eck-
hom et. al., 1988] provide some biological relevance to 
our model. They report stimulus dependencies of oscilla­
tory responses11. Moreover, coherence of SE-resonance was 
found within a vertical cortex column, between neighbour­
ing hypercolumns, and between two different cortical areas. 
They claim that "SE-resonance can be phase-locked within 
half an oscillation cycle up to a distance of 10mm at 50Hz." 
and conclude that coherent SE-resonances arc likely to con-

Such a property of neurons are known to exist ([Crick and 
Asanuma, 1986], [Zcki, 1978], [Michael, 1978]), but has not been 
captured in the past neural network models. 

11 "The type of visual stimulation was found to influence the 
frequency of the dominant spectral peak of oscillatory responses." 
and "The mean frequency of the spectral peak increased by 5Hz if 
the stimulus drift velocity was doubled." 

stitute a second higher stage of sensory coding. They further 
claim that "We are convinced that SE-resonances are a gen­
eral phenomenon, forming the basis of a correlation code 
which is used within and between different sensory systems 
and perhaps even throughout the entire brain." These Eck­
horn's findings are consistent with our speculations on the 
basis of the FMNN model which assumes the significance 
of resonance frequency created by a group of neurons. 

9 Conclusion 

We have proposed an FMNN architecture which is a neural 
network with a heterogeneous composition and with a ca­
pacity to attain variable binding and structure building using 
the frequency modulation of pulses by groups of neurons. 
Assumption of hypermodule allows us to assume modular 
circuits with sequence prediction and recognition capability. 
Cognitive processing using the MSP models can be attained 
by combining hypermodules. In our model, cognitive activ­
ities are performed through the modulation and propagation 
of pulses in a neural network, whereas the conventional neu­
ral network models have been based on the propagation of 
scalar values. Although the formulation of the details of 
the formal character of the FMNN architecture is yet to be 
completed, the introduction of the hypothesis for frequency 
modulation of neural activation pulses is a significant en­
hancement to the conventional neural network architecture. 
Three assumptions we introduced in our model (i.e., spike 
simulation, a heterogeneous neural network, and frequency 
modulation) provide our model with an information flow and 
local functional capability which conventional neural net­
works have not attained. Linkage of distant neural circuit 
through oscillatory signals is one of the interesting features 
postulated in our model. This is also interesting from the 
viewpoint of neuro-physiology supported by the discovery 
of coherent oscillations [Eckhorn et. al., 1988]. We have 
also proposed that it is possible to build an FMNN ma­
chine and that an FMNN machine would be able to perform 
tasks such as inferencing and natural language processing 
that are run under a simulated massive-parallelism in the 
massively-parallel structured-marker passing (MSP) models 
at the hardware level. 
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